Symphypleonid and Neelipleonid Springtails (Hexapoda, Collembola, Symphypleona and Neelipleona) from Caves of the Grand Duchy of Luxembourg

Total Page:16

File Type:pdf, Size:1020Kb

Symphypleonid and Neelipleonid Springtails (Hexapoda, Collembola, Symphypleona and Neelipleona) from Caves of the Grand Duchy of Luxembourg M.T. Marx, D. Weber Symphypleonid and neelipleonid springtails from caves of the Grand Duchy of Luxembourg Symphypleonid and neelipleonid springtails (Hexapoda, Collembola, Symphypleona and Neelipleona) from caves of the Grand Duchy of Luxembourg Michael Thomas Marx Johannes Gutenberg-University Mainz Institute of Zoology / Dep. IV Becherweg 13 D-55099 Mainz [email protected] Dieter Weber Kirchgasse 124 D-67454 Haßloch [email protected] Zusammenfassung Springschwänze oder Collembolen sind mit die & Delamare Deboutteville, 1953) und Neelus murinus häufigste Tierordnung in Höhlen-Ökosystemen. Von Folsom. Sie beinhalten mehr als 98 % aller gesammelten 2007 bis 2011 wurde die Höhlenfauna von 82 Höhlen Inidividuen. Die verbleibenden drei Arten gelten als und künstlichen Hohlräumen des Großherzogtums eutrogloxen. Zu ihnen gehören die beiden epedaphi- Luxemburg untersucht. Dabei wurden Barberfallen schen Arten Sminthurinus concolor (Meinert, 1896) mit 25 aufgestellt und Handaufsammlungen durchführt. Individuen aus drei Standorten und Sminthurinus reticu­ Unter den rund 90.000 gesammelten Tieren wurden latus Cassagnau, 1964 mit 23 Individuen von zwei Stand- sechs symphypleonide und eine neelipleonide Spring- orten. Ferner wurde die epineustische Art Sminthurides schwanzart mit insgesamt 2915 Einzeltieren erfasst. Von parvulus (Krausbauer, 1898) mit nur 5 Individuen an diesen 7 Arten gelten die folgenden als eutroglophil: einem Standort gefunden. Neu für Luxemburg sind Arrhopalites principalis Stach, 1945, Arrhopalites pygmaeus Disparrhopalites patrizii, Sminthurinus reticulatus und (Wankel, 1860), Disparrhopalites patrizii (Cassagnau Sminthurides parvulus. Abstract Springtails or Collembola are amongst the most eutroglophile and imply more than 98% of the catched abundant hexapod orders in cave ecosystems. From 2007 individuals. The remaining three species are classified as to 2010 the cave fauna of 82 caves and artificial caverns eutrogloxene. These include the two epedaphic species in the Grand Duchy of Luxembourg was investigated Sminthurinus concolor (Meinert, 1896) with 24 individuals using pitfall trapping and hand sampling. From a total from three locations and Sminthurinus reticulatus of 90,000 animals six symphypleonid and one neeli- Cassagnau, 1964 with 23 individuals from two locations. pleonid springtail species with 2915 individuals were Furthermore the epineustic species Sminthurides parvulus caught. From these seven species Arrhopalites principalis (Krausbauer, 1898) with only five individuals from one Stach, 1945, Arrhopalites pygmaeus (Wankel, 1860), Dispar­ location was detected. New for Luxembourg are Dispar­ rhopalites patrizii (Cassagnau & Delamare Deboutteville, rhopalites patrizii, Sminthurinus reticulatus and Sminthu­ 1953) and Neelus murinus Folsom, 1896 are classified as rides parvulus. 230 Ferrantia • 69 / 2013 M.T. Marx, D. Weber Symphypleonid and neelipleonid springtails from caves of the Grand Duchy of Luxembourg Résumé Les collemboles font partie des ordre d’animaux les plus Deboutteville, 1953) et Neelus murinus Folsom. Elles fréquents dans les écosystèmes cavernicoles. Entre 2007 comprennent plus de 98% de tous les individus collectés. et 2011, la faune cavernicole de 82 cavités naturelles Les autres trois espèces sont eutrogloxènes. Parmi eux et artificielles du grand-duché de Luxembourg a été se trouvent les deux espèces édaphiques Sminthurinus étudiée. Les méthodes appliquées comprenaient des concolor (Meinert, 1896) avec 25 individus venant de pièges Barber et des collectes à la main. Parmi les 90 000 trois sites et Sminthurinus