Vitamin B3-Based Biologically Active Compounds As Inhibitors of Human Cholinesterases

Total Page:16

File Type:pdf, Size:1020Kb

Vitamin B3-Based Biologically Active Compounds As Inhibitors of Human Cholinesterases International Journal of Molecular Sciences Article Vitamin B3-Based Biologically Active Compounds as Inhibitors of Human Cholinesterases Antonio Zandona 1 , Gabriela Lihtar 1, Nikola Marakovi´c 1, Katarina Miš 2, Valentina Buši´c 3, Dajana Gašo-Sokaˇc 3, Sergej Pirkmajer 2 and Maja Katalini´c 1,* 1 Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001 Zagreb, Croatia; [email protected] (A.Z.); [email protected] (G.L.); [email protected] (N.M.) 2 Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, SLO-1001 Ljubljana, Slovenia; [email protected] (K.M.); [email protected] (S.P.) 3 Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Kuhaˇceva20, HR-31000 Osijek, Croatia; [email protected] (V.B.); [email protected] (D.G.-S.) * Correspondence: [email protected]; Tel.: +385-1-4682-551 Received: 22 October 2020; Accepted: 27 October 2020; Published: 29 October 2020 Abstract: We evaluated the potential of nine vitamin B3 scaffold-based derivatives as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors, as a starting point for the development of novel drugs for treating disorders with cholinergic neurotransmission-linked pathology. As the results indicate, all compounds reversibly inhibited both enzymes in the micromolar range pointing to the preference of AChE over BChE for binding the tested derivatives. Molecular docking studies revealed the importance of interactions with AChE active site residues Tyr337 and Tyr124, which dictated most of the observed differences. The most potent inhibitor of both enzymes with Ki of 4 µM for AChE and 8 µM for BChE was the nicotinamide derivative 1-(40-phenylphenacyl)-3-carbamoylpyridinium bromide. Such a result places it within the range of several currently studied novel cholinesterase inhibitors. Cytotoxicity profiling did not classify this compound as highly toxic, but the induced effects on cells should not be neglected in any future detailed studies and when considering this scaffold for drug development. Keywords: AChE; BChE; neurodegenerative; Alzheimer’s; nicotinamide; cytotoxicity 1. Introduction The therapeutic approach for treating various neurodegenerative disorders and disorders with cholinergic neurotransmission-linked pathology is currently focused mostly on alleviating their symptoms and progression. One such disease is Alzheimer’s disease (AD), which affects the elderly, and myasthenia gravis, which affects people of any age. AD is a severe degenerative brain disorder leading to dementia, memory loss and disorders of thinking, behaviour and personality [1,2]. The pathology of the disorder has been well researched and is characterised by the formation of cytotoxic plaques of misfolded amyloid β-peptides, hyperphosphorylation of τ-protein in the cells and by a loss of cholinergic neurotransmission [1,2]. Considering that there is no adequate treatment or drug that would act on the cause of the AD, the inhibition of human cholinesterases (acetylcholinesterase, AChE, EC 3.1.1.7; and butyrylcholinesterase, BChE, EC 3.1.1.8) emerged as an important therapeutic regime [3–8]. This is important especially since a diminished level of ACh in the brain is one of the characteristics of AD, so drugs designed as AChE inhibitors prevent ACh from fast degradation and enable longer-lasting neuro signals [9,10]. Even though BChE’s involvement in AD is still under investigation [11,12], it is also capable of hydrolysing ACh and thus diminish the effort of an AChE-acting drug [13–15]. Therefore, the use of nonselective cholinesterase inhibitors may be beneficial to AD patients as well [15,16]. Int. J. Mol. Sci. 2020, 21, 8088; doi:10.3390/ijms21218088 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, 8088 2 of 19 In contrast to AD, myasthenia gravis is an autoimmune disease affecting the neuromuscular junction [17]. This disease’s main pathology is characterised by antibodies attacking acetylcholine receptors (AChR), muscle-specific kinase (MUSK) and low-density lipoprotein receptor-related protein 4 (LRP4) or other functionally related molecules in the postsynaptic membrane at the neuromuscular junction [17]. The most affected are the eyes, face and throat muscles and, in the later stage of disease progression, the