Applications of Evolutionary Computation

Total Page:16

File Type:pdf, Size:1020Kb

Applications of Evolutionary Computation Lecture Notes in Computer Science 11454 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen Editorial Board Members David Hutchison Lancaster University, Lancaster, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Friedemann Mattern ETH Zurich, Zurich, Switzerland John C. Mitchell Stanford University, Stanford, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel C. Pandu Rangan Indian Institute of Technology Madras, Chennai, India Bernhard Steffen TU Dortmund University, Dortmund, Germany Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA More information about this series at http://www.springer.com/series/7407 Paul Kaufmann • Pedro A. Castillo (Eds.) Applications of Evolutionary Computation 22nd International Conference, EvoApplications 2019 Held as Part of EvoStar 2019 Leipzig, Germany, April 24–26, 2019 Proceedings 123 Editors Paul Kaufmann Pedro A. Castillo University of Mainz University of Granada Mainz, Germany Granada, Spain ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-030-16691-5 ISBN 978-3-030-16692-2 (eBook) https://doi.org/10.1007/978-3-030-16692-2 Library of Congress Control Number: 2019936010 LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues © Springer Nature Switzerland AG 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface This volume contains the proceedings of Applications of Evolutionary Computation, the 22nd International Conference, EvoApplications 2019, held as part of EvoStar 2019, in Leipzig, Germany, April 24–26, 2019. EvoStar, or Evo*, is the leading event on bio-inspired computation in Europe. EvoAPPS, as it is familiarly called, aims to show the applications of research in this field, ranging from proofs of concept to industrial case studies. At the same time, under the Evo* umbrella, EuroGP focused on the technique of genetic programming, EvoCOP targeted evolutionary computation in combinatorial optimization, and EvoMUSART was dedicated to evolved and bio-inspired music, sound, art and design. The proceedings for all of these co-located events are available in the LNCS series. This volume combines research from the following domains: engineering and real-world applications, games, image and signal processing, vision and pattern recognition, life sciences, networks, neuroevolution, numerical optimization, and robotics. This year, we received 66 high-quality submissions, most of them well suited to fit in more than one domain. We selected 20 papers for full oral presentation, while a further 24 works were presented in short oral presentations and as posters. All contributions, regardless of the presentation format, appear as full papers in this volume (LNCS 11454). Many people contributed to this edition: we express our gratitude to the authors for submitting their works, and to the members of the Program Committee for devoting such a big effort to review papers pressed by our tight schedule. The papers were submitted, reviewed, and selected through the MyReview conference management system, and we are grateful to Marc Schoenauer (Inria, Saclay-Île-de-France, France) for providing, hosting, and managing the platform. We would also like to thank the local organizing team led by Hendrik Richter from the Leipzig University of Applied Sciences, Germany, for providing such an enticing venue and arranging an array of additional activities for delegates. Our appreciation also goes to the Leipzig University of Applied Sciences for the patronage provided in support of the event. We would like to acknowledge Pablo GarcíaSánchez (University of Cádiz, Spain) for his continued support in maintaining the Evo* website and handling publicity. We credit the invited keynote speakers, Risto Miikkulainen (University of Texas, USA) and Manja Marz (Friedrich Schiller University Jena, Germany), for their fascinating and inspiring presentations. We would like to express our gratitude to the Steering Committee of EvoApplications for helping with the organization of EvoAPPS: Stefano Cagnoni, Anna I. Esparcia-Alcázar, Mario Giacobinni, Antonio Mora, Günther Raidl, Franz Rothlauf, Kevin Sim, and Giovanni Squillero. vi Preface We are grateful to the support provided by SPECIES, the Society for the Promotion of Evolutionary Computation in Europe and Its Surroundings, and its individual members Marc Schoenauer (President), Anna I. Esparcia-Alcázar, (Secretary and Vice-President), Wolfgang Banzhaf (Treasurer), for the coordination and financial administration. And last but not least, we express our continued appreciation to Anna I. Esparcia-Alcázar, from Universitat Politècnica de València, Spain whose considerable efforts in managing and coordinating Evo* helped toward building our unique, vibrant, and friendly atmosphere. March 2019 Paul Kaufmann Pedro A. Castillo Jaume Bacardit Carlos Cotta Gusz Eiben Francisco Fernández James Foster Kyrre Glette Emma Hart Giovanni Iacca Juanlu Jiménez-Laredo Oliver Kramer J. J. Merelo Julian Miller Monica