Comparison of Firefly, Cultural and the Artificial Bee Colony Algorithms for Optimization Vaishali R

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Firefly, Cultural and the Artificial Bee Colony Algorithms for Optimization Vaishali R Comparison of Firefly, Cultural and the Artificial Bee Colony Algorithms for Optimization Vaishali R. Kulkarni1, Veena Desai2, Raghavendra V. Kulkarni1 1Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bengaluru 560058 2Department of Electronics and Communication Engineering, KLS Gogte Institute of Technology, Belagavi 590008 *Contact Author E-mail: [email protected] Abstract Global optimization refers to the technique for finding the best element in the given domain by satisfying certain constraints. Optimization algorithms are classified as deterministic and heuristic. Deterministic algorithms provide guaranteed solutions but with high computational demand. Heuristic and metaheuristic algorithms have been successfully used in optimization problems. They provide a solution close to the optimum with a better speed and less complexity. In this paper three metaheuristic algorithms namely firefly , cultural and the artificial bee colony, algorithm have been investigated over benchmark function optimization. The results and numeric simulation include comparison of the algorithms in terms of minimization of the objective function. Results of Matlab implementation show that the firefly algorithm performs the optimization in the most accurate manner. Cultural algorithm is inferior to firefly and the ABC algorithm shows the poorest performance among the three. Keywords: Metaheuristic Algorithms, ABC Algorithm, Firefly Algorithm, Cultural Algorithm, Global Optimization solved using metaheuristics than problem- specific 1. INTRODUCTION heuristic algorithms There are two categories of optimization algorithms: Many researchers use metaheuristic and heuristic deterministic or exact algorithms and heuristics. definition interchangeably, as a concrete definition has Deterministic algorithms find the guaranteed optimal been elusive. These algorithms have been categorized solution in a finite amount of time. However, for from Evolutionary Computation (EC), Swarm complex optimization problems for eg: global or NP- Intelligence (SI) and other paradigms of Computational hard optimization problems, the amount of time may Intelligence. They are referred as nature inspired or bio- increase exponentially with respect to the dimensions of inspired algorithms. Recent metaheuristic algorithms the problem. On the other hand, heuristics do not have preserve search experience embodied in some form of guarantee of solution but they usually find good enough memory for better solutions. Metaheuristic algorithms solutions in a reasonable amount of time. The found have been used in solving NP-hard optimization solution may not be the best of all actual solutions to the problems such as machine learning, traveling salesman given problem, but it may be the approximate and still problem, scheduling, maximum clique problem, p- be useful as it does not require long time. The median problem, search problems, feature selection etc. justification of heuristic algorithms is based on The metaheuristic algorithms based on SI have been arguments of plausibility, rather than mathematical applied for benchmark function optimization n this proof. It is possible that, heuristic algorithm may paper. These algorithms are: Firefly Algorithm (FA), conclude that no solution exists. Heuristic methods are Cultural Algorithm (CA) and the Artificial Bee Colony usually designed to fit a specific problem type rather Algorithm (ABC). than a variety of applications. This drawback is overcome with metaheuristic algorithms. Metaheuristic FA simulates the behavior of fireflies searching for algorithms can be applied to broader range of problems. brightness [1]. CA is based on EC and it is also called as Metaheuristic algorithms include a high-level problem- a meta-evolutionary algorithm. CA includes of the independent algorithmic frame-work that provides a set culture that comprises of the parameters such as habits, of guidelines or strategies to develop heuristic beliefs, knowledge and customs of the society. CA uses optimization algorithms. In comparison with heuristics, culture to interact with the environmental condition and metaheuristics are powerful and robust, they can revive works upon improvement of convergence to obtain from any situation, irrespective of initial solutions. The optimal solution [2]. The ABC algorithm is based on the key ideas of metaheuristics are [1]: food foraging behavior of honeybees [3]. Generally an optimization problem can be considered as a 1. Search process is using the information gathered to minimization or maximization problem. In the move towards the global optimum based on optimization process, the absolutely best decision that guidelines corresponds to the minimum or maximum of a suitable 2. Metaheuristic can escape from getting trapped in objective function must be taken. The decision should be local minima by generating new solutions. New taken in the presence of the collection of feasible solution is a combination of two or more good constraints. An objective function also known as fitness solutions function expresses the main aim of the model which is 3. Metaheuristic algorithms explore neighborhood either to be minimized or maximized. A set of unknowns structure that avoids trying similar solutions or variables control the value of the objective function in 4. A very good solution can be found in a relatively given constraints. The performance of the system such as quick speed. Large complicated problems can be physical limitations, utility, design, loss, error etc. can be modelled by an objective function. The constraints on RUAS-SASTech Journal 22 Vol. 16, Issue 2 objective function may be due to technical, economical