reticulatus Cassagnau, 1964, spécimens d´animaux collectés, six espèces de collem- avec 23 individus de deux sites. Par ailleurs, l’espèce boles symphypleonides et une espèce de collembole epineustique Sminthurides parvulus (Krausbauer, 1898) neelipleonide ont été identifiées, avec un nombre total a été trouvée dans un seul site avec seulement trois de 2915 individus. Parmi ces 7 espèces, les suivantes individus. Les espèces Disparrhopalites patrizii, Sminthu­ sont classées comme subtroglophiles: Arrhopalites rinus reticulatus et Sminthurides parvulus sont nouvelles principalis Stach, 1945, Arrhopalites pygmaeus (Wankel, pour le Luxembourg. 1860), Disparrhopalites patrizii (Cassagnau & Delamare 1 Introduction and post embryonic development (Lee & Thibaud 1987, Lee & Kim 1995), increased levels of fat but decreased water content and ability to regulate The presence of springtails in caves was early water loss (Vannier & Thibaud 1978, 1984, Vannier described by Wright & Haliday (1857) and & Verdier 1981, Thibaud & Vannier 1986). Carpenter (1897). Springtails are very sensitive to humidity and temperature changes. In many Only a few investigations about springtails in caves humidity is close to 100% and temperature Luxembourg exist. The work of N. Stomp and W. vary little from 9°C, thus surface species that make Weiner has given us a better understanding of the their way into these habitats enter a frost-free springtail fauna of Luxembourg. They presented environment with little or no climatic variation some remarkable findings of the Luxembourg (Thibaud 1970; Hopkin 1997). Collembolan cave sandstone region (Lias Hettangien) (Stomp & biogeography is a series of vicariance events Weiner 2005) and described new species like following cave invasions by widespread species, Orchesella erpeldingae and Superodontella euro followed by dispersionist episodes from newly (Stomp 1968a, 1968b, 1969, Stomp & Weiner adapted cave forms (Christiansen & Culver 1987). 1994, Weiner & Stomp 1995, 2001, 2003). Further Species which occur in caves show several differ- investigations about some species of the genus ences in reproduction, physiology and behavior in Orchesella are by Stomp (1967) as well as Reiffers comparison to non-cave adapted species (Thibaud & Arendt (1995). Stomp & Weiner (2005) report & Vannier 1986, Barra 1991). These include for Arrhopalites pygmaeus from Grotte de Ste Barbe and example lower fecundity and slower embryonic from the Däiwelslach (Devils cave) near Kopstal. Neelus murinus 140# Abundance 130# 350 # 300 120 ## 250 110# 200 100# # 150 # 90 # 100 80# # 50 70# N 0 # # upto 5 upto 10 upto 20 upto 50 upto 100 over 100 60 ## ## 0 10Km # # # # # # # distant from entrance (m) 50 60 70 80 90 100 110 Fig. 1: Caves with Neelus murinus Fig. 2: Numbers of Neelus murinus caught at different in Luxembourg. distances from the entrance Luxembourg caves. Ferrantia • 69 / 2013 231 M.T. Marx, D. Weber Symphypleonid and neelipleonid springtails from caves of the Grand Duchy of Luxembourg Sminthurides parvulus In this contribution seven symphypleonid and 140# neelipleonid springtail species of different caves 130# and locations in Luxembourg are presented. 120# 110# 2 Neelipleona 100# 2.1 Neelidae 90# 80# Neelus murinus Folsom, 1896 70# N This small blind species has a total length of 0.7 # 60 # 0 10Km mm, is yellowish coloured and shows a holarctic # # # # # # # 50 60 70 80 90 100 110 distribution. N. murinus lives preferably in moist soil and moss (Bretfeld 1999) and according to Fig. 3: Caves with Sminthurides parvulus in Luxembourg. Massoud & Thibaud (1973) it is troglophile. It was found in Mexico up to 2800 m altitude (Bonet 1947). 