Natural Language Processing (CSEP 517): Distributional Semantics

Total Page:16

File Type:pdf, Size:1020Kb

Natural Language Processing (CSEP 517): Distributional Semantics Natural Language Processing (CSEP 517): Distributional Semantics Roy Schwartz c 2017 University of Washington [email protected] May 15, 2017 1 / 59 To-Do List I Read: (Jurafsky and Martin, 2016a,b) 2 / 59 mountain lion Distributional Semantics Models Aka, Vector Space Models, Word Embeddings 0 -0.23 1 0 -0.72 1 B -0.21 C B -00.2 C B C B C B -0.15 C B -0.71 C B C B C B -0.61 C B -0.13 C vmountain = B C, vlion = B C B . C B . C B . C B . C B C B C @ -0.02 A @ 0-0.1 A -0.12 -0.11 3 / 59 Distributional Semantics Models Aka, Vector Space Models, Word Embeddings 0 -0.23 1 0 -0.72 1 B -0.21 C B -00.2 C B C B C B -0.15 C B -0.71 C B C B C B -0.61 C B -0.13 C mountain vmountain = B C, vlion = B C B . C B . C B . C B . C B C B C lion @ -0.02 A @ 0-0.1 A -0.12 -0.11 4 / 59 Distributional Semantics Models Aka, Vector Space Models, Word Embeddings 0 -0.23 1 0 -0.72 1 B -0.21 C B -00.2 C B C B C B -0.15 C B -0.71 C B C B C B -0.61 C B -0.13 C mountain vmountain = B C, vlion = B C B . C B . C B . C B . C B C B C lion @ -0.02 A @ 0-0.1 A -0.12 -0.11 θ 5 / 59 Distributional Semantics Models Aka, Vector Space Models, Word Embeddings 0 -0.23 1 0 -0.72 1 mountain lion B -0.21 C B -00.2 C B C B C B -0.15 C B -0.71 C B C B C B -0.61 C B -0.13 C mountain vmountain = B C, vlion = B C B . C B . C B . C B . C B C B C lion @ -0.02 A @ 0-0.1 A -0.12 -0.11 6 / 59 Distributional Semantics Models Aka, Vector Space Models, Word Embeddings Applications Linguistic Study Deep learning models: Lexical Semantics Machine Translation Multilingual Studies Question Answering Evolution of Language Syntactic Parsing ... ... 7 / 59 Outline Vector Space Models Lexical Semantic Applications Word Embeddings Compositionality Current Research Problems 8 / 59 Outline Vector Space Models Lexical Semantic Applications Word Embeddings Compositionality Current Research Problems 9 / 59 Distributional Semantics Hypothesis Harris (1954) Words that have similar contexts are likely to have similar meaning 10 / 59 Distributional Semantics Hypothesis Harris (1954) Words that have similar contexts are likely to have similar meaning 11 / 59 Vector Space Models I Representation of words by vectors of real numbers I 8w 2 V; vw is function of the contexts in which w occurs I Vectors are computed using a large text corpus I No requirement for any sort of annotation in the general case 12 / 59 V1:0: Count Models Salton (1971) I Each element vwi 2 vw represents the co-occurrence of w with another word i I vdog = (cat: 10, leash: 15, loyal: 27, bone: 8, piano: 0, cloud: 0, . ) I Vector dimension is typically very large (vocabulary size) I Main motivation: lexical semantics 13 / 59 dog cat Count Models Example 0 0 1 0 0 1 B 0 C B 2 C B C B C B 15 C B 11 C B C B C B 17 C B 13 C vdog = B C, vcat = B C B . C B . C B . C B . C B C B C @ 0 A @ 20 A 102 11 14 / 59 Count Models Example 0 0 1 0 0 1 dog B 0 C B 2 C B C B C B 15 C B 11 C cat B C B C B 17 C B 13 C vdog = B C, vcat = B C B . C B . C B . C B . C B C B C @ 0 A @ 20 A 102 11 15 / 59 Count Models Example 0 0 1 0 0 1 dog B 0 C B 2 C B C B C B 15 C B 11 C cat B C B C B 17 C B 13 C vdog = B C, vcat = B C B . C B . C B . C B . C B C B C @ 0 A @ 20 A θ 102 11 16 / 59 I Singular value decomposition (SVD), principal component analysis (PCA), matrix factorization methods I Bag-of-words context, document context (Latent Semantic Analysis (LSA)), dependency