dimensions, population size and number of iteration. or some other considerations. A set of standard Several factors decide the benchmark functions benchmark functions can be used to validate classification. These factors are: optimization problem. Benchmark functions can be unimodal or multimodal. Unimodal are with single local 1. Dimensionality: As the dimension increase, there is optima and multimodal functions are with more than one increase in search space. It is a challenge for local optima. The exploration and exploitation process of optimization problem to handle high dimensions in an algorithm can be tested using these functions. The nonlinear problems metaheuristic algorithms can be tested in an unbiased 2. Modality: The number of peaks in the function way by applying on the benchmark functions. In this landscape define modality. The search process of paper, the FA, CA and the ABC algorithm have been algorithm might get stuck in one of the peaks and applied on benchmark functions to test the efficiency of this will mislead the search process, taking it away algorithm in terms of accuracy. The remainder of this from the optimal solution paper has been organized as follows: Previous research 3. Basins: This refers to the plateau in optimization in optimization with SI and EC has been surveyed in problem. Basin can hamper the search process as it Section 2. An overview of the benchmark functions has can get attracted towards such regions. This will get been presented in Section 3. A brief overview of an obstacle in the exploration of solutions algorithms used have been outlined in Section 4. Details 4. Separability: It is a measure of difficulty of of the results obtained have been presented in Section 5. different benchmark functions. Separable functions Finally, concluding remarks and future scope for future are easy to solve in comparison with un-separable research have been given in Section 6. or dependent functions The performance of metaheuristic algorithms can tested in an effective manner using these features of benchmark 2. RELATED WORK function. Some of the popular benchmark functions have been used for in this work are listed below. The algorithms used in this work are inspired by SI and EC paradigms of CI. SI is defined as the emergent 1. Rastrigin Function collective intelligence of groups of simple agents, 2. Rosenbrock Function commonly referred as population. SI algorithms works 3. Schewefel Function in a distributed and self-organized manner. SI is based on 4. Sphere Function the behavior of swarms for example: social insects, flock of birds, colonies of ants etc. These colonies work on the 4. ALGORITHMS principle of division of labor and have been successful in exploring the search space for optimal solutions. EC is SI is defined as the emergent collective intelligence of inspired by the theory of biological evolution. EC has groups of simple agents that work in a distributed and been successfully used to create optimization self-organized manner. These colonies work on the procedures. Evolution is seen as a process leading to the principle of division of labor and have been successful in survival of the population and reproduce in specific exploring the search space for optimal solutions. The environment. CA has been used in many constrained ABC algorithm has been used in many science and applications as presented in article [4]. A self-adaptive engineering applications. The variants and applications CA with fuzzy controller has been presented in article of the ABC algorithm has been expressed in article [9]. [5]. The evolution process in fuzzy controller has been Comprehensive study of FA has been presented in article controlled by using CA in this work. Several research has [10]. CA is derived from cultural evolution models in been done in the FA- and ABC-based
Recommended publications
  • "Cultural Algorithm Initializes Weights of Neural Network Model for Annual Electricity Consumption Prediction "
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 11, No. 6, 2020 Cultural Algorithm Initializes Weights of Neural Network Model for Annual Electricity Consumption Prediction Gawalee Phatai1, Sirapat Chiewchanwattana2*, Khamron Sunat3 Department of Computer Science Faculty of Science, Khon Kaen University Khon Kaen, Thailand Abstract—The accurate prediction of annual electricity identities as distinct from others, especially when viewed more consumption is crucial in managing energy operations. The often and in different ways, which results in learning and neural network (NN) has achieved a lot of achievements in yearly memory. The human brain contains numerous processing units electricity consumption prediction due to its universal linked by several nervous systems that perform rapid analysis approximation property. However, the well-known back- and decision making. The artificial neural network represents a propagation (BP) algorithms for training NN has easily got stuck simulation of the human brain [1][2]. Many studies regarding in local optima. In this paper, we study the weights initialization ANNs have been conducted for solutions in various disciplines. of NN for the prediction of annual electricity consumption using the Cultural algorithm (CA), and the proposed algorithm is A. Background named as NN-CA. The NN-CA was compared to the weights ANN is a distributed data processing system consisting of initialization using the other six metaheuristic algorithms as well several simple calculation elements working together through a as the BP. The experiments were conducted on the annual weighted connection. This calculation architecture was inspired electricity consumption datasets taken from 21 countries. The experimental results showed that the proposed NN-CA achieved by the human brain, which can learn intricate data patterns and more productive and better prediction accuracy than other classify them into general data.