Mordonini Trung Thanh Nguyen Sebastian Risi Günter Rudolph Sara Silva Stephen Smith Organization EvoApplications Coordinator Paul Kaufmann Mainz University, Germany EvoApplications Publication Chair Pedro A. Castillo Universidad de Granada, Spain Local Chair Hendrik Richter University of Leipzig, Germany Publicity Chair Pablo GarcíaSánchez University of Cádiz, Spain Engineering and Real-World Applications Chairs Sara Silva LASIGE, University of Lisbon, Portugal Emma Hart Napier University, Edinburgh, UK Games Chairs Julian Togelius Tandon School of Engineering, New York University, USA Alberto Tonda Université Paris-Saclay, France Image and Signal Processing Chairs Stephen L. Smith University of York, Heslington York, UK Monica Mordonini Universitá di Parma, Italy Life Sciences Chairs James Foster University of Idaho, USA Jaume Bacardit Newcastle University, UK Networks and Distributed Systems Chairs Juan Julián Merelo-Guervós Universidad de Granada, Spain Juan L. Jiménez-Laredo RI2C/LITIS, Université du Havre Normandie, France viii Organization Neuroevolution and Data Analytics Chairs Julian Francis Miller University of York, UK Sebastian Risi IT University of Copenhagen, Denmark Numerical Optimization: Theory, Benchmarks and Applications Chairs Günter Rudolph University of Dortmund, Germany Oliver Kramer University of Oldenburg, Germany Robotics Chairs Agoston E. Eiben Vrije Universiteit Amsterdam, The Netherlands Kyrre Glette University of Oslo, Norway General Chairs Carlos Cotta Universidad de Málaga, Spain Giovanni Iacca University of Trento, Italy Trung Thanh Nguyen Liverpool John Moores University, UK Francisco Fernández Universidad de Extremadura, Spain de Vega EvoApps Steering Committee Stefano Cagnoni University of Parma, Italy Anna I. Esparcia Universitat Politècnica de València, Spain Mario Giacobinni Università degli Studi di Torino, Italy Antonio M. Mora Universidad de Granada, Spain Günther Raidl Technische Universität Wien, Austria Franz Rothlauf Mainz University, Germany Kevin Sim Edinburgh Napier University, UK Giovanni Squillero Politecnico di Torino, Italy Cecilia di Chio University of Southampton, UK (Honorary Member) Program Committee Ahmed Hallawa RWTH, Germany [General] Alex Freitas University of Kent, UK [Life Sciences] Anca Andreica Babes-Bolyai University, Romania [General] Anders Christensen University Institute of Lisbon, Portugal [Neuroevolution and Data Analytics] Andres Faina IT University of Copenhagen, Denmark [Robotics] Organization ix Andrew Turner Simomics Ltd., York, UK [Neuroevolution and Data Analytics] Anil Yaman Eindhoven University of Technology, The Netherlands [Neuroevolution and Data Analytics; General] Anna I. Esparcia Universitat Politècnica de València, Spain [Engineering and Real-World Applications] Anthony Brabazon University College Dublin, Ireland [Engineering and Real-World Applications] Anthony Clark Michigan State University, USA [Robotics] Antonio Della Cioppa University of Salerno,
Recommended publications
  • "Cultural Algorithm Initializes Weights of Neural Network Model for Annual Electricity Consumption Prediction "
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 11, No. 6, 2020 Cultural Algorithm Initializes Weights of Neural Network Model for Annual Electricity Consumption Prediction Gawalee Phatai1, Sirapat Chiewchanwattana2*, Khamron Sunat3 Department of Computer Science Faculty of Science, Khon Kaen University Khon Kaen, Thailand Abstract—The accurate prediction of annual electricity identities as distinct from others, especially when viewed more consumption is crucial in managing energy operations. The often and in different ways, which results in learning and neural network (NN) has achieved a lot of achievements in yearly memory. The human brain contains numerous processing units electricity consumption prediction due to its universal linked by several nervous systems that perform rapid analysis approximation property. However, the well-known back- and decision making. The artificial neural network represents a propagation (BP) algorithms for training NN has easily got stuck simulation of the human brain [1][2]. Many studies regarding in local optima. In this paper, we study the weights initialization ANNs have been conducted for solutions in various disciplines. of NN for the prediction of annual electricity consumption using the Cultural algorithm (CA), and the proposed algorithm is A. Background named as NN-CA. The NN-CA was compared to the weights ANN is a distributed data processing system consisting of initialization using the other six metaheuristic algorithms as well several simple calculation elements working together through a as the BP. The experiments were conducted on the annual weighted connection. This calculation architecture was inspired electricity consumption datasets taken from 21 countries. The experimental results showed that the proposed NN-CA achieved by the human brain, which can learn intricate data patterns and more productive and better prediction accuracy than other classify them into general data.
