Five Steps in Leukocyte Extravasation in the Rnicrocirculation by Chemoattractants

Total Page:16

File Type:pdf, Size:1020Kb

Five Steps in Leukocyte Extravasation in the Rnicrocirculation by Chemoattractants CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central Research Paper Mediators of Inflammation 1, 403-409 (1992) FOR in vivo study of the phenomena observed in vitro, Five steps in leukocyte PMN (polymorphonuclear leukocyte) extravasation was analysed quantitatively in the microcirculation of the extravasation in the hamster cheek pouch using a video system. Topical rnicrocirculation by application of leukotriene B or N-formyl-methionyl- leucyl-phenylalanine increased dose dependently the chemoattractants number of PMNs adhering to the venules. Eighty to 90% of the adhering PMNs disappeared from the vascular lumen into the venular wall within 10-12 rain after the T. Oda, *'1, M. Katori,1cA adhesion. After PMNs had passed through the endothelial K. Hatanaka and S. Yamashina 2 cell layer, they remained in the venular wall for more than 30 min after application of the chemoattractants and appeared in the extravascular space. Thus, the process 1Department of Pharmacology and 2Anatomy, could be divided into five steps: (1) rolling and (2) Kitasato University School of Medicine, adhesion to the endothelium, (3) passage through the Sagamihara, Kanagawa 228, Japan, endothelial layer (4) remaining in the venular wall, and *Present Address: Department of Biology, (5) passage through the basement membrane. Faculty of General Education, Yamagata University, Yamagata 990, Japan Key words: fMLP, LTB4, Neutrophil adhesion, Neutrophil extravasation, Vascular basement membrane CA Corresponding Author Introduction In spite of the extensive efforts made in adhesion molecules in vitro, in order to of leuko- examining Transmigration polymorphonuclear understand properly the phenomenon of neutrophil cytes from the circulation to the (PMNs) extravasation, which occurs in vivo at the micro- extravascular is one of the cardinal of space signs circulatory level, confirmation in vivo of the in vitro the acute inflammatory responses. At the micro- findings is essential. Also, in order to discuss PMN level, PMNs have been described as circulatory at the molecular level in vivo, the venular wall 1'2 and then transmigration rolling along adhering quantitative analyses are required. to the inner surface of the endothelial cells. 1'3-s We reported a quantitative analysis of the rolling Studies electron have also indicated by micrography and adhesion of PMNs induced by leukotriene (LT) that PMNs the vessel wall between penetrate B and N-formyl-methionyl-leucyl-phenylalanine endothelial cells. 6- However, observations, 4 past (fMLP) in the microcirculation of the hamster cheek made in vivo at the microcirculatory level, of the pouch. The behaviour of PMNs in the vascular process of transmigration of PMNs have been lumen was quantified from changes in intensity of mainly rather descriptive, and not quantitative. images transmitted from a monochrome television The initial report from in vitro experiments that camera to a TV monitor screen, by using a incubation of interleukin-1 with cultured en- (TV) on this screen, but the dothelial cells from the human umbilical vein photocell placed subsequent steps of PMN extravasation remain to be analysed. increased their adhesivity for neutrophils1 stimu- The present experiments aim to give a lated studies on adhesion molecules. Since then, quantitative analysis of the entire process of the many findings on adhesion molecules of neutrophils transmigration of PMNs from the bloodstream to and endothelial cells have been accumulated using the perivascular space at microcirculatory levels in cultured endothelial cells and isolated neu- the cheek pouch of anaesthetized hamsters. trophils. 12'13 Two intercellular adhesion molecules, ICAM-1 (intercellular adhesion molecules-I) 14 and s ICAM-2 have been identified on endothelial cells Materials and Methods in relation to neutrophil adhesion to these cells. Simultaneously, studies of patients who show Preparation of hamster cheek pouch: The hamster cheek repetitive infection and lack of PMN migration16 pouch preparations were set up as previously have revealed congenital deficiencies of a family of described. 3's'18 Tracheal intubation ensured spon- surface glycoproteins of leukocytes, which have taneous respiration. The male golden hamsters now been identified as adhesion molecules of the (Mesocricetus auratus, 120-150 g, 10-16 weeks old) integrin superfamily (CD11/CD18). 