Hypophthalmichthys Molitrix) Ecological Risk Screening Summary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Bighead Carp Are Coming from Asia and Swimming up the Mississippi River, and the Bighead Carp Coming up the Minnesota River
Where they are mostly hiding out? Bighead Carp Invaders Invasive species: The Bighead carp are coming from Asia and swimming up the Mississippi River, and The Bighead Carp coming up the Minnesota River. (Hypophthalmichthys nobilis) This is an emergency to the pubic about the invasive Bighead carp. Recent research says that these invaders are taking a big toll on the ecosystem. “Why?” some people asked. Read on to learn more. How can you get rid of them? Carp Taco Recipe Serbian Carp Recipe EAT THEM!!!!! • 1 pound ground carp • 2 pounds carp Carp Taco Recipe • 3 tablespoons veggie oil • ¼ pound butter • 1 package taco seasoning • 2 finely chopped onions • 1/2 cup water • Sliced tomato or salsa • 3 tablespoons tomato paste • 12 flour tortillas • ¼ pound chopped mushrooms • Shredded lettuce • Salt • Grated cheddar cheese • Red pepper • Taco sauce • Flour • Sour cream • Water Roll carp in flour seasoned with salt Before shredding the fish, remove the mud vain, or reddish-brown section of and red Pepper. Sear in butter. After Serbian Carp Recipe the fish. Cook the shredded fish in the oil removing carp, sauté onions and until its color changes. Add the taco mushrooms. Add tomato paste and a seasonings and water. Cook until nearly little water. Put carp in and stew until dry, stirring occasionally. Heat tortilla in well done. a deep fry pan, turning them brown on both sides. They should still be soft and pliable when warm. Fill each tortilla with fish. Add the rest of the ingredients, and top it with sour cream. . -
Disease List for Aquaculture Health Certificate
Quarantine Standard for Designated Species of Imported/Exported Aquatic Animals [Attached Table] 4. Listed Diseases & Quarantine Standard for Designated Species Listed disease designated species standard Common name Disease Pathogen 1. Epizootic haematopoietic Epizootic Perca fluviatilis Redfin perch necrosis(EHN) haematopoietic Oncorhynchus mykiss Rainbow trout necrosis virus(EHNV) Macquaria australasica Macquarie perch Bidyanus bidyanus Silver perch Gambusia affinis Mosquito fish Galaxias olidus Mountain galaxias Negative Maccullochella peelii Murray cod Salmo salar Atlantic salmon Ameirus melas Black bullhead Esox lucius Pike 2. Spring viraemia of Spring viraemia of Cyprinus carpio Common carp carp, (SVC) carp virus(SVCV) Grass carp, Ctenopharyngodon idella white amur Hypophthalmichthys molitrix Silver carp Hypophthalmichthys nobilis Bighead carp Carassius carassius Crucian carp Carassius auratus Goldfish Tinca tinca Tench Sheatfish, Silurus glanis European catfish, wels Negative Leuciscus idus Orfe Rutilus rutilus Roach Danio rerio Zebrafish Esox lucius Northern pike Poecilia reticulata Guppy Lepomis gibbosus Pumpkinseed Oncorhynchus mykiss Rainbow trout Abramis brama Freshwater bream Notemigonus cysoleucas Golden shiner 3.Viral haemorrhagic Viral haemorrhagic Oncorhynchus spp. Pacific salmon septicaemia(VHS) septicaemia Oncorhynchus mykiss Rainbow trout virus(VHSV) Gadus macrocephalus Pacific cod Aulorhynchus flavidus Tubesnout Cymatogaster aggregata Shiner perch Ammodytes hexapterus Pacific sandlance Merluccius productus Pacific -
Page 1 F Fish Pathology, 46 (3), 87–90, 2011. 9 © 2011 the Japanese
魚病研究 Fish Pathology, 46 (3), 87–90, 2011. 9 © 2011 The Japanese Society of Fish Pathology Blood Fluke Infection of Cage 2 to 10 months (average of 6 months) fed with highly fat content fish, mainly chub mackerel Scomber japonicus, R eared Atlantic Bluefin Tuna A tla n tic mackerel S c o mber scombru s , European pil- Thunnus thynnus in chard C lupea pilchartus and round sardinella S a rd in e lla aurita. After this period, tunas are sacrificed in the Wes t Mediterranean floating cages a n d immediately commercialized fresh or frozen. R ocio Ruiz de Ybañez1, José Peñalver2, Among pathological problems reported in reared C arlos Martínez-Carrasco1, Laura del Río1, tuna, a blood fluke Cardicola forsteri (Digenea: 2 1 Aporocotylidae), has been pointed