contexts, pattern contexts I Smoothing by dimensionality reduction I What is a context? Variants of Count Models I Reduce the effect of high frequency words by applying a weighting scheme I Pointwise mutual information (PMI), TF-IDF 17 / 59 I Bag-of-words context, document context (Latent Semantic Analysis (LSA)), dependency contexts, pattern contexts I What is a context? Variants of Count Models I Reduce the effect of high frequency words by applying a weighting scheme I Pointwise mutual information (PMI), TF-IDF I Smoothing by dimensionality reduction I Singular value decomposition (SVD), principal component analysis (PCA), matrix factorization methods 18 / 59 Variants of Count Models I Reduce the effect of high frequency words by applying a weighting scheme I Pointwise mutual information (PMI), TF-IDF I Smoothing by dimensionality reduction I Singular value decomposition (SVD), principal component analysis (PCA), matrix factorization methods I What is a context? I Bag-of-words context, document context (Latent Semantic Analysis (LSA)), dependency contexts, pattern contexts 19 / 59 Outline Vector Space Models Lexical Semantic Applications Word Embeddings Compositionality Current Research Problems 20 / 59 I RG-65 (Rubenstein and Goodenough, 1965), wordsim353 (Finkelstein et al., 2001), MEN (Bruni et al., 2014), SimLex999 (Hill et al., 2015) I Mikolov et al. (2013) I Semantic Similarity I Word Analogies I Vector operations Vector Space Models Evaluation I Vector space models as features I Synonym detection I TOEFL (Landauer and Dumais, 1997) I Word clustering I CLUTO (Karypis, 2002) 21 / 59 Vector Space Models Evaluation I Vector space models as features I Synonym detection I TOEFL (Landauer and Dumais, 1997) I Word clustering I CLUTO (Karypis, 2002) I Vector operations I Semantic Similarity I RG-65 (Rubenstein and Goodenough, 1965), wordsim353 (Finkelstein et al., 2001), MEN (Bruni et al., 2014), SimLex999 (Hill et al., 2015) I Word Analogies I Mikolov et al. (2013) 22 / 59 Semantic Similarity w1 w2 human score model score tiger cat 7.35 0.8 computer keyboard 7.62 0.54 ... ... ... ... architecture century 3.78 0.03 book paper 7.46 0.66 king cabbage 0.23 -0.42 Table: Human scores taken from wordsim353 (Finkelstein et al., 2001) I Model scores are cosine similarity scores between vectors I Model's performance is the Spearman/Pearson correlation between human ranking and model ranking 23 / 59 Word Analogy Mikolov et al. (2013) France woman Italy queen Paris man Rome king 24 / 59 Outline Vector Space Models Lexical Semantic Applications Word Embeddings Compositionality Current Research Problems 25 / 59 V2:0: Predict Models (Aka Word Embeddings) I A new generation of vector space models I Instead of representing vectors as cooccurrence counts, train a supervised machine learning algorithm to predict p(wordjcontext) I Models learn a latent vector representation of each word I These representations turn out to be quite effective vector space representations I Word embeddings 26 / 59 Word Embeddings I Vector size is typically a few dozens to a few hundreds I Vector elements are generally uninterpretable I Developed to initialize feature vectors in deep learning models I Initially language models, nowadays virtually every sequence level NLP task I Bengio et al. (2003); Collobert and Weston (2008); Collobert et al. (2011); word2vec (Mikolov et al., 2013); GloVe (Pennington et al., 2014) 27 / 59 Word Embeddings I Vector size is typically a few dozens to a few hundreds I Vector elements are generally