3 Symphypleona Altogether 875 individuals were detected in 16 caves, with the main distribution and abundance 3.1 Sminthurididae in the iron ore mines of Rumelange (676 ind.) and Dudelange (178). Further single individuals were Sminthurides parvulus (Krausbauer, 1898) found in caves or mines of Niederwampach (3), This blue-violet species with 8+8 ommatidia has Mersch (5) and Girsterklaus (2) as well as in the a total length 0.55 mm in females and 0.3 mm town fortification of Luxembourg City (11). in males. In the genus Sminthurides all of the Fig. 4: Female of Sminthurides parvulus with the five-segmented forth antennal segment. 232 Ferrantia • 69 / 2013 M.T. Marx, D. Weber Symphypleonid and neelipleonid springtails from caves of the Grand Duchy of Luxembourg Fig. 5: Fourth antennal segment of Arrhopalites principalis with six subsegments. European species are classified as epineustic, during their life (Blancquaert & Mertens 1977, which means that the main occurrence of the Blancquaert 1981, Blancquaert & al. 1981). The specimen is on water surfaces of different water male antenna is modified to grasp the female bodies (Palissa 2000). Therefore the modified during mating with special curved and modified mucrones (end parts of the furca) of these species spines on the second and third antennal segment. are broad and flat to jump on the water surface. Females of S. parvulus show a subdivision of the The maximum lifespan in this genus is 30 to 50 fourth antennal segment into five subsegments days and females are Arrho paonlylites princ ipablealis to fertilize once with the basal one being the longest (Nosek 1962) 140# Abundance 130# 18 16 120# # 14 110# 12 100# 10 8 90# 6 80# 4 # 2 70# N 0 # upto 5 upto 10 upto 20 upto 50 upto 100 over 100 60 ## ## 0 10Km # # # # # # # distant from entrance (m) 50 60 70 80 90 100 110 Fig. 6: Caves with Arrhopalites Fig. 7: Numbers of Arrhopalites principalis caught at principalis in Luxembourg. different distances from the entrance Luxembourg caves. Ferrantia • 69 / 2013 233 M.T. Marx, D. Weber Symphypleonid and neelipleonid springtails from caves of the Grand Duchy of Luxembourg Fig. 8: Fourth antennal segment of Arrhopalites pygmaeus with five subsegments. (figure 4). This species occurs in Europe and lives
Recommended publications
  • Unexpected Diversity in Neelipleona Revealed by Molecular Phylogeny Approach (Hexapoda, Collembola)
    S O I L O R G A N I S M S Volume 83 (3) 2011 pp. 383–398 ISSN: 1864-6417 Unexpected diversity in Neelipleona revealed by molecular phylogeny approach (Hexapoda, Collembola) Clément Schneider1, 3, Corinne Cruaud2 and Cyrille A. D’Haese1 1 UMR7205 CNRS, Département Systématique et Évolution, Muséum National d’Histoire Naturelle, CP50 Entomology, 45 rue Buffon, 75231 Paris cedex 05, France 2 Genoscope, Centre National de Sequençage, 2 rue G. Crémieux, CP5706, 91057 Evry cedex, France 3 Corresponding author: Clément Schneider (email: [email protected]) Abstract Neelipleona are the smallest of the four Collembola orders in term of species number with 35 species described worldwide (out of around 8000 known Collembola). Despite this apparent poor diversity, Neelipleona have a worldwide repartition. The fact that the most commonly observed species, Neelus murinus Folsom, 1896 and Megalothorax minimus Willem, 1900, display cosmopolitan repartition is striking. A cladistic analysis based on 16S rDNA, COX1 and 28S rDNA D1 and D2 regions, for a broad collembolan sampling was performed. This analysis included 24 representatives of the Neelipleona genera Neelus Folsom, 1896 and Megalothorax Willem, 1900 from various regions. The interpretation of the phylogenetic pattern and number of transformations (branch length) indicates that Neelipleona are more diverse than previously thought, with probably many species yet to be discovered. These results buttress the rank of Neelipleona as a whole order instead of a Symphypleona family. Keywords: Collembola, Neelidae, Megalothorax, Neelus, COX1, 16S, 28S 1. Introduction 1.1. Brief history of Neelipleona classification The Neelidae family was established by Folsom (1896), who described Neelus murinus from Cambridge (USA).
