www.aging-us.com AGING 2021, Vol. 13, No. 4 Research Paper Matrix stiffness promotes glioma cell stemness by activating BCL9L/Wnt/β-catenin signaling Bei Tao1,*, Yi Song2,* , Yao Wu2, Xiaobo Yang3,4, Tangming Peng3,4, Lilei Peng3,4, Kaiguo Xia3,4, Xiangguo Xia3,4, Ligang Chen3,4, Chuanhong Zhong3,4 1Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China 2Department of Neurosurgery, Chongqing University Three Gorges Hospital, Chongqing, China 3Sichuan Clinic Research Center for Neurosurgery, Luzhou, China 4Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China *Equal contribution Correspondence to: Chuanhong Zhong; email:
[email protected] Keywords: matrix stiffness, glioma, stemness, Wnt/β-catenin Received: July 27, 2020 Accepted: December 9, 2020 Published: February 1, 2021 Copyright: © 2021 Tao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Matrix stiffness is a key physical characteristic of the tumor microenvironment and correlates tightly with tumor progression. Here, we explored the association between matrix stiffness and glioma development. Using atomic force microscopy, we observed higher matrix stiffness in highly malignant glioma tissues than in low- grade/innocent tissues. In vitro and in vivo analyses revealed that culturing glioma cells on stiff polyacrylamide hydrogels enhanced their proliferation, tumorigenesis and CD133 expression. Greater matrix stiffness could obviously up-regulated the expression of BCL9L, thereby promoting the activation of Wnt/β-catenin signaling and ultimately increasing the stemness of glioma cells.