uninterpretable I Developed to initialize feature vectors in deep learning models I Initially language models, nowadays virtually every sequence level NLP task I Bengio et al. (2003); Collobert and Weston (2008); Collobert et al. (2011); word2vec (Mikolov et al., 2013); GloVe (Pennington et al., 2014) 28 / 59 Y I Continuous bag-of-words: argmax p(wjC(w); θ) θ w2corpus Y I Skip-gram: argmax p(cjw; θ) θ (w;c)2corpus I Negative sampling: randomly sample negative (word,context) pairs, then: Y Y argmax p(cjw; θ) · (1 − p(c0jw; θ)) θ (w;c)2corpus (w;c0) word2vec Mikolov et al. (2013) I A software toolkit for running various word embedding algorithms Based on (Goldberg and Levy, 2014) 29 / 59 Y I Skip-gram: argmax p(cjw; θ) θ (w;c)2corpus I Negative sampling: randomly sample negative (word,context) pairs, then: Y Y argmax p(cjw; θ) · (1 − p(c0jw; θ)) θ (w;c)2corpus (w;c0) word2vec Mikolov et al. (2013) I A software toolkit for running various word embedding algorithms Y I Continuous bag-of-words: argmax p(wjC(w); θ) θ w2corpus Based on (Goldberg and Levy, 2014) 30 / 59 I Negative sampling: randomly sample negative (word,context) pairs, then: Y Y argmax p(cjw; θ) · (1 − p(c0jw; θ)) θ (w;c)2corpus (w;c0) word2vec Mikolov et al. (2013) I A software toolkit for running various word embedding algorithms Y I Continuous bag-of-words: argmax p(wjC(w); θ) θ w2corpus Y I Skip-gram: argmax p(cjw; θ) θ (w;c)2corpus Based on (Goldberg and Levy, 2014) 31 / 59 word2vec Mikolov et al.
Recommended publications
  • Semantic Computing
    SEMANTIC COMPUTING Lecture 7: Introduction to Distributional and Distributed Semantics Dagmar Gromann International Center For Computational Logic TU Dresden, 30 November 2018 Overview • Distributional Semantics • Distributed Semantics – Word Embeddings Dagmar Gromann, 30 November 2018 Semantic Computing 2 Distributional Semantics Dagmar Gromann, 30 November 2018 Semantic Computing 3 Distributional Semantics Definition • meaning of a word is the set of contexts in which it occurs • no other information is used than the corpus-derived information about word distribution in contexts (co-occurrence information of words) • semantic similarity can be inferred from proximity in contexts • At the very core: Distributional Hypothesis Distributional Hypothesis “similarity of meaning correlates with similarity of distribution” - Harris Z. S. (1954) “Distributional structure". Word, Vol. 10, No. 2-3, pp. 146-162 meaning = use = distribution in context => semantic distance Dagmar Gromann, 30 November 2018 Semantic Computing 4 Remember Lecture 1? Types of Word Meaning • Encyclopaedic meaning: words provide access to a large inventory of structured knowledge (world knowledge) • Denotational meaning: reference of a word to object/concept or its “dictionary definition” (signifier <-> signified) • Connotative meaning: word meaning is understood by its cultural or emotional association (positive, negative, neutral conntation; e.g. “She’s a dragon” in Chinese and English) • Conceptual meaning: word meaning is associated with the mental concepts it gives access to (e.g. prototype theory) • Distributional meaning: “You shall know a word by the company it keeps” (J.R. Firth 1957: 11) John Rupert Firth (1957). "A synopsis of linguistic theory 1930-1955." In Special Volume of the Philological Society. Oxford: Oxford University Press. Dagmar Gromann, 30 November 2018 Semantic Computing 5 Distributional Hypothesis in Practice Study by McDonald and Ramscar (2001): • The man poured from a balack into a handleless cup.