    [Show full text]
  • Applications of Evolutionary Computation 23Rd European Conference, Evoapplications 2020 Held As Part of Evostar 2020 Seville, Spain, April 15–17, 2020 Proceedings
    Lecture Notes in Computer Science 12104 Founding Editors Gerhard Goos Karlsruhe Institute of Technology, Karlsruhe, Germany Juris Hartmanis Cornell University, Ithaca, NY, USA Editorial Board Members Elisa Bertino Purdue University, West Lafayette, IN, USA Wen Gao Peking University, Beijing, China Bernhard Steffen TU Dortmund University, Dortmund, Germany Gerhard Woeginger RWTH Aachen, Aachen, Germany Moti Yung Columbia University, New York, NY, USA More information about this series at http://www.springer.com/series/7407 Pedro A. Castillo • Juan Luis Jiménez Laredo • Francisco Fernández de Vega (Eds.) Applications of Evolutionary Computation 23rd European Conference, EvoApplications 2020 Held as Part of EvoStar 2020 Seville, Spain, April 15–17, 2020 Proceedings 123 Editors Pedro A. Castillo Juan Luis Jiménez Laredo University of Granada Université Le Havre Normandie Granada, Spain Le Havre, France Francisco Fernández de Vega Universidad de Extremadura Mérida, Spain ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-030-43721-3 ISBN 978-3-030-43722-0 (eBook) https://doi.org/10.1007/978-3-030-43722-0 LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues © Springer Nature Switzerland AG 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • In This Issue
    Volume 7 SIGEVOLution Issue 4 newsletter of the ACM Special Interest Group on Genetic and Evolutionary Computation in this issue GECCO 2015 Summary GECCO best paper winners Latest contents from ECJ and GPEM CFPs for upcoming conferences Latest vacancies Track: Estimation of Distribution Algorithms (EDA)+ EDITORIAL THEORY Those of you who managed to make it to sunny Winner: Improved Runtime Bounds for the (1+1) Madrid for GECCO this year will already know EA on Random 3-CNF Formulas Based on Fitness- what a fantastic conference it was from every Distance Correlation perspective – great science, great company and Benjamin Doerr, Frank Neumann, Andrew M. great food! For those who missed it, you can catch Sutton (Full text) up with best paper awards and read a summary from this year’s General Chair Anna Esparcia- Track: Evolutionary Combinatorial Optimization Alcazar inside. You will also find the latest tables and Metaheuristics (ECOM) of contents from ECJ and GPEM, as well as calls Winner: Global vs Local Search on Multi-objective for some of the conferences coming up in 2016. NK-landscapes: Contrasting the Impact of Problem Get writing those papers! The next issue of the Features newsletter will provide an insider’s view on Denver Fabio Daolio, Arnaud Liefooghe, Sébastien Verel, which will be the location for GECCO 2016, just in Hernán Aguirre, Kiyoshi Tanaka (Full text) case you need any persuasion to attend. I’d also like to take this opportunity to congratulate Marc Track: Evolutionary Machine Learning -EML Schoenauer on becoming Chair of SIGEVO from July and to extend a warm thank you to Wolfgang Winner: Subspace clustering using evolvable Banzhaf for his hard work over the last four years.