    [Show full text]
  • Hydrothermal Systems Generation Scheduling Using Cultural Algorithm Xiaohui Yuan, Hao Nie, Yanbin Yuan, Anjun Su and Liang Wang
    65 Q IWA Publishing 2009 Journal of Hydroinformatics | 11.1 | 2009 Hydrothermal systems generation scheduling using cultural algorithm Xiaohui Yuan, Hao Nie, Yanbin Yuan, Anjun Su and Liang Wang ABSTRACT This paper proposes an enhanced cultural algorithm to solve the short-term generation Xiaohui Yuan (corresponding author) Hao Nie scheduling of hydrothermal systems problem, in which differential evolution is embedded into a Anjun Su cultural algorithm and applies two knowledge sources to influence the variation operator of Liang Wang School of Hydropower and Information differential evolution and couples with simple selection criteria based on feasibility rules and Engineering, Huazhong University of Science and Technology, heuristic search strategies to handle constraints in the cultural algorithm effectively. A test 430074 Wuhan, China hydrothermal system is used to verify the feasibility and effectiveness of the proposed method. Tel.: +86 27 8800 8929 Results are compared with those of other optimization methods reported in the literature. It is Fax: +86 27 8754 3992 E-mail: [email protected] shown that the proposed method is capable of yielding higher quality solutions. Yanbin Yuan Key words | cultural algorithm, differential evolution, heuristic search, scheduling School of Resources and Environmental Engineering, Wuhan University of Technology, 430070 Wuhan, China INTRODUCTION include generator-load power balance equations and total water discharge constraint as the equality constraints and Short-term hydrothermal generation scheduling (SHGS) is reservoir storage limits and the operational limits of the one of the most important and challenging optimization hydro- as well as thermal generators as the inequality problems in the economic operation of power systems. In a constraints.
    [Show full text]
  • Outline of Machine Learning
    Outline of machine learning The following outline is provided as an overview of and topical guide to machine learning: Machine learning – subfield of computer science[1] (more particularly soft computing) that evolved from the study of pattern recognition and computational learning theory in artificial intelligence.[1] In 1959, Arthur Samuel defined machine learning as a "Field of study that gives computers the ability to learn without being explicitly programmed".[2] Machine learning explores the study and construction of algorithms that can learn from and make predictions on data.[3] Such algorithms operate by building a model from an example training set of input observations in order to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions. Contents What type of thing is machine learning? Branches of machine learning Subfields of machine learning Cross-disciplinary fields involving machine learning Applications of machine learning Machine learning hardware Machine learning tools Machine learning frameworks Machine learning libraries Machine learning algorithms Machine learning methods Dimensionality reduction Ensemble learning Meta learning Reinforcement learning Supervised learning Unsupervised learning Semi-supervised learning Deep learning Other machine learning methods and problems Machine learning research History of machine learning Machine learning projects Machine learning organizations Machine learning conferences and workshops Machine learning publications
    [Show full text]
  • An Adaptive Cultural Algorithm with Improved Quantum-Behaved Particle Swarm Optimization for Sonar Image Detection
    www.nature.com/scientificreports OPEN An Adaptive Cultural Algorithm with Improved Quantum-behaved Particle Swarm Optimization for Received: 22 August 2017 Accepted: 29 November 2017 Sonar Image Detection Published: xx xx xxxx Xingmei Wang1, Wenqian Hao2 & Qiming Li1 This paper proposes an adaptive cultural algorithm with improved quantum-behaved particle swarm optimization (ACA-IQPSO) to detect the underwater sonar image. In the population space, to improve searching ability of particles, iterative times and the ftness value of particles are regarded as factors to adaptively adjust the contraction-expansion coefcient of the quantum-behaved particle swarm optimization algorithm (QPSO). The improved quantum-behaved particle swarm optimization algorithm (IQPSO) can make particles adjust their behaviours according to their quality. In the belief space, a new update strategy is adopted to update