17 were anaesthetized with pentobarbital (Nembutal (R), (C) 1992 Rapid Communications of Oxford Ltd Mediators of Inflammation. Vol 1992 403 T. Oda et al. Abbot Lab, Chicago, IL, USA) (60 mg/kg, i.p.). citrate, and observed by a JEM-1200EX electron The cheek pouch was everted, cut longitudinally, microscope (JEOL Ltd, Tokyo). and extended. The avascular connective tissue was elaborately dissected away to expose the micro- Results vasculature of the mucous layer. The thin mucous membrane tissue was spread in a plastic chamber Rolling: In the absence of chemoattractants, a few (9 ml) and superfused at 5 ml/min with warmed PMNs could be individually visualized as bright Tyrode's solution, which was maintained at 37C. white ceils against the dark background of the Body temperature was maintained with a warming blood stream, since they rolled slowly on the pad positioned directly beneath the hamster and endothelial wall. Although the number of rolling maintained at 37C. PMNs was quite variable from preparation to preparation, the majority of the rolling observation and behaviour" Microscopic recording of leukocyte PMNs moved in a jerky fashion, then came to rest The microvasculature of the hamster cheek pouch suddenly for short, but variable periods of time was observed with transillumination under a (3--30 s), and finally returned to the bloodstream Co. microscope (BHA, Olympus Optical Ltd, (Fig. 1). The behaviour of a PMN moving slowly a water immersion lens and Tokyo), using ( 40) along the endothelial surface and stopping at the x 10 eyepieces (Olympus Optical Co. Ltd, Tokyo). same site for less than one minute was designated of the microcirculation were into Images projected as 'rolling'. Some PMNs rested at the same site for a TV monitor screen via a monochrone TV camera longer periods, but eventually they moved again (CTC 2600, Ikegami Tsushinki, Tokyo) mounted at (Fig. 2). the a top of triocular microscope. The leukocyte On the application of a chemoattractant (either responses in each experiment were usually recorded LTB4 or fMLP) the number of rolling PMNs was with a recoder videotape (VO-5850, Sony Co., kept constantly low and was not increased (Fig. 2), Tokyo) and replayed after the experiments. The rolling behaviour, adhesion to the vessel walls, and 50 migration to the extravascular space, of individual Tyrode 50 #1 (n:5) .E F'-I leukocytes were clearly visible on the screen. The LTB4 0.15 pmol/50 lal (n:5) observation and were o 40 experimental procedures LTB4 1.5pmol/5011 (n:6) performed only once for each animal. The Z LTB4 15 pmol/50 #1 (n:6) behaviour of individual leukocytes in a post- N 3O capillary venule of 13-15 #m diameter were observed over a 110/m length along a venule. 20 the 30 min During equilibration period, margina- o lO tlng leukocytes could be visualized inside the o venules as they rolled along the endothelium at a Z o lower velocity than the bulk flow. 3-30 30-60 60 sec- Chemotactic agents: LTB4 (Paesel, Gmbh and Co, Resting time (s) Frankfurt) and fMLP (Peptide Institute, Minoh, Osaka) were used as chemoattractants. Stock 50 solutions of LTB4 (30/M in absolute ethanol) or F--I Tyrode 50 ILtl (n:5) at fMLP (1 mM in saline) were kept frozen --70C fMLP (n:5) E 40 nmol/5OiLtl and diluted to appropriate concentrations with o fMLP 3nmol/5OiLtl (n:5) Tyrode's solution immediately before use. z 3o fMLP 10 nmol/50 pl (n:5) Application of LTB4 and fMLP: The superfusion of the cheek pouch with Tyrode's solution was .E 20 stopped during the experiments. LTB4 or fMLP solution was applied to the microvasculature at the o lO observation sites with a 50/1 micropipette. d 0 Electron microscopy: Before and 30 min after the 3-30 30-60 60 sec- application of LTB4, parts of the thin preparation Resting time (s) of the hamster cheek pouch used for examination FIG. 1. Times for which PMNs remained at the same site in a venule after of the microcirculation were fixed in topical application of LTB4 and fM LP. The abscissa indicates the ranges 2.5% of time spent by the same PMNs at the same site on the inner surface of glutaraldehyde and 1% osmium tetroxide. Ultra- the venules. The ordinate indicates the cumulative numbers of PMNs thin sections were cut on a LKB ultramicrotome remaining for each time range, counted in a 110 Fm length along a venule on the monitor screen for 50 min after the application of LTB4 or fMLP. and were stained with uranyl acetate and lead Values indicate the mean (_+ SE) from five to six animals. 