Essays on Genetics and the Social Sciences Genoeconomics, Social-Science Genetics, Or Biological Economics

Total Page:16

File Type:pdf, Size:1020Kb

Essays on Genetics and the Social Sciences Genoeconomics, Social-Science Genetics, Or Biological Economics 413 AYSU OKBAY Evidence from behavior-genetic studies of twins, adoptees and other pairs of relatives shows that virtually all human traits, including economic preferences and behaviors, are at least moderately heritable. With increasing availability of genetic data, it is now becoming feasible to identify specific genetic variants associated with complex outcomes, thus blurring the disciplinary boundaries between biological and Essays on Genetics and social sciences. Building on these developments, this thesis explores questions at the intersection of economics and biology and thus contributes to an emerging field of research commonly referred to as: - Essays on Genetics and the Social Sciences OKBAY AYSU genoeconomics, social-science genetics, or biological economics. the Social Sciences The research described here identifies specific genetic variants robustly associated with a suite of complex outcomes – ranging from educational attainment, to subjective well-being, neuroticism and depression – and shows how these findings can be used, in conjunction with quasi-experimental research designs from economics, to conduct rigorous and well-powered investigations of the interactions between genes and environment. It illustrates some hard-won lessons about the relative merits of various research strategies that have been proposed for efforts to discover genetic associations with complex traits. Furthermore, it provides a framework for quantifying tradeoffs between outcome heterogeneity and sample-size in gene-discovery efforts. The results reported in this thesis strongly suggest that there will be many settings in which genetic data will prove valuable to social sciences. In addition to broadening our knowledge about the biological mechanisms underlying behavioral outcomes, these advances will provide researchers from many disciplines with increasingly powerful tools that can be used to integrate genetic factors into a wide range of empirical models. The Erasmus Research Institute of Management (ERIM) is the Research School (Onderzoekschool) in the field of management of the Erasmus University Rotterdam. The founding participants of ERIM are the Rotterdam School of Management (RSM), and the Erasmus School of Economics (ESE). ERIM was founded in 1999 and is officially accredited by the Royal Netherlands Academy of Arts and Sciences (KNAW). The research undertaken by ERIM is focused on the management of the firm in its environment, its intra- and interfirm relations, and its business processes in their interdependent connections. The objective of ERIM is to carry out first rate research in management, and to offer an advanced doctoral programme in Research in Management. Within ERIM, over three hundred senior researchers and PhD candidates are active in the different research programmes. From a variety of academic backgrounds and expertises, the ERIM community is united in striving for excellence and working at the forefront of creating new business knowledge. ERIM PhD Series Research in Management Erasmus University Rotterdam (EUR) Erasmus Research Institute of Management Mandeville (T) Building Burgemeester Oudlaan 50 3062 PA Rotterdam, The Netherlands P.O. Box 1738 3000 DR Rotterdam, The Netherlands T +31 10 408 1182 E [email protected] W www.erim.eur.nl Essays on Genetics and the Social Sciences Essays on Genetics and the Social Sciences Essays over Genetica en de Sociale Wetenschappen THESIS to obtain the degree of Doctor from the Erasmus University Rotterdam by command of the rector magnificus Prof.dr. H.A.P. Pols and in accordance with the decision of the Doctorate Board. The public defense shall be held on Thursday, February 9, 2017, at 13.30 hours by Aysu Okbay born in Istanbul, Turkey. Doctoral Committee Doctoral dissertation supervisors: Prof.dr. A.R. Thurik Prof.dr. P.D. Koellinger Prof.dr. P.J.F. Groenen Other members: Prof.dr. M. Johannesson Prof.dr. D. Posthuma Prof.dr. A. Uitterlinden Erasmus Research Institute of Management – ERIM The joint research institute of the Rotterdam School of Management (RSM) and the Erasmus School of Economics (ESE) at the Erasmus University Rotterdam Internet: http://www.erim.eur.nl ERIM Electronic Series Portal: http://repub.eur.nl/ ERIM PhD Series in Research in Management, 413 ERIM reference number: EPS-2017-413-S&E ISBN 978-90-5892-477-3 © 2017, Aysu Okbay Design: PanArt, www.panart.nl This publication (cover and interior) is printed by Tuijtel on recycled paper, BalanceSilk® The ink used is produced from renewable resources and alcohol free fountain solution. Certifications for the paper and the printing production process: Recycle, EU Ecolabel, FSC®, ISO14001. More info: www.tuijtel.com All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the author. Contents 1 Introduction and Conclusion 1 Motivation 3 Basic Genetic Concepts 5 Research Questions and Main Results 6 Declaration of Contribution 10 Implications and Discussion 12 Conclusion 16 2 On Improving the Credibility of Candidate Gene Studies: A Review of Candidate Gene Studies Published in Emotion 21 Introduction 23 Power and Credibility 24 Model Specification 29 Conclusion 32 3 Genetic Variants Associated with Subjective Well-being, Depressive Symptoms and Neuroticism Identified through Genome-wide Analyses 35 Introduction 37 Results 38 Discussion 55 Supplementary Methods 56 4 Genome-wide Association Study Identifies 74 Loci Associated with Educational