cultural individuals according to the idea of the update strategy in shufed frog leaping algorithm (SFLA). Moreover, to enhance the utilization of information in the population space and belief space, accept function and infuence function are redesigned in the new communication protocol. The experimental results show that ACA-IQPSO can obtain good clustering centres according to the grey distribution information of underwater sonar images, and accurately complete underwater objects detection. Compared with other algorithms, the proposed ACA-IQPSO has good efectiveness, excellent adaptability, a powerful searching ability and high convergence efciency. Meanwhile, the experimental results of the benchmark functions can further demonstrate that the proposed ACA-IQPSO has better searching ability, convergence efciency and stability. Sonar imaging has the advantages of long-distance detection and strong penetration. Terefore, it is being exten- sively used for underwater inspections, hydrographic and bathymetric surveys, underwater positioning, dredging, cable-laying, pipe-line inspections, and numerous other marine applications.
    [Show full text]
  • A Fuzzy-Controlled Influence Function for the Cultural Algorithm with Evolutionary Programming Applied to Real-Valued Function Optimization
    A FUZZY-CONTROLLED INFLUENCE FUNCTION FOR THE CULTURAL ALGORITHM WITH EVOLUTIONARY PROGRAMMING APPLIED TO REAL-VALUED FUNCTION OPTIMIZATION Intelligent Control Systems and Optimization Mário Augusto Torres, Otávio Noura Teixeira and Roberto Limão de Oliveira Universidade Federal do Pará, Belém, PA, Brazil Keywords: Cultural Algorithms, Evolutionary Programming, Fuzzy Inference Systems, Real-valued Unconstrained Function Optimization. Abstract: In this paper, we propose a fuzzy system to act as a control mechanism for the evolutionary process of search of a Cultural Algorithm with Evolutionary Programming (CAEP) applied to real-valued function optimization. The fuzzy system uses population knowledge to adjust the Influence Factor that represents the intensity of the influence of the Variation operator of the CAEP model, therefore adjusting the search process. This paper also presents a comparative analysis of the proposed influence function using well- known benchmarking functions. 1 INTRODUCTION the allotted number of generations (Zhu, 1998). The fully fuzzified approach for the Cultural Algorithm Fuzzy Systems have been used as control with Evolutionary Programming (CAEP) system mechanisms in many applications. From the control consisted of a fuzzy acceptance function, a fuzzy of industrial processes to self adapting air- representation of the knowledge contained within conditioners, fuzzy control systems have been the belief space and a fuzzy influence function (Zhu, successfully employed due to their capability of 1998). processing uncertain, imprecise knowledge. Still, we believe there is a chance for further Cultural Algorithms (CA) are a class of improvement in the fuzzy influence function evolutionary computational models proposed by proposed in (Zhu, 1998), as a control mechanism for Reynolds, derived from observing the cultural the search process.
    [Show full text]
  • A Cultural Algorithm for Pomdps from Stochastic Inventory Control
    Edinburgh Research Explorer A cultural algorithm for pomdps from stochastic inventory control Citation for published version: Prestwich, SD, Rossi, R, Tarim, SA & Hnich, B 2008, A cultural algorithm for pomdps from stochastic inventory control. in MJ Blesa, C Blum, C Cotta, AJ Fernández, JE Gallardo, A Roli & M Sampels (eds), Hybrid Metaheuristics : 5th International Workshop, HM 2008, Málaga, Spain, October 8-9, 2008. Proceedings. vol. 5296 LNCS, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer-Verlag GmbH, pp. 16-28. https://doi.org/10.1007/978-3-540-88439-2_2 Digital Object Identifier (DOI): 10.1007/978-3-540-88439-2_2 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Hybrid Metaheuristics Publisher Rights Statement: © Prestwich, S. D., Rossi, R., Tarim, S. A., & Hnich, B. (2008). A cultural algorithm for pomdps from stochastic inventory control. In M. J. Blesa, C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo, A. Roli, & M. Sampels (Eds.), Hybrid Metaheuristics : 5th International Workshop, HM 2008, Málaga, Spain, October 8-9, 2008. Proceedings. (Vol. 5296 LNCS, pp. 16-28). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). Springer-Verlag GmbH. 10.1007/978-3-540- 88439-2_2 General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.