    [Show full text]
  • A Comparison of Word Embeddings and N-Gram Models for Dbpedia Type and Invalid Entity Detection †
    information Article A Comparison of Word Embeddings and N-gram Models for DBpedia Type and Invalid Entity Detection † Hanqing Zhou *, Amal Zouaq and Diana Inkpen School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa ON K1N 6N5, Canada; [email protected] (A.Z.); [email protected] (D.I.) * Correspondence: [email protected]; Tel.: +1-613-562-5800 † This paper is an extended version of our conference paper: Hanqing Zhou, Amal Zouaq, and Diana Inkpen. DBpedia Entity Type Detection using Entity Embeddings and N-Gram Models. In Proceedings of the International Conference on Knowledge Engineering and Semantic Web (KESW 2017), Szczecin, Poland, 8–10 November 2017, pp. 309–322. Received: 6 November 2018; Accepted: 20 December 2018; Published: 25 December 2018 Abstract: This article presents and evaluates a method for the detection of DBpedia types and entities that can be used for knowledge base completion and maintenance. This method compares entity embeddings with traditional N-gram models coupled with clustering and classification. We tackle two challenges: (a) the detection of entity types, which can be used to detect invalid DBpedia types and assign DBpedia types for type-less entities; and (b) the detection of invalid entities in the resource description of a DBpedia entity. Our results show that entity embeddings outperform n-gram models for type and entity detection and can contribute to the improvement of DBpedia’s quality, maintenance, and evolution. Keywords: semantic web; DBpedia; entity embedding; n-grams; type identification; entity identification; data mining; machine learning 1. Introduction The Semantic Web is defined by Berners-Lee et al.
    [Show full text]
  • Distributional Semantics
    Distributional Semantics Computational Linguistics: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM YOAV GOLDBERG AND OMER LEVY Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 1 / 19 j j From Distributional to Distributed Semantics The new kid on the block Deep learning / neural networks “Distributed” word representations Feed text into neural-net. Get back “word embeddings”. Each word is represented as a low-dimensional vector. Vectors capture “semantics” word2vec (Mikolov et al) Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 2 / 19 j j From Distributional to Distributed Semantics This part of the talk word2vec as a black box a peek inside the black box relation between word-embeddings and the distributional representation tailoring word embeddings to your needs using word2vec Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 3 / 19 j j word2vec Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 4 / 19 j j word2vec Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 5 / 19 j j word2vec dog cat, dogs, dachshund, rabbit, puppy, poodle, rottweiler, mixed-breed, doberman, pig sheep cattle, goats, cows, chickens, sheeps, hogs, donkeys, herds, shorthorn, livestock november october, december, april, june, february, july, september, january, august, march jerusalem tiberias, jaffa, haifa, israel, palestine, nablus, damascus katamon, ramla, safed teva pfizer, schering-plough, novartis, astrazeneca, glaxosmithkline, sanofi-aventis, mylan, sanofi, genzyme, pharmacia Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 6 / 19 j j Working with Dense Vectors Word Similarity Similarity is calculated using cosine similarity: dog~ cat~ sim(dog~ ,cat~ ) = dog~ · cat~ jj jj jj jj For normalized vectors ( x = 1), this is equivalent to a dot product: jj jj sim(dog~ ,cat~ ) = dog~ cat~ · Normalize the vectors when loading them.
    [Show full text]
  • Facing the Facts of Fake: a Distributional Semantics and Corpus Annotation Approach Bert Cappelle, Pascal Denis, Mikaela Keller
    Facing the facts of fake: a distributional semantics and corpus annotation approach Bert Cappelle, Pascal Denis, Mikaela Keller To cite this version: Bert Cappelle, Pascal Denis, Mikaela Keller. Facing the facts of fake: a distributional semantics and corpus annotation approach. Yearbook of the German Cognitive Linguistics Association, De Gruyter, 2018, 6 (9-42). hal-01959609 HAL Id: hal-01959609 https://hal.archives-ouvertes.fr/hal-01959609 Submitted on 18 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Facing the facts of fake: a distributional semantics and corpus annotation approach Bert Cappelle, Pascal Denis and Mikaela Keller Université de Lille, Inria Lille Nord Europe Fake is often considered the textbook example of a so-called ‘privative’ adjective, one which, in other words, allows the proposition that ‘(a) fake x is not (an) x’. This study tests the hypothesis that the contexts of an adjective-noun combination are more different from the contexts of the noun when the adjective is such a ‘privative’ one than when it is an ordinary (subsective) one. We here use ‘embeddings’, that is, dense vector representations based on word co-occurrences in a large corpus, which in our study is the entire English Wikipedia as it was in 2013.