out as a significant Emilio María Dolores , Eduardo Berriatua risk of tuna health1). Initially identified in the Australian 1 and Pilar Muñoz * population of farmed southern BFT Thunnus maccoyii 2), this blood fluke was later reported in Atlantic BFT3–5), 1 Animal Health Department, University of Murcia, being the only one aporocotylid repo rte d s o fa r in th is Murcia 30100, Spain 2 species. Aporocotylids are parasites of marine and Livestock and Fishery Departmen t, Murcia 6) fre s h wate r fis h . Most species are located in the R egional Gov e rn men t, Murcia 30201, heart, bulbus arteriosus, ventral aorta or branchial ves- S p a in sels, although the cephalic or dorsal vessels are not uncommon habitats7). Once established, adult flukes (Recieved November 24, 2010) lay eggs whic h tra v e l to th e g ills where they lodge. -
Monroe County Soil & Water Conservation District Fish Program
Monroe County Soil & Water Conservation District Fish Program Catalog Inside Triploid Grass Carp………………….2 Fathead Minnows…....3 Channel Catfish……...4 Koi (no longer offered).…..5 Yellow Perch………...6 Largemouth Bass..…...7 Fish Stocking Program The Monroe County Soil and Water Conservation District’s fish program is a Rainbow Trout……….8 biannual event, offered in spring and summer each year. Harsh winters cause many fish kills in ponds throughout Monroe County, and the Soil and Water Conservation District offers this program to help restock ponds. The species Black Crappie………..9 typically available for stocking include, but are not limited to: Pumpkinseed……….10 Triploid grass carp (10-12”), Catfish (6”), Fathead minnows (1-1.5”), Yellow Perch (2-3" or 4-6”) and Largemouth Bass (2-3” or 4-6”) Barley Straw……......11 You will need to bring 20 gallons of pond water for every 6 Grass Carp, 30 Fish Habitat Spheres..12 Catfish, 30 Goldfish, 500 minnows, 100 Bass, or 150 Perch for a travel time of 30-45 minutes. Please Do NOT use tap water! Use pond water and be sure to bring a cover for the container(s) you’ll be using, so the water doesn’t splash and your fish can’t escape. Five gallon pails, old coolers, trash cans or other similar containers will work. Monroe County Soil and Water Conservation District 145 Paul Road, Building #5 Rochester, NY 14624 (585) 753-7380 Monroe County Soil & Water http://www.monroecountyswcd.org/ Conservation District Providing Today, Protecting Tomorrow This document has been produced to provide a summary of all the species that MCSWCD offers Fish Catalog Page 2 Triploid Grass Carp (Ctenopharyngodon idella) Photo courtesy of New York State Department of Conservation. -
Forecasting the Impacts of Silver and Bighead Carp on the Lake Erie Food Web
Transactions of the American Fisheries Society ISSN: 0002-8487 (Print) 1548-8659 (Online) Journal homepage: http://www.tandfonline.com/loi/utaf20 Forecasting the Impacts of Silver and Bighead Carp on the Lake Erie Food Web Hongyan Zhang, Edward S. Rutherford, Doran M. Mason, Jason T. Breck, Marion E. Wittmann, Roger M. Cooke, David M. Lodge, John D. Rothlisberger, Xinhua Zhu & Timothy B. Johnson To cite this article: Hongyan Zhang, Edward S. Rutherford, Doran M. Mason, Jason T. Breck, Marion E. Wittmann, Roger M. Cooke, David M. Lodge, John D. Rothlisberger, Xinhua Zhu & Timothy B. Johnson (2016) Forecasting the Impacts of Silver and Bighead Carp on the Lake Erie Food Web, Transactions of the American Fisheries Society, 145:1, 136-162, DOI: 10.1080/00028487.2015.1069211 To link to this article: http://dx.doi.org/10.1080/00028487.2015.1069211 © 2016 The Author(s). Published with View supplementary material license by American Fisheries Society© Hongyan Zhang, Edward S. Rutherford, Doran M. Mason, Jason T. Breck, Marion E. Wittmann, Roger M. Cooke, David M. Lodge, Published online: 30 Dec 2015. Submit your article to this journal John D. Rothlisberger, Xinhua Zhu, Timothy B. Johnson Article views: 1095 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=utaf20 Download by: [University of Strathclyde] Date: 02 March 2016, At: 02:30 Transactions of the American Fisheries Society 145:136–162, 2016 Published with license by American Fisheries Society 2016 ISSN: 0002-8487 print / 1548-8659 online DOI: 10.1080/00028487.2015.1069211 ARTICLE Forecasting the Impacts of Silver and Bighead Carp on the Lake Erie Food Web Hongyan Zhang* Cooperative Institute for Limnology and Ecosystems Research, School of Natural Resources and Environment, University of Michigan, 4840 South State Road, Ann Arbor, Michigan 48108, USA Edward S. -