    [Show full text]
  • Why Are There So Many Exotic Springtails in Australia? a Review
    90 (3) · December 2018 pp. 141–156 Why are there so many exotic Springtails in Australia? A review. Penelope Greenslade1, 2 1 Environmental Management, School of School of Health and Life Sciences, Federation University, Ballarat, Victoria 3353, Australia 2 Department of Biology, Australian National University, GPO Box, Australian Capital Territory 0200, Australia E-mail: [email protected] Received 17 October 2018 | Accepted 23 November 2018 Published online at www.soil-organisms.de 1 December 2018 | Printed version 15 December 2018 DOI 10.25674/y9tz-1d49 Abstract Native invertebrate assemblages in Australia are adversely impacted by invasive exotic plants because they are replaced by exotic, invasive invertebrates. The reasons have remained obscure. The different physical, chemical and biotic characteristics of the novel habitat seem to present hostile conditions for native species. This results in empty niches. It seems the different ecologies of exotic invertebrate species may be better adapted to colonise these novel empty niches than native invertebrates. Native faunas of other southern continents that possess a highly endemic fauna, such as South America, South Africa and New Zealand, may have suffered the same impacts from exotic species but insufficient survey data and unreliable and old taxonomy makes this uncertain. Here I attempt to discover what particular characteristics of these novel habitats are hostile to native invertebrates. I chose the Collembola as a target taxon. They are a suitable group because the Australian collembolan fauna consists of a high percentage of endemic taxa, but also exotic, non-native, species. Most exotic Collembola species in Australia appear to have originated from Europe, where they occur at low densities (Fjellberg 1997, 2007).
    [Show full text]
  • Cravens Peak Scientific Study Report
    Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10.
    [Show full text]
  • First Record of the Genus Spinaethorax Papáč & Palacios-Vargas, 2016 (Collembola, Neelipleona, Neelidae) in Asia, with a New Species from a Vietnamese Cave
    European Journal of Taxonomy 363: 1–20 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.363 www.europeanjournaloftaxonomy.eu 2017 · Schneider C. & Deharveng L. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:5720CF48-37A8-4814-93F3-192493488435 First record of the genus Spinaethorax Papáč & Palacios-Vargas, 2016 (Collembola, Neelipleona, Neelidae) in Asia, with a new species from a Vietnamese cave Clément SCHNEIDER 1,* & Louis DEHARVENG 2 1 Mécanismes Adaptatifs & Evolution, MECADEV - UMR 7179 - CNRS, MNHN, Dpt Systematics & Evolution, Muséum national d'Histoire naturelle, CP50 Entomology, 45 rue Buffon, 75005 Paris, France. 2 Institut de Systématique, Evolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France. *Corresponding author: [email protected] 2 Email: [email protected] 1 urn:lsid:zoobank.org:author:C0BEC337-0235-4E4B-8EFB-134B3EED1B90 2 urn:lsid:zoobank.org:author:D8F5C679-C30C-442C-8621-D3B8EDB17EF7 Abstract. A new species of the genus Spinaethorax Papáč & Palacios-Vargas, 2016, recently erected for two cave species of Mexico, is described from a Vietnamese cave. It differs from the Mexican species most noticeably by the dorsal chaetotaxy of the head (number and morphology of chaetae), the shape of S-chaetae on the third antennomere, the dorsal chaetotaxy of the abdomen and the chaetotaxy of the dens. The pattern of special τ-chaetae is described for the first time in the genus. The affinities between Spinaethorax and the other genera of Neelipleona are discussed.