    [Show full text]
  • Heuristics for Multi-Population Cultural Algorithm
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 10-19-2015 Heuristics for Multi-Population Cultural Algorithm Xinyu He University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation He, Xinyu, "Heuristics for Multi-Population Cultural Algorithm" (2015). Electronic Theses and Dissertations. 5639. https://scholar.uwindsor.ca/etd/5639 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Heuristics for Multi-Population Cultural Algorithm by Xinyu He A Thesis Submitted to the Faculty of Graduate Studies through the School of Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor Windsor, Ontario, Canada 2015 c 2015, Xinyu He Heuristics for Multi-Population Cultural Algorithm by Xinyu He APPROVED BY: K. Tepe, External Reader Department of Electrical and Computer Engineering D.
    [Show full text]
  • Game Theory-Inspired Evolutionary Algorithm for Global Optimization
    algorithms Article Game Theory-Inspired Evolutionary Algorithm for Global Optimization Guanci Yang ID Key Laboratory of Advanced Manufacturing Technology of Ministry of Education, Guizhou University, Jixie Building 405 of West Campus, Huaxi District, Guiyang 550025, China; [email protected] or [email protected]; Tel.: +86-151-8089-8460 Received: 4 August 2017; Accepted: 25 September 2017; Published: 30 September 2017 Abstract: Many approaches that model specific intelligent behaviors perform excellently in solving complex optimization problems. Game theory is widely recognized as an important tool in many fields. This paper introduces a game theory-inspired evolutionary algorithm for global optimization (GameEA). A formulation to estimate payoff expectations is provided, which is a mechanism to make a player become a rational decision-maker. GameEA has one population (i.e., set of players) and generates new offspring only through an imitation operator and a belief-learning operator. An imitation operator adopts learning strategies and actions from other players to improve its competitiveness and applies these strategies to future games where one player updates its chromosome by strategically copying segments of gene sequences from a competitor. Belief learning refers to models in which a player adjusts his/her strategies, behavior or chromosomes by analyzing the current history information to improve solution quality. Experimental results on various classes of problems show that GameEA outperforms the other four algorithms on stability,
    [Show full text]
  • Arxiv:1703.01887V2 [Cs.NE] 13 Jun 2018 Decision Making [23, 24, 25, 26]
    Co-evolutionary multi-task learning for dynamic time series prediction Rohitash Chandraa,1, Yew-Soon Ongc, Chi-Keong Gohc a Centre for Translational Data Science, The University of Sydney, Sydney, NSW 2006, Australia b School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia c Rolls Royce @NTU Corp Lab, Nanyang Technological University, 42 Nanyang View, Singapore Abstract Time series prediction typically consists of a data reconstruction phase where the time series is broken into overlapping windows known as the timespan. The size of the timespan can be seen as a way of determining the extent of past information required for an effective prediction. In certain applications such as the prediction of wind-intensity of storms and cyclones, prediction models need to be dynamic in accommodating different values of the timespan. These applications require robust prediction as soon as the event takes place. We identify a new category of problem called dynamic time series prediction that requires a model to give prediction when presented with varying lengths of the timespan. In this paper, we propose a co-evolutionary multi-task learning method that provides a synergy between multi-task learning and co-evolutionary algorithms to address dynamic time series prediction. The method features effective use of building blocks of knowledge inspired by dynamic programming and multi-task learning. It enables neural networks to retain modularity during training for making a decision in situations even when certain inputs are missing. The effectiveness of the method is demonstrated using one-step-ahead chaotic time series and tropical cyclone wind-intensity prediction.