neck and limb muscles [17,18]. As in the case of AD, no cure exists for myasthenia gravis, but treatment can help relieve signs and symptoms [19]. Again, drugs acting on ChE, that increase the amount of acetylcholine at neuromuscular endplates after motor nerve stimulation, alleviate muscle weakness in all myasthenia gravis patients [19]. Numerous structures have been investigated as scaffolds for potential cholinesterase inhibitors for the treatment of both AD [20–24] and myasthenia gravis [25,26]. To this day, only three AChE-acting drugs have been approved in treating AD symptoms: the benzylpiperidine donepezil [27,28], the tertiary alkaloid galantamine [29] and the carbamate rivastigmine [29,30]. Aminoacridine tacrine as an anti-AChE acting drug was withdrawn from the market due to hepatotoxicity [31,32]. Carbamate pyridostigmine is the preferred drug for treating myasthenia gravis, though several other carbamates are available at the market like neostigmine, and oxalamide ambenonium chloride [33]. Due to many side effects as well as a low number of novel candidates entering the late stage of drug-development pipeline, new compounds of better characteristics are constantly being sought [25,34–36]. A newly synthesized group of compounds based on vitamin B3, nicotinamide, was recently described as potentially biologically active against several targets [37,38]. Nicotinamide derivatives have broad pharmacological properties especially as inhibitors of many enzymes involved in the pathogenesis of numerous illnesses [39]. They are investigated as antioxidative [40], anticancer [37], anti-angiogenic [41] and antinociceptive agents [42], but also as drugs for treating patients with neurodegenerative diseases [43]. In that sense, we described nine vitamin B3 derivatives (Figure1) as inhibitors of human AChE and BChE. The synthesis of these compounds has been previously conducted [44,45]. Since these compounds have quaternary nitrogen present in their structure, we performed an in silico analysis of their basic physicochemical characteristics to estimate whether any would possess some characteristic advantageous for acting wider than at the peripheral nervous system (PNS). Furthermore, we performed an in vitro cytotoxicity screening on neural-like (SH-SY5Y) and kidney cells (HEK293) to evaluate their potential to be considered a starting point for novel anti-ChE drugs. Int. J. Mol. Sci. 2020, 21, 8088 3 of 19 Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 19 FigureFigure 1.1. ChemicalChemical structuresstructures ofof testedtested vitaminvitamin B3-derivativesB3-derivatives 11--99 (nicotinamide(nicotinamide form)form) andand knownknown ChEChE actingacting drugsdrugs (reversible(reversible inhibitors).inhibitors). 2. Results 2. Results 2.1. In Silico Physicochemical Characteristics of Nicotinamide Derivatives 2.1. In Silico Physicochemical Characteristics of Nicotinamide Derivatives According to the in silico determined physicochemical properties, most of the tested nicotinamides possessAccording some characteristics to the in silico that could determined work in theirphysicochemical favour, like molecularproperties, weight most (M),of numberthe tested of hydrogennicotinamides bond possess donors andsome acceptors characteristics (HBD andthat HBA)could andwork number in their of favour, rotating like bonds molecular (RB) (Figure weight2). However,(M), number allcompounds of hydrogen have bond a negative donors logandP value,acceptors as expected (HBD and due HBA) to the and presence number of a permanentof rotating positivebonds (RB) charge. (Figure This 2). indicates However, a low all compounds lipophilicity have and aa lownegative potential logPto value, be passively as expected transported due to the to centralpresence nervous of a permanent system (CNS). positive Furthermore, charge. This compounds indicates a low5, 7 andlipophilicity9 also have and a a higherlow potential value of to the be topologicalpassively transported polar surface to area central (TPSA) nervous than recommendedsystem (CNS). by Furthermore, the reference compounds values set for 5, a 7 blood–brain and 9 also barrierhave a (BBB)higher acting value drugof the [46 topological]. According polar to insurface silico area calculations, (TPSA) than a moderate recommended possibility by ofthe a reference potential passivevalues set transport for a blood–brain through the BBBbarrier was (BBB) predicted acting only drug for [46]. compound According8 (Table to 1in). silico calculations, a moderate possibility of a potential passive transport through the BBB was predicted only for compoundTable 1. 