Aliens; a Catastrophe for Native Fresh Water Fish Diversity in Pakistan
The Journal of Animal and Plant Sciences, 21(2 Suppl.): 2011, Page: 435-440 ISSN: 1018-7081 ALIENS; A CATASTROPHE FOR NATIVE FRESH WATER FISH DIVERSITY IN PAKISTAN A. M. Khan, Z. Ali, S. Y. Shelly* Z. Ahmad** and M. R. Mirza** Department of Zoology, University of the Punjab, Lahore *Department of Fisheries, Government of Punjab, Munawan, Lahore. Department of Zoology, Government College University, Lahore Corresponding author e-mail: [email protected] ABSTRACT Pakistan has introduced several alien exotic fish species e.g. grass carp (Ctenopharyngodon idella), bighead carp, (Hypophthalmichthys nobilis), silver carp, (Hypophthalmichthys molitrix), common carp (Cyprinus carpio), gold fish (Carassius auratus), and three species of tilapia (Oreochromis aureus, Oreochromis mossambicus, Oreochromis niloticus) in warm waters along with two trout species: the rainbow trout (Onchorynchus mykiss) and the brown trout (Salmo trutta fario) in colder regions for specific purposes like sport fishing, yield enhancement and biological control of aquatic weeds and mosquitoes. The exotic species are becoming invasive in the freshwater biomes of the Punjab and other provinces of Pakistan by reason of their potent reproductive potential and feeding competitions with the native freshwater fish fauna. Resultantly the native fish species viz; Channa marulius, Wallago attu, Rita rita, Sperata sarwari, Gibelion catla, Cirrhinus mrigala and Labeo rohita, which are of economic value are under threat. Key words: Exotic, invasions, freshwater, fish fauna, Pakistan. wild, 421 (35 %) are reported as not established and 177 INTRODUCTION (15 %) with unknown establishment (Fish base, 2003). In Asia, there have been 406 introduction There are more than 186 freshwater fish species records, 176 (43.3 %) are reported as having been described from freshwater bodies of Pakistan. -
Carp, Bighead (Hypophthalmichthys Nobilis)
Bighead Carp (Hypophthalmichthys nobilis) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, June 2018 Web Version, 8/16/2018 Photo: A. Benson, USGS. Public domain. Available: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=551. (June 2018). 1 Native Range and Status in the United States Native Range From Jennings (1988): “The bighead carp is endemic to eastern China, […] in the lowland rivers of the north China plain and South China, including the Huai (Huai Ho), Yangtze, Pearl, West (Si Kiang), Han Chiang and Min rivers (Herre 1934; Mori 1936; Chang 1966; Chunsheng et al. 1980).” Status in the United States From Nico et al. (2018): “This species has been recorded from within, or along the borders of, at least 18 states. There is evidence of reproducing populations in the middle and lower Mississippi and Missouri rivers and the species is apparently firmly established in the states of Illinois and Missouri (Burr et al. 1996; Pflieger 1997). Pflieger (1997) received first evidence of natural reproduction, capture of young 1 bighead carp, in Missouri in 1989. Burr and Warren (1993) reported on the taking of a postlarval fish in southern Illinois in 1992. Subsequently, Burr et al. (1996) noted that bighead carp appeared to be using the lower reaches of the Big Muddy, Cache, and Kaskaskia rivers in Illinois as spawning areas. Tucker et al. (1996) also found young-of-the-year in their 1992 and 1994 collections in the Mississippi River of Illinois and Missouri. Douglas et al. (1996) collected more than 1600 larvae of this genus from a backwater outlet of the Black River in Louisiana in 1994. -
Using Grass Carp in Aquaculture and Private Impoundments
