A Compositional and Interpretable Semantic Space Alona Fyshe,1 Leila Wehbe,1 Partha Talukdar,2 Brian Murphy,3 and Tom Mitchell1 1 Machine Learning Department, Carnegie Mellon University, Pittsburgh, USA 2 Indian Institute of Science, Bangalore, India 3 Queen’s University Belfast, Belfast, Northern Ireland
[email protected],
[email protected],
[email protected],
[email protected],
[email protected] Abstract like a black box - it is unclear what VSM dimen- sions represent (save for broad classes of corpus Vector Space Models (VSMs) of Semantics statistic types) and what the application of a com- are useful tools for exploring the semantics of position function to those dimensions entails. Neu- single words, and the composition of words ral network (NN) models are becoming increas- to make phrasal meaning. While many meth- ingly popular (Socher et al., 2012; Hashimoto et al., ods can estimate the meaning (i.e. vector) of a phrase, few do so in an interpretable way. 2014; Mikolov et al., 2013; Pennington et al., 2014), We introduce a new method (CNNSE) that al- and some model introspection has been attempted: lows word and phrase vectors to adapt to the Levy and Goldberg (2014) examined connections notion of composition. Our method learns a between layers, Mikolov et al. (2013) and Penning- VSM that is both tailored to support a chosen ton et al. (2014) explored how shifts in VSM space semantic composition operation, and whose encodes semantic relationships. Still, interpreting resulting features have an intuitive interpreta- NN VSM dimensions, or factors, remains elusive.