8In (Table silico prediction1). of tested nicotinamide derivatives (1–9) passive transport to central nervous system (CNS) through the BBB, according to Discovery Studio Client’s ADMET Descriptors protocol. R denotes substituent and its position on the phenyl ring. Compound R logBB * Level ** − 1 4-H 0.885 3 − 2 4-F 0.821 3 − 3 4-Cl 0.679 3 − 4 4-Br 0.654 3 − 5 4-NO 1.595 3 2 − 6 4-CH 0.735 3 3 − 7 4-OCH 1.031 3 3 − 8 4-Ph 0.416 2 − 9 2-OCH 1.031 3 3 − * Very high penetrants logBB 0.7; High penetrants 0 logBB < 0.7; Medium penetrants 0.52 < logBB < 0; Low penetrants logBB 0.52. ** Very≥ high
Recommended publications
  • Rheumatoid Arthritis Induced by Botulinum Toxin Type A: a Case Report and Review of the Literature
    Open Access Austin Journal of Orthopedics & Rheumatology Case Report Rheumatoid Arthritis Induced by Botulinum Toxin Type A: A Case Report and Review of the Literature Yanyan G1,2#, Yupeng L1#, Yuanyuan L1,3, Fangfang Z1,3 and Meiying W1* Abstract 1 Department of Rheumatology and Immunology, Introduction: Botulinum Toxin Type A (BoNT/A) is a bacterial toxin Shenzhen Second People’s Hospital, The First Affiliated commonly used in cosmetic therapy. Although there has been a great deal of Hospital of Shenzhen University, Shenzhen, China clinical and basic research on the potential therapeutic applications of botulinum 2Department of Nephrology, Peking University Shenzhen toxin there are few reports on its clinical toxicity and side effects. Hospital, Shenzhen, China 3Department of Rheumatology and Immunology, Peking Patient Concerns: A previously healthy 26-year-old woman developed University Shenzhen Hospital, Shenzhen, China joint pain and redness in her right toe, swelling in the posterior left foot and #Contributed equally to this paper the interphalangeal joint of the right index finger, occasional shoulder pain, and morning stiffness for 30 minutes daily, 6 months after BoNT/A injection. *Corresponding author: Meiying Wang, Department of Rheumatology and Immunology, Shenzhen Second Diagnosis: Laboratory testing showed elevated Rheumatoid Factor (RF), People’s Hospital, The First Affiliated Hospital of anti-cyclic citrullinated peptide (anti-CCP), C-Reactive Protein (CRP), Erythrocyte Shenzhen University, Shenzhen 518035, China Sedimentation Rate (ESR). Doppler ultrasound examination of the right hand and both feet showed synovial hyperplasia of the right wrist, right second Received: April 21, 2021; Accepted: May 15, 2021; proximal interphalangeal joint, both ankles, and right first metatarsophalangeal Published: May 22, 2021 joint, as well as bony erosion in a left intertarsal joint.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • Title 16. Crimes and Offenses Chapter 13. Controlled Substances Article 1
    TITLE 16. CRIMES AND OFFENSES CHAPTER 13. CONTROLLED SUBSTANCES ARTICLE 1. GENERAL PROVISIONS § 16-13-1. Drug related objects (a) As used in this Code section, the term: (1) "Controlled substance" shall have the same meaning as defined in Article 2 of this chapter, relating to controlled substances. For the purposes of this Code section, the term "controlled substance" shall include marijuana as defined by paragraph (16) of Code Section 16-13-21. (2) "Dangerous drug" shall have the same meaning as defined in Article 3 of this chapter, relating to dangerous drugs. (3) "Drug related object" means any machine, instrument, tool, equipment, contrivance, or device which an average person would reasonably conclude is intended to be used for one or more of the following purposes: (A) To introduce into the human body any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (B) To enhance the effect on the human body of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (C) To conceal any quantity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; or (D) To test the strength, effectiveness, or purity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state. (4) "Knowingly" means having general knowledge that a machine, instrument, tool, item of equipment, contrivance, or device is a drug related object or having reasonable grounds to believe that any such object is or may, to an average person, appear to be a drug related object.