SRAC Publication No. 3600 VI July 2002 PR Using Grass Carp in Aquaculture and Private Impoundments Michael P. Masser* Grass carp (Ctenopharyngodon idel- might devastate beneficial native grass carp, check with state game la) are native to large river sys- aquatic vegetation in public and fish/natural resource agen- tems of eastern Asia, from the waters prompted many states to cies or Extension fisheries or Amur River on the Russian- ban their further stocking. aquaculture specialists for the Chinese border southward. Although naturalized grass carp legal requirements. Because of their association with do not appear to have established the Amur River, they are some- large, destructive populations, Description times called “White Amur.” they are a controversial topic Grass carp are a member of the among some natural resource Grass carp have been introduced Order Cypriniformes and Family managers. into more than 50 countries for Cyprinidae. Cyprinidae is the foodfish culture and aquatic vege- Table 1 gives the status of grass largest family of freshwater fish tation management. The U.S. Fish carp permitting in the Southern species and includes all the min- and Wildlife Service, in coopera- Region at the time this publication nows and carps. Grass carp have tion with Auburn University, first was written. Before stocking an oblong or elongated body with introduced grass carp into the U.S. in 1963 to investigate their Table 1. Status of permits for grass carp (Ctenopharyngodon idella) stocking usefulness in controlling aquatic in the southern United States. vegetation. No native North American species of fish is as State Status Genetic requirements strictly herbivorous as the grass Alabama legal - no permits required diploids or triploids carp. -
Fish Species of Saskatchewan
Introduction From the shallow, nutrient -rich potholes of the prairies to the clear, cool rock -lined waters of our province’s north, Saskatchewan can boast over 50,000 fish-bearing bodies of water. Indeed, water accounts for about one-eighth, or 80,000 square kilometers, of this province’s total surface area. As numerous and varied as these waterbodies are, so too are the types of fish that inhabit them. In total, Saskatchewan is home to 67 different fish species from 16 separate taxonomic families. Of these 67, 58 are native to Saskatchewan while the remaining nine represent species that have either been introduced to our waters or have naturally extended their range into the province. Approximately one-third of the fish species found within Saskatchewan can be classed as sportfish. These are the fish commonly sought out by anglers and are the best known. The remaining two-thirds can be grouped as minnow or rough-fish species. The focus of this booklet is primarily on the sportfish of Saskatchewan, but it also includes information about several rough-fish species as well. Descriptions provide information regarding the appearance of particular fish as well as habitat preferences and spawning and feeding behaviours. The individual species range maps are subject to change due to natural range extensions and recessions or because of changes in fisheries management. "...I shall stay him no longer than to wish him a rainy evening to read this following Discourse; and that, if he be an honest Angler, the east wind may never blow when he goes a -fishing." The Compleat Angler Izaak Walton, 1593-1683 This booklet was originally published by the Saskatchewan Watershed Authority with funds generated from the sale of angling licences and made available through the FISH AND WILDLIFE DEVELOPMENT FUND. -
Aging Techniques & Population Dynamics of Blue Suckers (Cycleptus Elongatus) in the Lower Wabash River
Eastern Illinois University The Keep Masters Theses Student Theses & Publications Summer 2020 Aging Techniques & Population Dynamics of Blue Suckers (Cycleptus elongatus) in the Lower Wabash River Dakota S. Radford Eastern Illinois University Follow this and additional works at: https://thekeep.eiu.edu/theses Part of the Aquaculture and Fisheries Commons Recommended Citation Radford, Dakota S., "Aging Techniques & Population Dynamics of Blue Suckers (Cycleptus elongatus) in the Lower Wabash River" (2020). Masters Theses. 