404 Mediators of Inflammation. Vol 1992 Five steps in leukocyte extravasation O Tyrode 50 Id O Tyrode 50 1 (n:5) I LTB 0.15 pmol/50pl (n:5) 1 LTB4 0.15 pmol/50 d (n:5) 4O [] LTB4 1.5 pmol/50 Ill (n:6) .E [] LTBa 1,5 pmol/50 pl LTB4 15pmol/501d (n:6) E (hi6) . 3o 20 d 0 0 10 20 30 40 50 --5 0 10 20 30 40 50 Min Min O Tyrode 50 pl (n:5) O Tyrode 50 d (n:5) fMLP nmol/50d (n:5) fMLP nmol/50 pl (n:5) 4O [] fMLP 3nmol/50pl (n:5) .:_ fMLP nmol/50 pl fMLP 10 nmol/50 pl (n:5) E (ni5) .: 30 20 6 0 -5 0 10 20 30 40 50 Min --5 0 10 20 30 40 50 Min FIG. 3. Changes in the numbers of adhering PMNs after LTB4 and fMLP.
Recommended publications
  • Targeting Innate Immunity to Treat Cancer
    cancers Editorial Targeting Innate Immunity to Treat Cancer Matthew Austin and Harriet Kluger * Yale Cancer Center, Yale School of Medicine, 333 Cedar St, WWW211B, New Haven, CT 06520, USA; [email protected] * Correspondence: [email protected] Received: 14 September 2020; Accepted: 16 September 2020; Published: 23 September 2020 In recent years, it has become clear that the immune system plays a critical role in rejecting malignant cells. Through the complex interplay between multiple cell types from both the adaptive and innate immune systems, immune cells are able to identify and destroy tumor cells. Multiple mechanisms of escape from immune surveillance have been characterized and are being harnessed for therapeutic benefit. Proposed mechanisms include, but are not limited to, alteration of surface antigens [1,2], down-regulation of necessary components for antigen presentation [3], secretion of anti-inflammatory cytokines by tumor cells or cells in the tumor micro-environment [4], and upregulation of expression of immune inhibitory molecules [5]. Drugs that target these immune-evasion mechanisms and successfully re-invigorate the immune response include inhibitors of PD-1, its ligand PDL-1, and CTLA-4, all of which have dramatically revolutionized cancer care [6–8]. Other classes of immune therapies that have been approved by the food and drug administration include CAR-T and natural killer (NK) cellular therapies [9], cytokine therapies [10], oncolytic viruses [11] and dendritic cell therapies, such as sipuleucel-T [12]. Immune checkpoint inhibitors, which are thought to primarily work by activation of cytotoxic T cells [13], are the most widely used; however, they are only active in a subset of cancer patients.
    [Show full text]
  • Immune Cell Migration in Inflammation: Present and Future Therapeutic Targets
    REVIEW DAMPENING INFLAMMATION Immune cell migration in inflammation: present and future therapeutic targets Andrew D Luster1, Ronen Alon2 & Ulrich H von Andrian3 The burgeoning field of leukocyte trafficking has created new and exciting opportunities in the clinic. Trafficking signals are being defined that finely control the movement of distinct subsets of immune cells into and out of specific tissues. Because the accumulation of leukocytes in tissues contributes to a wide variety of diseases, these ‘molecular codes’ have provided new targets for inhibiting tissue-specific inflammation, which have been confirmed in the clinic. However, immune cell migration is also critically important for the delivery of protective immune responses to tissues. http://www.nature.com/natureimmunology Thus, the challenge for the future will be to identify the trafficking molecules that will most specifically inhibit the key subsets of cells that drive disease processes without affecting the migration and function of leukocytes required for protective immunity. The past three decades have witnessed an explosion of knowledge in they deploy to migrate to target tissues? How do trafficking molecules immunology, which is being increasingly ‘translated’ into new thera- regulate effector cell recruitment in vessels and during subsequent trans- pies for seemingly unrelated human pathologies caused by excessive or endothelial and interstitial migration? Which trafficking molecules are misdirected inflammatory responses. Although such diseases can affect promising targets for safe and effective drug inhibition? Which migra- any part of the body, almost all inflammatory conditions are restricted tion-directed drugs might be effective in which disease(s) and why? to particular target organs or tissue components1–3.