    [Show full text]
  • Partial Agreement in the Social and Public Health Field
    COUNCIL OF EUROPE COMMITTEE OF MINISTERS (PARTIAL AGREEMENT IN THE SOCIAL AND PUBLIC HEALTH FIELD) RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies, and superseding Resolution AP (82) 2) AND APPENDIX I Alphabetical list of medicines adopted by the Public Health Committee (Partial Agreement) updated to 1 July 1988 APPENDIX II Pharmaco-therapeutic classification of medicines appearing in the alphabetical list in Appendix I updated to 1 July 1988 RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (superseding Resolution AP (82) 2) (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies) The Representatives on the Committee of Ministers of Belgium, France, the Federal Republic of Germany, Italy, Luxembourg, the Netherlands and the United Kingdom of Great Britain and Northern Ireland, these states being parties to the Partial Agreement in the social and public health field, and the Representatives of Austria, Denmark, Ireland, Spain and Switzerland, states which have participated in the public health activities carried out within the above-mentioned Partial Agreement since 1 October 1974, 2 April 1968, 23 September 1969, 21 April 1988 and 5 May 1964, respectively, Considering that the aim of the Council of Europe is to achieve greater unity between its members and that this
    [Show full text]
  • Medicinal Chemistry Unit
    JAIPUR COLLEGE OF PHARMACY, JAIPUR B.PHARMACY, SECOND YEAR, FOURTH SEMESTER MEDICINAL CHEMISTRY-I Prepared by: Mrs. Nisha Dhir UNIT-III Cholinergic and Anticholinergic Drug The nervous system is divided into the somatic nervous system, which controls organs under voluntary control (mainly muscles) and the autonomic nervous system (ANS) which regulates individual organ function and homeostasis, and for the most part is not subject to voluntary control. The autonomic nervous system is also known as the visceral or automatic system. The ANS is predominantly an efferent system transmitting impulses from the central nervous system (CNS) to peripheral organ systems. The autonomic nervous system consists of sensory neurons and motor neurons that innervates between the central nervous system (especially the hypothalamus and medulla oblongata) and various internal organs such as the : heart, lungs, viscera, glands (both exocrine and endocrine). Thus it is responsible for monitoring conditions in the internal environment and bringing about appropriate changes in them. The ANS is divided into two separate divisions called the parasympathetic and sympathetic systems, on the basis of anatomical and functional differences. Both of these systems consist of myelinated preganglionic fibres which make synaptic connections with unmyelinated postganglionic fibres, and it is these which then innervate the effector organ. These synapses usually occur in clusters called ganglia. The main nerves of the parasympathetic system are the tenth cranial nerve, the vagus nerve, which originate in the medulla oblongata. Other preganglionic parasympathetic neurons also extend from the brain as well as from the lower tip of the spinal cord. Each preganglionic parasympathetic neuron synapses with just a few postganglionic neurons, which are located near or in the effector organ, a muscle or major gland.