4806. https://thekeep.eiu.edu/theses/4806 This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. AGING TECHNIQUES & POPULATION DYNAMICS OF BLUE SUCKERS (CYCLEPTUS ELONGATUS) IN THE LOWER WABASH RIVER By Dakota S. Radford B.S. Environmental Biology Eastern Illinois University A thesis prepared for the requirements for the degree of Master of Science Department of Biological Sciences Eastern Illinois University May 2020 TABLE OF CONTENTS Thesis abstract .................................................................................................................... iii Acknowledgements ............................................................................................................ iv List of Tables .......................................................................................................................v -
Fisheries and Aquaculture
Ministry of Agriculture, Livestock and Irrigation 7. GOVERNMENT OF THE REPUBLIC OF THE UNION OF MYANMAR Formulation and Operationalization of National Action Plan for Poverty Alleviation and Rural Development through Agriculture (NAPA) Working Paper - 4 FISHERIES AND AQUACULTURE Yangon, June 2016 5. MYANMAR: National Action Plan for Agriculture (NAPA) Working Paper 4: Fisheries and Aquaculture TABLE OF CONTENTS ACRONYMS 3 1. INTRODUCTION 4 2. BACKGROUND 5 2.1. Strategic value of the Myanmar fisheries industry 5 3. SPECIFIC AREAS/ASPECTS OF THEMATIC AREA UNDER REVIEW 7 3.1. Marine capture fisheries 7 3.2. Inland capture fisheries 17 3.3. Leasable fisheries 22 3.4 Aquaculture 30 4. DETAILED DISCUSSIONS ON EACH CULTURE SYSTEM 30 4.1. Freshwater aquaculture 30 4.2. Brackishwater aquaculture 36 4.3. Postharvest processing 38 5. INSTITUTIONAL ENVIRONMENT 42 5.1. Management institutions 42 5.2. Human resource development 42 5.3. Policy 42 6. KEY OPPORTUNITIES AND CONSTRAINTS TO SECTOR DEVELOPMENT 44 6.1. Marine fisheries 44 6.2. Inland fisheries 44 6.3. Leasable fisheries 45 6.4. Aquaculture 45 6.5. Departmental emphasis on management 47 6.6. Institutional fragmentation 48 6.7. Human resource development infrastructure is poor 49 6.8. Extension training 50 6.9. Fisheries academies 50 6.10. Academia 50 7. KEY OPPORTUNITIES FOR SECTOR DEVELOPMENT 52 i MYANMAR: National Action Plan for Agriculture (NAPA) Working Paper 4: Fisheries and Aquaculture 7.1. Empowerment of fishing communities in marine protected areas (mpas) 52 7.2. Reduction of postharvest spoilage 52 7.3. Expansion of pond culture 52 7.4. -
Pathogen Susceptibility of Silver Carp (Hypophthalmichthys Molitrix) and Bighead Carp (Hypophthalmichthys Nobilis) in the Wabash River Watershed
Pathogen Susceptibility of Silver Carp (Hypophthalmichthys molitrix) and Bighead Carp (Hypophthalmichthys nobilis) in the Wabash River Watershed FINAL REPORT Kensey Thurner PhD Student Maria S Sepúlveda, Reuben Goforth, Cecon Mahapatra Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907 Jon Amberg, US Geological Service, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603 Eric Leis, US Fish and Widlife Service, La Crosse Fish Health Center, Onalaska, WI 54650 9/22/2014 Silver Carp (top) and Bighead Carp (bottom) caught in the Tippecanoe River, Photos by Alison Coulter Final Report 9/22/2014 - Page 2 Executive Summary The Pathogen Susceptibility of Silver Carp (Hypophthalmichthys molitrix) and Bighead Carp (Hypophthalmichthys nobilis) in the Wabash River Watershed project was undertaken to address the lack of available information regarding pathogens in the highly invasive Silver and Bighead Carps, collectively known as bigheaded carps. Very little is known about the prevalence and effects of parasites, bacteria and viruses on the health of invasive bigheaded carp populations in the United States or the effects of bigheaded carps on the disease risk profile for sympatric, native fish of the U.S. The main objectives of this project were to conduct a systematic survey of parasites, bacteria and viruses of Asian carps and a representative number of native Indiana fish species in the upper and middle Wabash and the lower Tippecanoe Rivers, Indiana; to determine the susceptibility of Asian carps to a representative number of natural pathogens using in vitro approaches; and to involve anglers in the development of a cost effective state-wide surveillance program for documentation of viral diseases of fish.