    [Show full text]
  • Inflammation and Introduction to Wound Healing
    Inflammation and Introduction to Wound Healing Alan D. Proia, M.D., Ph.D. February 14, 2011 Proia©/DUMC 1 Objectives Understand basic concepts of acute, chronic, and granulomatous inflammation Recognize key leukocytes participating in inflammatory responses Distinguish acute, chronic, and granulomatous inflammation Proia©/DUMC 2 What is Inflammation? Response to injury (including infection) Reaction of blood vessels leads to: » Accumulation of fluid and leukocytes in extravascular tissues Destroys, dilutes, or walls off the injurious agent Initiates the repair process Proia©/DUMC 4 What is Inflammation? Fundamentally a protective response May be potentially harmful » Hypersensitivity reactions to insect bites, drugs, contrast media in radiology » Chronic diseases: arthritis, atherosclerosis » Disfiguring scars, visceral adhesions Proia©/DUMC 5 What is Inflammation? Components of inflammatory response » Vascular reaction » Cellular reaction How: Chemical mediators » Derived from plasma proteins » Derived from cells inside and outside of blood vessels Proia©/DUMC 6 Historical Highlights Celsus, a first century A.D. Roman, listed four cardinal signs of acute inflammation: » Rubor (erythema [redness]): vasodilatation, increased blood flow » Tumor (swelling): extravascular accumulation of fluid » Calor (heat): vasodilatation, increased blood flow » Dolor (pain) Proia©/DUMC 7 Types of Inflammation Acute inflammation Chronic inflammation » Short duration » Longer duration » Edema » Lymphocytes & » Mainly neutrophils macrophages
    [Show full text]
  • Migration Dynamics in Leukocyte Transendothelial Endothelial Actin-Binding Proteins and Actin
    Th eJournal of Brief Reviews Immunology Endothelial Actin-Binding Proteins and Actin Dynamics in Leukocyte Transendothelial Migration Michael Schnoor The endothelium is the first barrier that leukocytes have Ag-1 and macrophage-1 Ag or the b1-integrin very late Ag-4 to overcome during recruitment to sites of inflamed tis- on leukocytes mediate firm adhesion. Subsequently, leukocytes sues. The leukocyte extravasation cascade is a complex reach the site of transmigration by intraluminal crawling. Leu- multistep process that requires the activation of various kocytes can crawl as much as 60 mm in a macrophage-1 Ag/ adhesion molecules and signaling pathways, as well as ac- ICAM-1–dependent fashion before they transmigrate (2). tin remodeling, in both leukocytes and endothelial cells. Transmigration (also known as diapedesis) occurs either trans- Endothelial adhesion molecules, such as E-selectin or cellularly or paracellularly, with the majority of transmigration ICAM-1, are connected to the actin cytoskeleton via events being across paracellular junctions both in vivo and actin-binding proteins (ABPs). Although the contribu- in vitro (3, 4). Finally, leukocytes have to cross pericytes and tion of receptor–ligand interactions to leukocyte extrav- the basement membrane (BM) to conclude extravasation. This asation has been studied extensively, the contribution of occurs through gaps in the pericyte layer that coincide with endothelial ABPs to the regulation of leukocyte adhe- regions of the BM that contain less extracellular matrix proteins sion and transendothelial migration remains poorly un- and, therefore, pose a thinner barrier for the transmigrating derstood. This review focuses on recently published leukocyte (5, 6). All of these steps require cell movement and evidence that endothelial ABPs, such as cortactin, myo- actin cytoskeletal remodeling in both cell types involved.