    [Show full text]
  • Sentiment, Stance and Applications of Distributional Semantics
    Sentiment, stance and applications of distributional semantics Maria Skeppstedt Sentiment, stance and applications of distributional semantics Sentiment analysis (opinion mining) • Aims at determining the attitude of the speaker/ writer * In a chunk of text (e.g., a document or sentence) * Towards a certain topic • Categories: * Positive, negative, (neutral) * More detailed Movie reviews • Excruciatingly unfunny and pitifully unromantic. • The picture emerges as a surprisingly anemic disappointment. • A sensitive, insightful and beautifully rendered film. • The spark of special anime magic here is unmistak- able and hard to resist. • Maybe you‘ll be lucky , and there‘ll be a power outage during your screening so you can get your money back. Methods for sentiment analysis • Train a machine learning classifier • Use lexicon and rules • (or combine the methods) Train a machine learning classifier Annotating text and training the model Excruciatingly Excruciatingly unfunny unfunny Applying the model pitifully unromantic. The model pitifully unromantic. Examples of machine learning Frameworks • Scikit-learn • NLTK (natural language toolkit) • CRF++ Methods for sentiment analysis • Train a machine learning classifier * See for instance Socher et al. (2013) that classified English movie review sentences into positive and negative sentiment. * Trained their classifier on 11,855 manually labelled sentences. (R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, C. Potts, Recursive deep models for semantic composition- ality over a sentiment treebank) Methods based on lexicons and rules • Lexicons for different polarities • Sometimes with different strength on the words * Does not need the large amount of training data that is typically required for machine learning methods * More flexible (e.g, to add new sentiment poles and new languages) Commercial use of sentiment analysis I want to retrieve everything positive and negative that is said about the products I sell.
    [Show full text]
  • Building Web-Interfaces for Vector Semantic Models with the Webvectors Toolkit
    Building Web-Interfaces for Vector Semantic Models with the WebVectors Toolkit Andrey Kutuzov Elizaveta Kuzmenko University of Oslo Higher School of Economics Oslo, Norway Moscow, Russia [email protected] eakuzmenko [email protected] Abstract approaches, which allowed to train distributional models with large amounts of raw linguistic data We present WebVectors, a toolkit that very fast. The most established word embedding facilitates using distributional semantic algorithms in the field are highly efficient Continu- models in everyday research. Our toolkit ous Skip-Gram and Continuous Bag-of-Words, im- has two main features: it allows to build plemented in the famous word2vec tool (Mikolov web interfaces to query models using a et al., 2013b; Baroni et al., 2014), and GloVe in- web browser, and it provides the API to troduced in (Pennington et al., 2014). query models automatically. Our system Word embeddings represent the meaning of is easy to use and can be tuned according words with dense real-valued vectors derived from to individual demands. This software can word co-occurrences in large text corpora. They be of use to those who need to work with can be of use in almost any linguistic task: named vector semantic models but do not want to entity recognition (Siencnik, 2015), sentiment develop their own interfaces, or to those analysis (Maas et al., 2011), machine translation who need to deliver their trained models to (Zou et al., 2013; Mikolov et al., 2013a), cor- a large audience. WebVectors features vi- pora comparison (Kutuzov and Kuzmenko, 2015), sualizations for various kinds of semantic word sense frequency estimation for lexicogra- queries.
    [Show full text]
  • Distributional Semantics for Understanding Spoken Meal Descriptions
    DISTRIBUTIONAL SEMANTICS FOR UNDERSTANDING SPOKEN MEAL DESCRIPTIONS Mandy Korpusik, Calvin Huang, Michael Price, and James Glass∗ MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA fkorpusik, calvinh, pricem, [email protected] ABSTRACT This paper presents ongoing language understanding experiments conducted as part of a larger effort to create a nutrition dialogue system that automatically extracts food concepts from a user’s spo- ken meal description. We first discuss the technical approaches to understanding, including three methods for incorporating word vec- tor features into conditional random field (CRF) models for seman- tic tagging, as well as classifiers for directly associating foods with properties. We report experiments on both text and spoken data from an in-domain speech recognizer. On text data, we show that the ad- dition of word vector features significantly improves performance, achieving an F1 test score of 90.8 for semantic tagging and 86.3 for food-property association. On speech, the best model achieves an F1 test score of 87.5 for semantic tagging and 86.0 for association. Fig. 1. A diagram of the flow of the nutrition system [4]. Finally, we conduct an end-to-end system evaluation through a user study with human ratings of 83% semantic tagging accuracy. Index Terms— CRF, Word vectors, Semantic tagging • We demonstrate a significant improvement in semantic tag- ging performance by adding word embedding features to a classifier. We explore features for both the raw vector values 1. INTRODUCTION and similarity to prototype words from each category. In ad- dition, improving semantic tagging performance benefits the For many patients with obesity, diet tracking is often time- subsequent task of associating foods with properties.