    [Show full text]
  • Collembola: Actors of Soil Life
    Collembola: actors of soil life Auteurs : 02-05-2019 Encyclopédie de l'environnement 1/9 Généré le 01/10/2021 An unsuspected diversity of invertebrates swarms under our feet when we walk on the ground in a forest, meadow or garden. Invisible communities are active in the soil as in a parallel world, with the difference that this world is very real and well connected to the above ground level. It is indeed essential to plants that grow above it. Among the invertebrates living in the soil, Collembola (or springtails) are important because of their abundance and therefore their ability to impact the functioning of an entire ecosystem. They have a wide variety of forms and live in a wide variety of habitats. Their main role is to regulate the microorganisms responsible for the decomposition of organic matter and the recycling of nutrients that will be used by plants for their development. Unfortunately, many human activities can affect the communities of Collembola. These include, for example, soil pollution by metals, pesticides, etc., but also human practices such as the introduction of exotic plants or the use of waste to fertilize the soil. 1. Soil invertebrates, shadow workers Encyclopédie de l'environnement 2/9 Généré le 01/10/2021 Table 1.Invertebrates, sizes, abundances (in a temperate meadow) and dominant diets in each of the three soil fauna size classes. Ind.: individuals; L: length; ø: diameter. Saprophagous: a diet consisting of dead organic matter of plant or animal origin. Carnivory: a diet consisting of live animals. Microphagous: a diet consisting of bacteria, fungi and/or unicellular algae.
    [Show full text]
  • Collembola of Canada 187 Doi: 10.3897/Zookeys.819.23653 REVIEW ARTICLE Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 819: 187–195 (2019) Collembola of Canada 187 doi: 10.3897/zookeys.819.23653 REVIEW ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Collembola of Canada Matthew S. Turnbull1, Sophya Stebaeva2 1 Unaffiliated, Kingston, Ontario, Canada2 The Severtsov Institute of Ecology and Evolution, Russian Aca- demy of Sciences, Leninskii pr. 33, Moscow 119071, Russia Corresponding author: Matthew S. Turnbull ([email protected]) Academic editor: D. Langor | Received 16 January 2018 | Accepted 8 May 2018 | Published 24 January 2019 http://zoobank.org/3A331779-19A1-41DA-AFCF-81AAD4CB049F Citation: Turnbull MS, Stebaeva S (2019) Collembola of Canada. In: Langor DW, Sheffield CS (Eds) The Biota of Canada – A Biodiversity Assessment. Part 1: The Terrestrial Arthropods. ZooKeys 819: 187–195.https://doi. org/10.3897/zookeys.819.23653 Abstract The state of knowledge of diversity of Collembola in Canada was assessed by examination of literature and DNA barcode data. There are 474 described extant Collembola species known from Canada, a significant change compared to the 520 species estimated to occur in Canada in 1979 (Richards 1979) and the 341 reported in the most recent national checklist (Skidmore 1993). Given the number of indeterminate or cryptic species records, the dearth of sampling in many regions, and the growing use of genetic biodiversity assessment methods such as Barcode Index Numbers, we estimate the total diversity of Collembola in Canada to be approximately 675 species. Advances in Collembola systematics and Canadian research are discussed. Keywords biodiversity assessment, Biota of Canada, Collembola, springtails Collembola, commonly known as springtails, is a class of small, entognathous, wing- less hexapods that is a sister group to Insecta.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Posicionamento Filogenético De Chaetognatha Baseado Em Dados Morfológicos