    [Show full text]
  • Endothelial Barrier Function and Leukocyte Transmigration in Atherosclerosis
    biomedicines Review Endothelial Barrier Function and Leukocyte Transmigration in Atherosclerosis Thijs J. Sluiter 1,2 , Jaap D. van Buul 3 , Stephan Huveneers 4, Paul H. A. Quax 1,2 and Margreet R. de Vries 1,2,* 1 Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; [email protected] (T.J.S.); [email protected] (P.H.A.Q.) 2 Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands 3 Sanquin Research and Landsteiner Laboratory, Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] 4 Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +31-(71)-526-5147 Abstract: The vascular endothelium is a highly specialized barrier that controls passage of fluids and migration of cells from the lumen into the vessel wall. Endothelial cells assist leukocytes to extravasate and despite the variety in the specific mechanisms utilized by different leukocytes to cross different vascular beds, there is a general principle of capture, rolling, slow rolling, arrest, crawling, and ultimately diapedesis via a paracellular or transcellular route. In atherosclerosis, the barrier function of the endothelium is impaired leading to uncontrolled leukocyte extravasation and Citation: Sluiter, T.J.; van Buul, J.D.; vascular leakage. This is also observed in the neovessels that grow into the atherosclerotic plaque Huveneers, S.; Quax, P.H.A.; de Vries, leading to intraplaque hemorrhage and plaque destabilization.
    [Show full text]
  • Five Steps in Leukocyte Extravasation in the Rnicrocirculation by Chemoattractants
    Research Paper Mediators of Inflammation 1, 403-409 (1992) FOR in vivo study of the phenomena observed in vitro, Five steps in leukocyte PMN (polymorphonuclear leukocyte) extravasation was analysed quantitatively in the microcirculation of the extravasation in the hamster cheek pouch using a video system. Topical rnicrocirculation by application of leukotriene B or N-formyl-methionyl- leucyl-phenylalanine increased dose dependently the chemoattractants number of PMNs adhering to the venules. Eighty to 90% of the adhering PMNs disappeared from the vascular lumen into the venular wall within 10-12 rain after the T. Oda, *'1, M. Katori,1cA adhesion. After PMNs had passed through the endothelial K. Hatanaka and S. Yamashina 2 cell layer, they remained in the venular wall for more than 30 min after application of the chemoattractants and appeared in the extravascular space. Thus, the process 1Department of Pharmacology and 2Anatomy, could be divided into five steps: (1) rolling and (2) Kitasato University School of Medicine, adhesion to the endothelium, (3) passage through the Sagamihara, Kanagawa 228, Japan, endothelial layer (4) remaining in the venular wall, and *Present Address: Department of Biology, (5) passage through the basement membrane. Faculty of General Education, Yamagata University, Yamagata 990, Japan Key words: fMLP, LTB4, Neutrophil adhesion, Neutrophil extravasation, Vascular basement membrane CA Corresponding Author Introduction In spite of the extensive efforts made in adhesion molecules in vitro, in order to of leuko- examining Transmigration polymorphonuclear understand properly the phenomenon of neutrophil cytes from the circulation to the (PMNs) extravasation, which occurs in vivo at the micro- extravascular is one of the cardinal of space signs circulatory level, confirmation in vivo of the in vitro the acute inflammatory responses.
    [Show full text]
  • Inflammation
    Inflammation Chapter 2 Feb 16, 2005 Chemotaxis and chemoinvasion assays • Migration and invasion was assayed in 24-well cell-culture chambers using inserts with 8-µm pore membranes as described. • Membranes were pre-coated with fibronectin (2.5–7.5 µg ml- 1) for chemotaxis or Matrigel (28 µg per insert) and fibronectin for invasion studies. Breast cancer cells were resuspended in chemotaxis buffer (DMEM/ 0.1% BSA/ 12 mM HEPES) at 2 or 4 104 cells per ml. • After incubation for 6 or 24 h for chemotaxis or chemoinvasion assays, respectively, cells on the lower surface of the membrane were stained and counted under a light microscope in at least five different fields (original magnification, 200). • Assays were performed in triplicates. Chemokinesis was tested in checkerboard assays and was uniformly negative for both CXCL12 and CCL21. Boyden chamber Figures removed for copyright reasons. Checkerboard assay nM Top Bottom 0 1 10 100 0 0.2 0.2 0.3 0.5 1 0.8 0.3 0.4 0.4 10 2.7 2.3 0.6 0.6 100 3.4 3.5 0.8 0.7 Figures removed for copyright reasons. Cells Behave Better on BD Matrigel™ Matrix • BD Matrigel™ Matrix is a solubulized basement membrane preparation extracted from EHS mouse sarcoma, a tumor rich in ECM proteins. • Its major component is laminin, followed by collagen IV, heparan sulfate proteoglycans, and entactin. • At room temperature, BD Matrigel™ Matrix polymerizes to produce biologically active matrix material resembling the mammalian cellular basement membrane. Cells behave as they do in vivo when they are cultured on BD Matrigel™ Matrix.