    [Show full text]
  • HMSA DRUG FORMULARY - Listed Alphabetically by GENERIC Name Rev
    HMSA DRUG FORMULARY - Listed alphabetically by GENERIC name Rev. 10/1/04 - Page 1 Ther. Generic Brand Select Select Choice Choice QUEST QUEST- CCS Child- Categ. Net ren's Code Code Footnote Code Footnote G = Generic. P = Preferred. O = Other brand. X = Covered. If a number appears next to alpha code, see last page for footnote text. 17 abacavir sulfate Ziagen P O X 17 abacavir/ lamivudine/ zidovudine Trizivir P O X 141 acarbose Precose P P X 50 acebutolol -- G G 50 acebutolol Sectral O O 65 acetaminophen -- X 40 acetazolamide -- G G X 40 acetazolamide Diamox O O 107 acetazolamide -- G G X 107 acetazolamide Diamox O O 40 acetazolamide, extended release Diamox Sequels P O X 239 acetic acid in aluminum acetate -- G G X 239 acetic acid in aluminum acetate Domeboro Otic O O 238 acetic acid, otic -- G G X 238 acetic acid, otic VoSol O O 238 acetic acid/ hydrocortisone, otic -- G G X 238 acetic acid/ hydrocortisone, otic VosSol HC O O 144 acetohexamide -- G G X 144 acetohexamide Dymelor O O 267 acetohydroxamic acid Lithostat O O 99 acetylcarbromal Paxarel O O 198 acetylcysteine -- G G X 198 acetylcysteine Mucomyst O O 243 acitretin Soriatane P O X 255 aclometasone dipropionate 0.05%, cream/ ointment Aclovate O O 173 activated charcoal -- X 22 acyclovir -- G G X 22 acyclovir Zovirax O O 248 acyclovir ointment Zovirax P O X 240 adapalene Differin P 10 O 10 X 10 24 albendazole Albenza O O 188 albuterol -- G G X 188 albuterol Proventil O O 188 albuterol Ventolin O O 189 albuterol -- G G X 189 albuterol Proventil P O X 189 albuterol Proventil HFA O O 189 albuterol Ventolin P O X 189 albuterol Ventolin HFA O O 188 albuterol, extended release -- G G X 188 albuterol, extended release Volmax O O 189 albuterol/ ipratropium Combivent P O X HMSA DRUG FORMULARY - Listed alphabetically by GENERIC name Rev.
    [Show full text]
  • Acetylcholinesterase: the “Hub” for Neurodegenerative Diseases And
    Review biomolecules Acetylcholinesterase: The “Hub” for NeurodegenerativeReview Diseases and Chemical Weapons Acetylcholinesterase: The “Hub” for Convention Neurodegenerative Diseases and Chemical WeaponsSamir F. de A. Cavalcante Convention 1,2,3,*, Alessandro B. C. Simas 2,*, Marcos C. Barcellos 1, Victor G. M. de Oliveira 1, Roberto B. Sousa 1, Paulo A. de M. Cabral 1 and Kamil Kuča 3,*and Tanos C. C. França 3,4,* Samir F. de A. Cavalcante 1,2,3,* , Alessandro B. C. Simas 2,*, Marcos C. Barcellos 1, Victor1 Institute G. M. ofde Chemical, Oliveira Biological,1, Roberto Radiological B. Sousa and1, Paulo Nuclear A. Defense de M. Cabral (IDQBRN),1, Kamil Brazilian Kuˇca Army3,* and TanosTechnological C. C. França Center3,4,* (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; [email protected] (M.C.B.); [email protected] (V.G.M.d.O.); [email protected] 1 Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army (R.B.S.); [email protected] (P.A.d.M.C.) Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; 2 [email protected] Mors Institute of Research (M.C.B.); on Natural [email protected] Products (IPPN), Federal (V.G.M.d.O.); University of Rio de Janeiro (UFRJ), CCS,[email protected] Bloco H, Rio de Janeiro (R.B.S.); 21941-902, [email protected] Brazil (P.A.d.M.C.) 32 DepartmentWalter Mors of Institute Chemistry, of Research Faculty of on Science, Natural Un Productsiversity (IPPN),
    [Show full text]
  • The Effect of Rivastigmine Transdermal Patch on Sleep Apnea in Patients with Probable Alzheimer’S Disease