    Rudy Camilo Nunes Posicionamento filogenético de Chaetognatha baseado em dados morfológicos Dissertação apresentada como requisito final à obtenção do grau de Mestre em Ciências Biológicas, área de concentração em Zoologia. Curso de Pós-Graduação em Ciências Biológicas, Zoologia, Departamento de Sistemática e Ecologia da Universidade Federal da Paraíba. Orientador: Prof. Dr. Martin Lindsey Christoffersen. João Pessoa 2012 Rudy Camilo Nunes Posicionamento filogenético de Chaetognatha baseado em dados morfológicos Dissertação apresentada como requisito final à obtenção do grau de Mestre em Ciências Biológicas, área de concentração em Zoologia. Curso de Pós-Graduação em Ciências Biológicas, Zoologia, Departamento de Sistemática e Ecologia da Universidade Federal da Paraíba. Orientador: Prof. Dr. Martin Lindsey Christoffersen. João Pessoa 2012 i Agradecimentos Agradeço ao orientador Prof.º Dr. Martin Lindsey Christoffersen, pela infinita paciência e pelo apoio durante todo o processo. Pelo conhecimento acumulado em décadas de pesquisa e dedicação que, tão facilmente, me foi doado ao longo de nossas conversas formais e informais. E, sobretudo, pela relação de amizade e confiança construída durante o período em que trabalhamos juntos. A Prof.ª Dr. Maria Nazaré Stevaux (UFGO), que durante a graduação me apresentou a Biologia Evolutiva, fato que me proporcionou dar um sentido real ao estudo da história biológica do nosso planeta. A minha esposa Angélica Pereira Soares, pelo companheirismo e lealdade incondicionais. Por compartilhar de todas as dificuldades e conquistas vividas desde o início desta etapa. Pelo amor, carinho e dedicação empenhados todos os dias. Aos meus pais, irmãos e familiares que, em diferentes níveis e momentos, forneceram a ajuda necessária para que se rompessem as barreiras existentes até aqui.
    [Show full text]
  • Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
    Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results ..............................................................................................................
    [Show full text]
  • Mundos Subterráneos
    ISSN 0188-6215 MUNDOS SUBTERRÁNEOS UMAE MÉXICO, D.F. SEPTIEMBRE 1 995 No. 6 UNIÓN MEXICANA DE AGRUPACIONES ESPELEOLÓGICAS A. C. MESA DIRECTIVA 1995-1996 Presidente lng. José A. Gamboa Vargas (EG YUC) Vicepresidente Sr. Víctor J. Granados (GEK) Secretario Dr. José G. Palacios-Vargas (UNAM) · Tesorero Sr. Sergio Santana Muñoz (URION) Vocales lng. Alejandro Carrillo Bañuelos (GEO) José Luis Beteta Beteta (EGAM) lng. Jorge A. Pérez Aguilar Comité Editorial Editor titular: Dr. José G. Palacios-Vargas Editor asocíado: Guadalupe Pineda Consejo Editorial Internacional Eleonora Trajano (Brasil) Carlos Benedetto (Argentina) José Ayrton Labegalini (Brasil) Franco Urbani (Venezuela) Christian Juberthie (Francia) MUNDOS SUBTERRÁNEOS Publicación oficial de la Asociación Civil UMAE, Certificado de Licitud de Título No. 5658, Certificado de Licitud de Contenido No. 4373. Registro No. 864-91 de la Dirección General del Derecho de Autor. ISSN 0188- 6215. Prohibida la reproducción total o parcial sin autorización escrita del Comité Editorial. Los artículos son de responsabilidad exclusiva de sus autores. Murciélagos Natalus stramineus (Natalidae) en la Gruta del Rancho de Sambulá, Yucatán (Foto por José G. Palacios-Vargas) MUNDOSSUBTERRANEOS Número 6 IN DICE - PRESENTACION Comité Editorial ............................................................. ................... 1 -LA UMAE Miembros de la UMAE. lng. josé A. Gamboa Vargas ................... 2 • ESTUDIO PRELIMINAR DE LA FAUNA CAVERNICOLA DE YUCATAN Douglas Zeppelini Filho y Gabriela Castaño Meneses
    [Show full text]
  • Collembola (Springtails, Collembolans)