Attainment 91 Introduction and Results 93 Supplementary Methods 110 5 Of Genes and Screens: Educational Reform, Ability, and Labor Market Screening 133 Introduction 135 The Swedish school reform 138 Theoretical Framework 139 Data 140 Empirical framework 146 Results 148 Conclusion 155 6 Meta-GWAS Accuracy and Power (MetaGAP) Calculator Shows that Hiding Heritability is Partially due to Imperfect Genetic Correlations across Studies 159 Introduction 161 Materials and Methods 164 Results 169 Discussion 181 Supplementary Methods 185 Appendix A: Supplementary Tables to Chapter 3 193 Appendix B: Supplementary Tables to Chapter 4 215 Appendix C: Supplementary Material to Chapter 5 235 Summary 249 Samenvatting (Summary in Dutch) 251 References 253 Acknowledgments 273 PhD Portfolio 277 About the Author 275 CHAPTER 1 Introductionintroduction and conclusion and Conclusion 2 INTRODUCTION AND CONCLUSION Abstract This thesis consists of six chapters that examine the genetic architecture of complex behav- ioral outcomes. Chapter 1 lists and substantiates the research questions and gives a summary overview of the key findings and their implications. Chapter 2 discusses methodological challenges with traditional candidate gene approaches, which until recently were the domi- nant paradigm for gene discovery in the social sciences. The chapter explains why well- known problems of low statistical power, population stratification and undisclosed multiple- hypothesis testing render most of the existing evidence from candidate gene studies unreli- able. Each potential problem is illustrated with reference to specific studies published by the journal Emotion. Recognizing these limitations, most modern gene discovery efforts are ge- nome-wide association studies (GWAS), in which millions of markers are tested for associ- ation with the outcome of interest in large samples and with stringent controls for population stratification. Chapters 3 and 4 report the results of two such studies, performed by meta- analyzing summary statistics from a large number of cohorts with combined sample sizes in the hundreds of thousands. The first study (Chapter 3) examines four genetically correlated phenotypes related to well-being (depressive symptoms, life satisfaction, neuroticism and positive affect) and identifies 14 genome-wide significant associations. The second study (Chapter 4) examines educational attainment and identifies 74 genome-wide significant as- sociations. Chapter 5 builds on these findings by exploiting the staggered rollout of an ex- pansion in comprehensive schooling in Sweden to test for gene-by-environment interactions, finding that the impact of the reform on educational outcomes and earnings was heteroge- neous by genotype for females: females with higher polygenic scores (derived using the results from Chapter 4) were more likely to obtain a high school degree, which is beyond the new minimum established by the reform. Chapter 6 develops a theoretical multi-study framework relating statistical power and predictive accuracy to cross-study heterogeneity. The chapter shows that in GWAS meta-analyses, including those in Chapters 3 and 4, cross- cohort genetic correlations lower than unity can have a substantial effect on statistical power, and predictive accuracy of polygenic scores derived from meta-analyses of summary statis- tics from heterogenous cohorts. The methodology developed in Chapter 6 is easily imple- mented using an online tool that researchers can use to quantify the tradeoff between gains from larger sample sizes and the potential losses in power from pooling measures that are too heterogeneous. M OTIVAT ION 3 Motivation Evidence from behavior-genetic studies of twins, adoptees and other pairs of relatives shows that virtually all human traits, including economic preferences and behaviors, are at least moderately heritable (Polderman et al., 2015; Sacerdote, 2010; Turkheimer,
Recommended publications
  • The Precision Medicine Issue Medicine Is Becoming Hyper
    The precision medicine issue Vol. 121 Nov/Dec $9.99 USD No. 6 2018 $10.99 CAD $2 million would save her life. The precision medicine issue Could you pay? Should you? Medicine is becoming hyper-personalized, hyper-accurate ... and hyper-unequal. p.38 The AIs taking over Curing cancer How to plan your from doctors with customized digital afterlife vaccines p.22 p.46 p.76 ND18_cover.indd 1 10/3/18 4:16 PM Artificial intelligence is here. Own what happens next. ND18 ETD19 Spread 16x10.875 D3.indd 2 9/28/18 10:59 AM March 25–26, 2019 St. egis Hotel San Francisco, CA Meet the people leading the next wave of intelligent technologies. Andrew Kathy Daphne Sergey Harry Anagnost Gong Koller Levine Shum President and Cofounder and Founder and Assistant Executive Vice CEO, Autodesk CEO, WafaGames CEO, Insitro Professor, EECS, President, UC Berkeley Microsoft Artifi cial Intelligence and Research Group EmTechDigital.com/2019 ND18 ETD19 Spread 16x10.875 D3.indd 3 9/28/18 10:59 AM 02 From the editor It’s been nearly two decades since the help meet the ballooning healthcare first human genome was sequenced. needs of an aging population. That achievement opened up the prom The problem? As medicine gets ise of drugs and treatments perfectly more personalized, it risks getting more tailored to each person’s DNA. But per unequal. Our cover story is Regalado’s sonalized or “precision” medicine has gripping and troubling account page always felt a bit like flying cars, sexbots, 38 of the parents who raise millions of or labgrown meat­one of those things dollars to finance genetherapy cures for we’re perpetually being promised but their children’s ultrarare diseases.