    Print ISSN 1738-1495 / On-line ISSN 2384-0757 Dement Neurocogn Disord 2016;15(4):153-158 / https://doi.org/10.12779/dnd.2016.15.4.153 DND ORIGINAL ARTICLE The Effect of Rivastigmine Transdermal Patch on Sleep Apnea in Patients with Probable Alzheimer’s Disease Hyeyun Kim,1 Hyun Jeong Han2 1Department of Neurology, Catholic Kwandong University International St. Mary’s Hospital, Incheon, Korea 2Department of Neurology, Myongji Hospital, Seonam University College of Medicine, Goyang, Korea Background and Purpose This study was designed to evaluate the effect on sleep of rivastigmine transdermal patch in patients with probable Alzheimer’s disease (AD). Methods Patients with probable AD underwent a sleep questionnaire, overnight polysomnography and neuropsychological tests before and after rivastigmine transdermal patch treatment. We analyzed the data from enrolled patients with AD. Results Fourteen patients with probable AD were finally enrolled in this study. The respiratory disturbance index after the rivastigmine patch treatment was improved in patients with probable AD and sleep breathing disorder, compared with that of before treatment (p<0.05). Conclusions Rivastigmine transdermal patch application are expected to improve the symptoms of sleep disordered breathing in patients with probable AD. Further placebo controlled studies are needed to confirm these results. Key Words Alzheimer’s disease, respiratory disturbance index, rivastigmine patch. Received: October 26, 2016 Revised: December 14, 2016 Accepted: December 14, 2016 Correspondence: Hyun Jeong Han, MD, PhD, Department of Neurology, Myongji Hospital, Seonam University College of Medicine, 55 Hwasu-ro 14beon-gil, Deogyang-gu, Goyang 10475, Korea Tel: +82-31-810-5403, Fax: +82-31-969-0500, E-mail: [email protected] INTRODUCTION of AD, and cholinergic activity in the central nervous system influences upper airway opening via the central and peripheral Sleep disturbance in patients with probable Alzheimer’s dis- mechanism.
    [Show full text]
  • Exploring Structure-Activity Relationship in Tacrine-Squaramide Derivatives As Potent Cholinesterase Inhibitors
    biomolecules Article Exploring Structure-Activity Relationship in Tacrine-Squaramide Derivatives as Potent Cholinesterase Inhibitors 1,2, 1,2,3, 1,2 1,2 Barbora Svobodova y, Eva Mezeiova y, Vendula Hepnarova , Martina Hrabinova , Lubica Muckova 1,2 , Tereza Kobrlova 1 , Daniel Jun 1,2 , Ondrej Soukup 1,2, María Luisa Jimeno 4, José Marco-Contelles 3,* and Jan Korabecny 1,2,* 1 Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic 2 Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic 3 Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry, Juan de la Cierva 3, 28006-Madrid, Spain 4 Centro de Química Orgánica “Lora-Tamayo” (CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain * Correspondence: [email protected] (J.M.-C.); [email protected] (J.K.); Tel.: +34-91-2587554 (J.M.-C.); +420-495-833-447 (J.K.) These authors contributed equally to this paper. y Received: 2 August 2019; Accepted: 17 August 2019; Published: 19 August 2019 Abstract: Tacrine was the first drug to be approved for Alzheimer’s disease (AD) treatment, acting as a cholinesterase inhibitor. The neuropathological hallmarks of AD are amyloid-rich senile plaques, neurofibrillary tangles, and neuronal degeneration. The portfolio of currently approved drugs for AD includes acetylcholinesterase inhibitors (AChEIs) and N-methyl-d-aspartate (NMDA) receptor antagonist. Squaric acid is a versatile structural scaffold capable to be easily transformed into amide-bearing compounds that feature both hydrogen bond donor and acceptor groups with the possibility to create multiple interactions with complementary sites.
    [Show full text]