    [Show full text]
  • A Novel Hybrid Cultural Algorithms Framework with Trajectory-Based Search for Global Numerical Optimization
    Information Sciences 334–335 (2016) 219–249 Contents lists available at ScienceDirect Information Sciences journal homepage: www.elsevier.com/locate/ins A novel hybrid Cultural Algorithms framework with trajectory-based search for global numerical optimization MostafaZ.Alia,b,∗, Noor H. Awad c, Ponnuthurai N. Suganthan c, Rehab M. Duwairi a, Robert G. Reynolds d,e a Jordan University of Science & Technology, Irbid 22110, Jordan b Princess Sumayya University for Technology, Amman, Jordan c Nanyang Technological University, Singapore 639798, Singapore d Wayne State University, Detroit, MI 48202, USA e The University of Michigan-Ann Arbor, Ann Arbor MI 48109-1079, USA article info abstract Article history: In recent years, Cultural Algorithms (CAs) have attracted substantial research interest. When Received 29 October 2014 applied to highly multimodal and high dimensional problems, Cultural Algorithms suffer Revised 30 October 2015 from fast convergence followed by stagnation. This research proposes a novel hybridization Accepted 13 November 2015 between Cultural Algorithms and a modified multiple trajectory search (MTS). In this hy- Availableonline7December2015 bridization, a modified version of Cultural Algorithms is applied to generate solutions us- Keywords: ing three knowledge sources namely situational knowledge, normative knowledge, and to- Cultural Algorithms pographic knowledge. From these solutions, several are selected to be used by the modified Global numerical optimization multi-trajectory search. All solutions generated by both component algorithms are used to Hybrid algorithm update the three knowledge sources in the belief space of Cultural Algorithms. In addition, an Knowledge source adaptive quality function is used to control the number of function evaluations assigned to Multiple trajectory search each component algorithm according to their success rates in the recent past iterations.
    [Show full text]
  • A Knowledge-Migration-Based Multi-Population Cultural Algorithm to Solve Job Shop Scheduling
    Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference A Knowledge-Migration-Based Multi-Population Cultural Algorithm to Solve Job Shop Scheduling Mohammad R. Raeesi N. and Ziad Kobti School of Computer Science, University of Windsor, Windsor, ON, Canada N9B 3P4 [email protected] and [email protected] Abstract of Evolutionary Computation, there are various algorithms with different versions proposed to solve JSSPs including In this article, a multipopulation Cultural Algorithm Genetic Algorithm (GA), hybrid GA, Ant Colony Optimiza- (MP-CA) is proposed to solve Job Shop Scheduling tion (ACO), Memetic Algorithm (MA), and Cultural Algo- Problems (JSSP). The idea of using multiple popula- tions in a Cultural Algorithm is implemented for the rithm (CA). Each method has its own strengths and weak- first time in JSSP. The proposed method divides the nesses. However, combinations of different types of algo- whole population into a number of sub-populations. On rithms work better. each sub-population, a local CA is applied which in- In this article, a new CA is proposed to solve JSSPs. cludes its own population space as well as belief space. The proposed method incorporate a multipopulation design The local CAs use Evolutionary Programming (EP) to which is called multipopulation CA (MP-CA). In this de- evolve their populations, and moreover they incorporate sign, there are a number of sub-populations incorporating a local search approach to speed up their convergence local CAs to cooperate with each other to generate better so- rates. The local CAs communicate with each other us- lutions. The sub-populations communicate with each other ing knowledge migration which is a novel concept in by exchanging their extracted knowledge every predefined CA.
    [Show full text]
  • Cultural Algorithm Based on Decomposition to Solve Optimization Problems
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 9-20-2019 Cultural Algorithm based on Decomposition to solve Optimization Problems Ramya Ravichandran University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Ravichandran, Ramya, "Cultural Algorithm based on Decomposition to solve Optimization Problems" (2019). Electronic Theses and Dissertations. 7835. https://scholar.uwindsor.ca/etd/7835 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Cultural Algorithm based on Decomposition to solve Optimization Problems By Ramya Ravichandran A Thesis Submitted to the Faculty of Graduate Studies through the School of Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor Windsor, Ontario, Canada 2019 © Ramya Ravichandran, 2019 Cultural Algorithm based on Decomposition to solve Optimization Problems By Ramya Ravichandran APPROVED BY: ______________________________________________ K.
    [Show full text]