    [Show full text]
  • Symbolic Regression for Knowledge Discovery – Bloat, Overfitting, And
    JOHANNES KEPLER UNIVERSITAT¨ LINZ JKU Technisch-Naturwissenschaftliche Fakult¨at Symbolic Regression for Knowledge Discovery { Bloat, Overfitting, and Variable Interaction Networks DISSERTATION zur Erlangung des akademischen Grades Doktor im Doktoratsstudium der Technischen Wissenschaften Eingereicht von: Dipl.-Ing. Gabriel Kronberger Angefertigt am: Institut f¨urformale Modelle und Verifikation Beurteilung: Priv.-Doz. Dipl.-Ing. Dr. Michael Affenzeller (Betreuung) Assoc.-Prof. Dipl.-Ing. Dr. Ulrich Bodenhofer Linz, 12, 2010 For Gabi Acknowledgments This thesis would not have been possible without the support of a number of people. First and foremost I want to thank my adviser Dr. Michael A®enzeller, who has not only become my mentor but also a close friend in the years since I ¯rst started my forays into the area of evolutionary computation. Furthermore, I would like to express my gratitude to my second adviser Dr. Ulrich Bodenhofer for introducing me to the statistical elements of machine learning and en- couraging me to critically scrutinize modeling results. I am also thankful to Prof. Dr. Witold Jacak, dean of the School of Informatics, Communications and Media in Hagenberg of the Upper Austria University of Applied Sciences, for giving me the opportunity to work at the research center Hagenberg and allowing me to work on this thesis. I thank all members of the research group for heuristic and evolutionary algorithms (HEAL). Andreas Beham, for implementing standard variants of heuristic algorithms in HeuristicLab. Michael Kommenda, for discussing extensions and improvements of symbolic regression for practical applications, some of which are described in this thesis. Dr. Stefan Wagner, for tirelessly improving HeuristicLab, which has been used as the software environment for all experiments presented in this thesis.
    [Show full text]
  • Hydrothermal Systems Generation Scheduling Using Cultural Algorithm Xiaohui Yuan, Hao Nie, Yanbin Yuan, Anjun Su and Liang Wang
    65 Q IWA Publishing 2009 Journal of Hydroinformatics | 11.1 | 2009 Hydrothermal systems generation scheduling using cultural algorithm Xiaohui Yuan, Hao Nie, Yanbin Yuan, Anjun Su and Liang Wang ABSTRACT This paper proposes an enhanced cultural algorithm to solve the short-term generation Xiaohui Yuan (corresponding author) Hao Nie scheduling of hydrothermal systems problem, in which differential evolution is embedded into a Anjun Su cultural algorithm and applies two knowledge sources to influence the variation operator of Liang Wang School of Hydropower and Information differential evolution and couples with simple selection criteria based on feasibility rules and Engineering, Huazhong University of Science and Technology, heuristic search strategies to handle constraints in the cultural algorithm effectively. A test 430074 Wuhan, China hydrothermal system is used to verify the feasibility and effectiveness of the proposed method. Tel.: +86 27 8800 8929 Results are compared with those of other optimization methods reported in the literature. It is Fax: +86 27 8754 3992 E-mail: [email protected] shown that the proposed method is capable of yielding higher quality solutions. Yanbin Yuan Key words | cultural algorithm, differential evolution, heuristic search, scheduling School of Resources and Environmental Engineering, Wuhan University of Technology, 430070 Wuhan, China INTRODUCTION include generator-load power balance equations and total water discharge constraint as the equality constraints and Short-term hydrothermal generation scheduling (SHGS) is reservoir storage limits and the operational limits of the one of the most important and challenging optimization hydro- as well as thermal generators as the inequality problems in the economic operation of power systems. In a constraints.
    [Show full text]
  • Assoc. Prof. Dr. G¨ULS¸ EN ERY˙I˘G˙IT
    Assoc. Prof. Dr. GULS¸EN¨ ERYI˙G˘ IT˙ Coordinator of ITU Natural Language Processing Research Group, Department Vice Chair, Faculty Executive Board Member Istanbul Technical University Faculty of Computer & Informatics Artificial Intelligence & Data Engineering Department 34469, Istanbul, Turkey [email protected] © +902122853503 http://web.itu.edu.tr/˜gulsenc/ Research Areas Natural Language Processing (NLP) - Machine learning and statistical methods for different NLP layers - Semantic Analysis, question answering systems and chatbots - Information Extraction - NLP applications to Social Media Analytics Education • PhD: Istanbul Technical University, Computer Engineering Department (2007) • MSc: Istanbul Technical University, Computer Engineering Department (2002) • BSc: Marmara University, Computer Engineering Department (2000) graduated with the 2nd highest GPA, university entrance exam rank: 1253 over 1.265 million • High School: Saint-Michel French High School (1995) highest score in university entrance exam in Math&Science Work Experience • ITU Artificial Intelligence and Data Engineering Department, Associate Professor, 2020-... • Istanbul Technical University, Computer Engineering Department, Associate Professor, October 2018 - ... • Istanbul Technical University, Computer Engineering Department, Assistant Professor, November 2007-2018 • Istanbul Technical University, Computer Engineering Department, Lecturer, January 2007- November 2007 • VXU (Vaxj¨ o¨ University) School of Mathematics and Systems Engineering, Visiting
    [Show full text]
  • Candidate for Executive Committee Enrique Alba Universidad De