    [Show full text]
  • Platelets in Inflammation: Regulation of Leukocyte Activities and Vascular Repair
    MINI REVIEW ARTICLE published: 06 January 2015 doi: 10.3389/fimmu.2014.00678 Platelets in inflammation: regulation of leukocyte activities and vascular repair Angèle Gros 1,2†,Véronique Ollivier 1,2† and Benoît Ho-Tin-Noé 1,2* 1 Université Paris Diderot, Sorbonne Paris Cité, Paris, France 2 Unit 1148, Laboratory for Vascular Translational Science, INSERM, Paris, France Edited by: There is now a large body of evidence that platelets are central actors of inflammatory reac- Olivier Garraud, Institut National de la tions. Indeed, platelets play a significant role in a variety of inflammatory diseases. These Transfusion Sanguine, France diseases include conditions as varied as atherosclerosis, arthritis, dermatitis, glomeru- Reviewed by: Daniel Duerschmied, University of lonephritis, or acute lung injury. In this context, one can note that inflammation is a Freiburg, Germany convenient but imprecise catch-all term that is used to cover a wide range of situations. Steve P.Watson, University of Therefore, when discussing the role of platelets in inflammation, it is important to clearly Birmingham, UK define the pathophysiological context and the exact stage of the reaction. Inflammatory *Correspondence: reactions are indeed multistep processes that can be either acute or chronic, and their Benoît Ho-Tin-Noé, Unit 1148, INSERM, Hôpital Bichat, 46 rue Henri sequence can vary greatly depending on the situation and organ concerned. Here, we Huchard, Paris Cedex 18 75877, focus on how platelets contribute to inflammatory reactions involving recruitment of neu- France trophils and/or macrophages. Specifically, we review past and recent data showing that e-mail: [email protected] platelets intervene at various stages of these reactions to regulate parameters such as †Angèle Gros and Véronique Ollivier endothelial permeability, the recruitment of neutrophils and macrophages and their effec- have contributed equally to this work.
    [Show full text]
  • L2 Cellular Events
    Cellular events Function of inflammation‐ deliver leukocytes at site of injury, activate them to perform functions in host defense • Leukocyte extravasation • Phagocytosis Leukocyte extravasation • In the lumen: margination, pavementing, rolling • Emigration across endothelium • Chemotaxis In the lumen: • Margination‐ Normally red and white cells flow intermingled in the center of the vessel separated from vessel wall by a clear cell‐free plasmatic zone. ‐ Due to slowing of the circulation, leucocytes fall out of the axial stream and come to periphery known as margination • Pavementing‐ neutrophils close to vessel wall • Rolling‐ neutrophils roll over endothelial cells • Adhesion‐ binding to endothelial cells Regulated by binding of complementary adhesion molecules on endothelial and leukocyte surfaces Adhesion molecules • Selectins E‐ selectin P‐ selectin L‐ selectin • Immunoglobulins – ICAM‐1, VCAM‐1 • Integrins Emigration ‐ neutrophils throw cytoplasmic pseudopods migrate through interendothelial spaces ‐ b/w endothelial cells & BM ‐ crosses BM by damaging it by collagenases ‐ escape of RBCs, diapedesis also occurs Rolling adhesion Tight binding Diapedesis Migration CXCLBR (IL-8 receptor) s-Le x ------ E­ selectin 0 Figure 2·44 part 3 of 3 lmmunobiology, 6/e. (© Garland Science 2005) Chemotaxis ‐ Leukocytes emigrate towards site of injury or chemical gradient ‐ Chemotactic agents: ‐ exogenous – bacterial products ‐ endogenous‐ complement system C5a, leukotrienes, cytokines ‐ Chemotactic agents bind to cell receptors on leukocytes→
    [Show full text]
  • Pathophysiology of Inflammation Inflammation