    chapter 6 Collembola (springtails, collembolans) Arne Fjellberg The Collembola (springtails) are one of the dominant ani- three thoracic segments bears a leg consisting of claw, mal groups in most soil ecosystems including those of the tibiotarsus, femur, trochanter, coxa and subcoxa. Some of arctic regions. Their unique body design with the low the six abdominal segments have structures derived from number of abdominal segments render them immedi- paired appendages: Ventral tube on the first segment, ately recognizable among the antennate hexapod arthro- retinaculum on the third, and furca (the jumping organ) pods. Their exact phylogenetic relationships to other on the fourth. Genital organs open on the fifth and anus arthropods are currently a subject of much discussion, see on the sixth (terminal) segment. The genital aperture of chapter 2. the female is a transverse slit with an anterior and a poste- rior lip, the male aperture is a roundish papilla with an incision from behind Fig.1 shows the general morphology Morphology of the Greenland species Hypogastrura concolor. For a more detailed description Fjellberg (1998) may be Collembola are enthognathous hexapod arthropods, i.e., consulted. their mandibles and maxillae are enclosed in the head Abbreviations used in the text (see also Fig.1). a: Anterior; capsule. Most species are 0.5–1.5 mm long, with some spe- A: Apical setae of tibiotarsus; abd.: Abdomen (abd.1: First cies reaching more than 3 mm.The antennae are 4–seg- abdominal segment); ant: Antenna (ant.1: First antennal mented, the eye-field has 8 socalled ‘ocelli’ (dispersed segment); cl: Claw; m: Median; M: Macrochaeta; ms: compound eye ommatidia, hence non-homologous with Spine-like microsensillum; p: Posterior; PAO: Post anten- insect ocelli) which often become reduced.
    [Show full text]
  • Barcoding the Collembola of Churchill: a Molecular Taxonomic Reassessment of Species Diversity in a Sub-Arctic Area
    Molecular Ecology Resources (2013) doi: 10.1111/1755-0998.12172 Barcoding the Collembola of Churchill: a molecular taxonomic reassessment of species diversity in a sub-Arctic area € DAVID PORCO,* DARIUSZ SKARZ˙ YN´ SKI,† THIBAUD DECAENS,* PAUL D. N. HEBERT‡ and LOUIS DEHARVENG§ *EA 1293 ECODIV, Universite de Rouen, UFR Sciences et Techniques, SFR SCALE, B^atiment IRESE A, Mont Saint Aignan Cedex 76821, France, †Department of Evolutionary Biology and Ecology, Wrocław University, Przybyszewskiego 63/77, Wrocław 51-148, Poland, ‡Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada, §Museum National d’Histoire Naturelle, UMR7205, «Origine, Structure et Evolution de la Biodiversite», 45 rue Buffon, CP50, Paris 75005, France Abstract Although their functional importance in ecosystems is increasingly recognized, soil-dwelling micro-arthropods are usually poorly known in comparison with their above-ground counterparts. Collembola constitute a significant and species-rich component of the soil biodiversity, but it remains a woefully understudied group because of the taxo- nomic impediment. The ever-increasing use of molecular taxonomic tools, such as DNA barcoding, provides a possi- ble solution. Here, we test the use of this approach through a diversity survey of Collembola from the vicinity of Churchill, Manitoba, Canada, and compare the results with previous surveys in the same area and in other sub-Arctic regions. The systematic barcoding campaign at Churchill revealed a diverse collembolan fauna consisting of 97 spe- cies-level MOTUs in six types of habitats. If all these MOTUs are confirmed as species, this richness would be far higher than prior records for Arctic Canada and could lead to reconsider the actual diversity of the group in Arctic environments.
    [Show full text]