    Candidate for Executive Committee Enrique Alba Universidad de Malaga, Spain BIOGRAPHY Academic Background: Ph.D. Computer Science, University of Malaga (Spain), 1999, Parallel Advanced GAs for Neural Network Design. Professional Experience: Full Professor, Universidad de Malaga, Spain, 2009 – Present; Associate Professor, Universidad de Malaga, Spain, 2001 – 2009; Assistant Professor, Universidad de Malaga, Spain, 1993 – 2001. Professional Interest: Intelligent Systems for Smart Cities; High Performance Computing for Artificial Intelligence; Software Engineering and Artificial Intelligence; Advanced Algorithms: Multiobjective, Hybrid, Dynamic Machine Learning, Search & Complex Optimization in Real Problems. ACM Activities: Executive Board Member, SIGEVO, 2014 – Present. Membership and Offices in Related Organizations: Executive Commission, Spanish AI organization for National Master on AI, 2016 – 2018; ERC reviewer, Horizon 2020 evaluator, European Union, 2000 – Present; CLAIRE initiative for AI in Europe, European Union, 2018 – Present. Awards Received: Best papers at ACM GECCO MO Track and in INCoS 2016; Best Paper in Conference EVOCOP, 2007; Best Paper in Conference PPSN, 2006; National Award "Jose Garcia Santesmases" best Graduate Thesis, 1993. STATEMENT I have been dealing with complex problems and different types of AI during all my 25 years of research. I hold links and active collaborations in all continents, working hard to promote Evolutionary Computing and related fields at graduate and postgraduate levels. My intention is to help ACM SIGEVO by using my experience and network to endorse the main goals of this SIG throughout the world, both in research and in teaching. I would also like to stress the importance of transferring knowledge from academia to industry, to have a positive impact in the lives of people.
    [Show full text]
  • Outline of Machine Learning
    Outline of machine learning The following outline is provided as an overview of and topical guide to machine learning: Machine learning – subfield of computer science[1] (more particularly soft computing) that evolved from the study of pattern recognition and computational learning theory in artificial intelligence.[1] In 1959, Arthur Samuel defined machine learning as a "Field of study that gives computers the ability to learn without being explicitly programmed".[2] Machine learning explores the study and construction of algorithms that can learn from and make predictions on data.[3] Such algorithms operate by building a model from an example training set of input observations in order to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions. Contents What type of thing is machine learning? Branches of machine learning Subfields of machine learning Cross-disciplinary fields involving machine learning Applications of machine learning Machine learning hardware Machine learning tools Machine learning frameworks Machine learning libraries Machine learning algorithms Machine learning methods Dimensionality reduction Ensemble learning Meta learning Reinforcement learning Supervised learning Unsupervised learning Semi-supervised learning Deep learning Other machine learning methods and problems Machine learning research History of machine learning Machine learning projects Machine learning organizations Machine learning conferences and workshops Machine learning publications
    [Show full text]
  • An Adaptive Cultural Algorithm with Improved Quantum-Behaved Particle Swarm Optimization for Sonar Image Detection
    www.nature.com/scientificreports OPEN An Adaptive Cultural Algorithm with Improved Quantum-behaved Particle Swarm Optimization for Received: 22 August 2017 Accepted: 29 November 2017 Sonar Image Detection Published: xx xx xxxx Xingmei Wang1, Wenqian Hao2 & Qiming Li1 This paper proposes an adaptive cultural algorithm with improved quantum-behaved particle swarm optimization (ACA-IQPSO) to detect the underwater sonar image. In the population space, to improve searching ability of particles, iterative times and the ftness value of particles are regarded as factors to adaptively adjust the contraction-expansion coefcient of the quantum-behaved particle swarm optimization algorithm (QPSO). The improved quantum-behaved particle swarm optimization algorithm (IQPSO) can make particles adjust their behaviours according to their quality. In the belief space, a new update strategy is adopted to update cultural individuals according to the idea of the update strategy in shufed frog leaping algorithm (SFLA). Moreover, to enhance the utilization of information in the population space and belief space, accept function and infuence function are redesigned in the new communication protocol. The experimental results show that ACA-IQPSO can obtain good clustering centres according to the grey distribution information of underwater sonar images, and accurately complete underwater objects detection. Compared with other algorithms, the proposed ACA-IQPSO has good efectiveness, excellent adaptability, a powerful searching ability and high convergence efciency. Meanwhile, the experimental results of the benchmark functions can further demonstrate that the proposed ACA-IQPSO has better searching ability, convergence efciency and stability. Sonar imaging has the advantages of long-distance detection and strong penetration. Terefore, it is being exten- sively used for underwater inspections, hydrographic and bathymetric surveys, underwater positioning, dredging, cable-laying, pipe-line inspections, and numerous other marine applications.