    [Show full text]
  • Distributional Semantics Today Introduction to the Special Issue Cécile Fabre, Alessandro Lenci
    Distributional Semantics Today Introduction to the special issue Cécile Fabre, Alessandro Lenci To cite this version: Cécile Fabre, Alessandro Lenci. Distributional Semantics Today Introduction to the special issue. Revue TAL, ATALA (Association pour le Traitement Automatique des Langues), 2015, Sémantique distributionnelle, 56 (2), pp.7-20. hal-01259695 HAL Id: hal-01259695 https://hal.archives-ouvertes.fr/hal-01259695 Submitted on 26 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributional Semantics Today Introduction to the special issue Cécile Fabre* — Alessandro Lenci** * University of Toulouse, CLLE-ERSS ** University of Pisa, Computational Linguistics Laboratory ABSTRACT. This introduction to the special issue of the TAL journal on distributional seman- tics provides an overview of the current topics of this field and gives a brief summary of the contributions. RÉSUMÉ. Cette introduction au numéro spécial de la revue TAL consacré à la sémantique dis- tributionnelle propose un panorama des thèmes de recherche actuels dans ce champ et fournit un résumé succinct des contributions acceptées. KEYWORDS: Distributional Semantic Models, vector-space models, corpus-based semantics, se- mantic proximity, semantic relations, evaluation of distributional ressources. MOTS-CLÉS : Sémantique distributionnelle, modèles vectoriels, proximité sémantique, relations sémantiques, évaluation de ressources distributionnelles.
    [Show full text]
  • Distributional Semantics
    Distributional semantics Distributional semantics is a research area that devel- by populating the vectors with information on which text ops and studies theories and methods for quantifying regions the linguistic items occur in; paradigmatic sim- and categorizing semantic similarities between linguis- ilarities can be extracted by populating the vectors with tic items based on their distributional properties in large information on which other linguistic items the items co- samples of language data. The basic idea of distributional occur with. Note that the latter type of vectors can also semantics can be summed up in the so-called Distribu- be used to extract syntagmatic similarities by looking at tional hypothesis: linguistic items with similar distributions the individual vector components. have similar meanings. The basic idea of a correlation between distributional and semantic similarity can be operationalized in many dif- ferent ways. There is a rich variety of computational 1 Distributional hypothesis models implementing distributional semantics, includ- ing latent semantic analysis (LSA),[8] Hyperspace Ana- The distributional hypothesis in linguistics is derived logue to Language (HAL), syntax- or dependency-based from the semantic theory of language usage, i.e. words models,[9] random indexing, semantic folding[10] and var- that are used and occur in the same contexts tend to ious variants of the topic model. [1] purport similar meanings. The underlying idea that “a Distributional semantic models differ primarily with re- word is characterized by the company it keeps” was pop- spect to the following parameters: ularized by Firth.[2] The Distributional Hypothesis is the basis for statistical semantics. Although the Distribu- • tional Hypothesis originated in linguistics,[3] it is now re- Context type (text regions vs.