    Pathophysiology of inflammation Inflammation • is a protective response • to eliminate the initial cause of cell injury • diluting, destroying and neutralizing the harmful agents • remove the damaged tissue • generate new tissue The inflammatory response • to immune reaction • to injury • to ischemic damage The classic signs of inflammation • redness rubor • swelling tumor • heat calor • pain or discomfort dolor • loss of function functio laesa Reparing mechanisms: • Thrombotic and fibrinolytic system • Inflammation • Immunreaction • Oral defense Common mechanisms in all systems: • 1. serum protease – antiprotease system • 2. oxidative – reductive systems, free radicals • 3. complement system • 4. phagocytosis Causes of inflammation: • A. Exogenous • B. Endogenous • Mechanical • Circulatory disorder, • Physical hypoxia • Chemical • Endogenous protease • Biological release • Immuncomplex formation Characteristics of inflammations Acute Chronic Permanent present of the Cause Single injury causing agent /bacteria, etc./ Weeks, months, years; Duration Hours, days depending on the causing agent Presentative ↑ permeability, Proliferative fibroblasts symptom exudation No exudation Liquid Proteins Macrophage Main /proteases and Lymphocytes components in antiproteases/ Eosinophyl granulocytes the process PMN leukocytes Connective tissue hiperplasy Macrophages Connecting Thrombosis Immune response reactions ACUTE INFLAMMATION Acute inflammatory response • immediate vascular changes • influx of inflammatory cells • neutrofils • widespread effects
    [Show full text]
  • Five Steps in Leukocyte Extravasation in the Rnicrocirculation by Chemoattractants
    Research Paper Mediators of Inflammation 1, 403-409 (1992) FOR in vivo study of the phenomena observed in vitro, Five steps in leukocyte PMN (polymorphonuclear leukocyte) extravasation was analysed quantitatively in the microcirculation of the extravasation in the hamster cheek pouch using a video system. Topical rnicrocirculation by application of leukotriene B or N-formyl-methionyl- leucyl-phenylalanine increased dose dependently the chemoattractants number of PMNs adhering to the venules. Eighty to 90% of the adhering PMNs disappeared from the vascular lumen into the venular wall within 10-12 rain after the T. Oda, *'1, M. Katori,1cA adhesion. After PMNs had passed through the endothelial K. Hatanaka and S. Yamashina 2 cell layer, they remained in the venular wall for more than 30 min after application of the chemoattractants and appeared in the extravascular space. Thus, the process 1Department of Pharmacology and 2Anatomy, could be divided into five steps: (1) rolling and (2) Kitasato University School of Medicine, adhesion to the endothelium, (3) passage through the Sagamihara, Kanagawa 228, Japan, endothelial layer (4) remaining in the venular wall, and *Present Address: Department of Biology, (5) passage through the basement membrane. Faculty of General Education, Yamagata University, Yamagata 990, Japan Key words: fMLP, LTB4, Neutrophil adhesion, Neutrophil extravasation, Vascular basement membrane CA Corresponding Author Introduction In spite of the extensive efforts made in adhesion molecules in vitro, in order to of leuko- examining Transmigration polymorphonuclear understand properly the phenomenon of neutrophil cytes from the circulation to the (PMNs) extravasation, which occurs in vivo at the micro- extravascular is one of the cardinal of space signs circulatory level, confirmation in vivo of the in vitro the acute inflammatory responses.
    [Show full text]
  • Cell-Specific Variation in E-Selectin
    Cell-Specific Variation in E-Selectin Ligand Expression among Human Peripheral Blood Mononuclear Cells: Implications for Immunosurveillance and Pathobiology This information is current as of September 29, 2021. Mariana Silva, Ronald Kam Fai Fung, Conor Brian Donnelly, Paula Alexandra Videira and Robert Sackstein J Immunol 2017; 198:3576-3587; Prepublished online 22 March 2017; doi: 10.4049/jimmunol.1601636 Downloaded from http://www.jimmunol.org/content/198/9/3576 Supplementary http://www.jimmunol.org/content/suppl/2017/03/22/jimmunol.160163 http://www.jimmunol.org/ Material 6.DCSupplemental References This article cites 89 articles, 35 of which you can access for free at: http://www.jimmunol.org/content/198/9/3576.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc.
    [Show full text]