    [Show full text]
  • A Fuzzy-Controlled Influence Function for the Cultural Algorithm with Evolutionary Programming Applied to Real-Valued Function Optimization
    A FUZZY-CONTROLLED INFLUENCE FUNCTION FOR THE CULTURAL ALGORITHM WITH EVOLUTIONARY PROGRAMMING APPLIED TO REAL-VALUED FUNCTION OPTIMIZATION Intelligent Control Systems and Optimization Mário Augusto Torres, Otávio Noura Teixeira and Roberto Limão de Oliveira Universidade Federal do Pará, Belém, PA, Brazil Keywords: Cultural Algorithms, Evolutionary Programming, Fuzzy Inference Systems, Real-valued Unconstrained Function Optimization. Abstract: In this paper, we propose a fuzzy system to act as a control mechanism for the evolutionary process of search of a Cultural Algorithm with Evolutionary Programming (CAEP) applied to real-valued function optimization. The fuzzy system uses population knowledge to adjust the Influence Factor that represents the intensity of the influence of the Variation operator of the CAEP model, therefore adjusting the search process. This paper also presents a comparative analysis of the proposed influence function using well- known benchmarking functions. 1 INTRODUCTION the allotted number of generations (Zhu, 1998). The fully fuzzified approach for the Cultural Algorithm Fuzzy Systems have been used as control with Evolutionary Programming (CAEP) system mechanisms in many applications. From the control consisted of a fuzzy acceptance function, a fuzzy of industrial processes to self adapting air- representation of the knowledge contained within conditioners, fuzzy control systems have been the belief space and a fuzzy influence function (Zhu, successfully employed due to their capability of 1998). processing uncertain, imprecise knowledge. Still, we believe there is a chance for further Cultural Algorithms (CA) are a class of improvement in the fuzzy influence function evolutionary computational models proposed by proposed in (Zhu, 1998), as a control mechanism for Reynolds, derived from observing the cultural the search process.
    [Show full text]
  • A Cultural Algorithm for Pomdps from Stochastic Inventory Control
    Edinburgh Research Explorer A cultural algorithm for pomdps from stochastic inventory control Citation for published version: Prestwich, SD, Rossi, R, Tarim, SA & Hnich, B 2008, A cultural algorithm for pomdps from stochastic inventory control. in MJ Blesa, C Blum, C Cotta, AJ Fernández, JE Gallardo, A Roli & M Sampels (eds), Hybrid Metaheuristics : 5th International Workshop, HM 2008, Málaga, Spain, October 8-9, 2008. Proceedings. vol. 5296 LNCS, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer-Verlag GmbH, pp. 16-28. https://doi.org/10.1007/978-3-540-88439-2_2 Digital Object Identifier (DOI): 10.1007/978-3-540-88439-2_2 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Hybrid Metaheuristics Publisher Rights Statement: © Prestwich, S. D., Rossi, R., Tarim, S. A., & Hnich, B. (2008). A cultural algorithm for pomdps from stochastic inventory control. In M. J. Blesa, C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo, A. Roli, & M. Sampels (Eds.), Hybrid Metaheuristics : 5th International Workshop, HM 2008, Málaga, Spain, October 8-9, 2008. Proceedings. (Vol. 5296 LNCS, pp. 16-28). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). Springer-Verlag GmbH. 10.1007/978-3-540- 88439-2_2 General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.
    [Show full text]
  • Heuristics for Multi-Population Cultural Algorithm
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 10-19-2015 Heuristics for Multi-Population Cultural Algorithm Xinyu He University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation He, Xinyu, "Heuristics for Multi-Population Cultural Algorithm" (2015). Electronic Theses and Dissertations. 5639. https://scholar.uwindsor.ca/etd/5639 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Heuristics for Multi-Population Cultural Algorithm by Xinyu He A Thesis Submitted to the Faculty of Graduate Studies through the School of Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor Windsor, Ontario, Canada 2015 c 2015, Xinyu He Heuristics for Multi-Population Cultural Algorithm by Xinyu He APPROVED BY: K. Tepe, External Reader Department of Electrical and Computer Engineering D.
    [Show full text]