    [Show full text]
  • Arguments For: Semantic Folding and Hierarchical Temporal Memory
    [email protected] Mariahilferstrasse 4 1070 Vienna, Austria http://www.cortical.io ARGUMENTS FOR: SEMANTIC FOLDING AND HIERARCHICAL TEMPORAL MEMORY Replies to the most common Semantic Folding criticisms Francisco Webber, September 2016 INTRODUCTION 2 MOTIVATION FOR SEMANTIC FOLDING 3 SOLVING ‘HARD’ PROBLEMS 3 ON STATISTICAL MODELING 4 FREQUENT CRITICISMS OF SEMANTIC FOLDING 4 “SEMANTIC FOLDING IS JUST WORD EMBEDDING” 4 “WHY NOT USE THE OPEN SOURCED WORD2VEC?” 6 “SEMANTIC FOLDING HAS NO COMPARATIVE EVALUATION” 7 “SEMANTIC FOLDING HAS ONLY LOGICAL/PHILOSOPHICAL ARGUMENTS” 7 FREQUENT CRITICISMS OF HTM THEORY 8 “JEFF HAWKINS’ WORK HAS BEEN MOSTLY PHILOSOPHICAL AND LESS TECHNICAL” 8 “THERE ARE NO MATHEMATICALLY SOUND PROOFS OR VALIDATIONS OF THE HTM ASSERTIONS” 8 “THERE IS NO REAL-WORLD SUCCESS” 8 “THERE IS NO COMPARISON WITH MORE POPULAR ALGORITHMS OF DEEP LEARNING” 8 “GOOGLE/DEEP MIND PRESENT THEIR PERFORMANCE METRICS, WHY NOT NUMENTA” 9 FMRI SUPPORT FOR SEMANTIC FOLDING THEORY 9 REALITY CHECK: BUSINESS APPLICABILITY 9 GLOBAL INDUSTRY UNDER PRESSURE 10 “WE HAVE TRIED EVERYTHING …” 10 REFERENCES 10 Arguments for Semantic Folding and Hierarchical Temporal Memory Theory Introduction During the last few years, the big promise of computer science, to solve any computable problem given enough data and a gold standard, has triggered a race for machine learning (ML) among tech communities. Sophisticated computational techniques have enabled the tackling of problems that have been considered unsolvable for decades. Face recognition, speech recognition, self- driving cars; it seems like a computational model could be created for any human task. Anthropology has taught us that a sufficiently complex technology is indistinguishable from magic by the non-expert, indigenous mind.
    [Show full text]
  • A Vector Space for Distributional Semantics for Entailment ∗
    A Vector Space for Distributional Semantics for Entailment ∗ James Henderson and Diana Nicoleta Popa Xerox Research Centre Europe [email protected] and [email protected] unk f g f Abstract ⇒ ¬ unk 1 0 0 0 Distributional semantics creates vector- f 1 1 0 0 space representations that capture many g 1 0 1 0 forms of semantic similarity, but their re- f 1 0 0 1 ¬ lation to semantic entailment has been less clear. We propose a vector-space model Table 1: Pattern of logical entailment between which provides a formal foundation for a nothing known (unk), two different features f and g known, and the complement of f ( f) known. distributional semantics of entailment. Us- ¬ ing a mean-field approximation, we de- velop approximate inference procedures ness with a distributional-semantic model of hy- and entailment operators over vectors of ponymy detection. probabilities of features being known (ver- Unlike previous vector-space models of entail- sus unknown). We use this framework ment, the proposed framework explicitly models to reinterpret an existing distributional- what information is unknown. This is a crucial semantic model (Word2Vec) as approxi- property, because entailment reflects what infor- mating an entailment-based model of the mation is and is not known; a representation y en- distributions of words in contexts, thereby tails a representation x if and only if everything predicting lexical entailment relations. In that is known given x is also known given y. Thus, both unsupervised and semi-supervised we model entailment in a vector space where each experiments on hyponymy detection, we dimension represents something we might know.
    [Show full text]
  • Embeddings in Natural Language Processing
    Embeddings in Natural Language Processing Theory and Advances in Vector Representation of Meaning Mohammad Taher Pilehvar Tehran Institute for Advanced Studies Jose Camacho-Collados Cardiff University SYNTHESIS LECTURESDRAFT ON HUMAN LANGUAGE TECHNOLOGIES M &C Morgan& cLaypool publishers ABSTRACT Embeddings have been one of the dominating buzzwords since the early 2010s for Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning algo- rithms, has played a central role in the development in NLP. Embedding techniques initially focused on words but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. We also provide an overview on the status of the recent development in contextualized representations (e.g., ELMo, BERT) and explain their potential in NLP. Throughout the book the reader can find both essential information for un- derstanding a certain topic from scratch, and an in-breadth overview of the most successful techniques developed in the literature. KEYWORDS Natural Language Processing, Embeddings, Semantics DRAFT iii Contents 1 Introduction ................................................. 1 1.1 Semantic representation . 3 1.2 One-hot representation . 4 1.3 Vector Space Models . 5 1.4 The Evolution Path of representations .
    [Show full text]