    [Show full text]
  • Daniel J. Benjamin (As of 10/4/2019)
    Daniel J. Benjamin (as of 10/4/2019) Contact Information University of Southern California Center for Economic and Social Research Dauterive Hall 635 Downey Way, Suite 301 Los Angeles, CA 90089-3332 Phone: 617-548-8948 Professional Experience: Professor (Research) of Economics, CESR, USC, 2019-present Associate Professor (Research) of Economics, CESR, USC, 2015-2019 Visiting Associate Professor (Research) of Economics, CESR, USC, 2014-2015 Associate Professor (with tenure), Economics Department, Cornell University, 2013-2015 Assistant Professor, Economics Department, Cornell University, 2007-2013 Visiting Research Fellow, National Bureau of Economic Research (NBER), 2011-2012 Research Associate, NBER, 2013-present Faculty Research Fellow, NBER, 2009-2013 Research Fellow, Research Center for Group Dynamics, Institute for Social Research, 2006-2017 Research Fellow, Population Studies Center, Institute for Social Research, 2006-2007 Graduate Studies: Ph.D., Economics, Harvard University, 2006 M.Sc., Mathematical Economics, London School of Economics, 2000 A.M., Statistics, Harvard University, 1999 Undergraduate Studies: A.B., Economics, Harvard University, summa cum laude, prize for best economics student, 1999 Honors, Scholarships, and Fellowships: 2013 Norwegian School of Economics Sandmo Junior Fellowship (prize for a “promising young economist”) 2012-2013 Cornell’s Institute for Social Science (ISS) Faculty Fellowship 2009-2012 ISS Theme Project Member: Judgment, Decision Making, and Social Behavior 2011-2012 NBER Visiting Fellowship
    [Show full text]
  • Why Is It Hard to Find Genes That Are Associated with Social Science Traits? Theoretical and Empirical Considerations
    “Why Is It Hard to Find Genes …” – p. 1 Why Is It Hard to Find Genes that are Associated with Social Science Traits? Theoretical and Empirical Considerations Christopher F. Chabris1†* James J. Lee2† Daniel J. Benjamin3 Jonathan P. Beauchamp4 Edward L. Glaeser4 Gregoire Borst2 Steven Pinker2 David I. Laibson4 1. Department of Psychology, Union College, Schenectady, NY, USA 2. Department of Psychology, Harvard University, Cambridge, MA, USA 3. Department of Economics, Cornell University, Ithaca, NY, USA 4. Department of Economics, Harvard University, Cambridge, MA, USA † These authors contributed equally to the work. * Address correspondence to: Christopher F. Chabris Department of Psychology Union College 807 Union Street Schenectady, NY 12308 USA [email protected] “Why Is It Hard to Find Genes …” – p. 2 Abstract Though most behavioral traits are moderately to highly heritable, the genes that influence them are elusive: many published genetic associations fail to replicate. With physical traits like eye color and skin pigmentation, in contrast, several genes with large effects have been discovered and replicated. We draw on R.A. Fisher’s geometric model of adaptation to explain why traits of interest to behavioral scientists may have a genetic architecture featuring hundreds or thousands of alleles with tiny individual effects, rather than a few with large effects, and why such an architecture makes it difficult to find robust associations between traits and genes. In the absence of strong directional selection on a trait, alleles with large effect sizes will probably remain rare, and such a lack of strong directional selection is likely to characterize most traits currently of interest in social science.
    [Show full text]
  • Economics Without Borders
    ECONOMICS WITHOUT BORDERS Economic Research for European Policy Challenges Edited by Richard Blundell Estelle Cantillon Barbara Chizzolini Marc Ivaldi Wolfgang Leininger Ramon Marimon Laszlo Matyas (Lead Editor) and Frode Steen March 8, 2016 Cambridge University Press Contents List of illustrations page xii List of tables xiv Foreword xv 0 Introduction Blundell, Cantillon, Chizzolini, Ivaldi, Leininger, Ma- rimon, Matyas, and Steen 1 1 Innovation and Growth: The Schumpeterian Perspective Philippe Aghion and Ufuk Akcigit 30 1.1 Introduction 30 1.2 Looking for Growth Paradigms to Think about Growth Policy 32 1.2.1 The Neoclassical Growth Model 32 1.2.2 The AK Model 33 1.2.3 The Product-variety Model 33 1.2.4 The Schumpeterian Model 34 1.3 Some Main Applications and Extensions of Schumpeterian Growth Theory 36 1.3.1 Growth Meets IO 36 1.3.2 Schumpeterian Growth and Firm Dynamics 38 1.3.3 Growth Meets Development: Appropriate Institutions 40 1.3.4 Growth Meets Development: Firm Dynamics in Developing Countries 42 1.3.5 Growth and Unemployment 43 1.4 Enhancing Productivity Growth in Advanced Countries 45 1.4.1 Pillars of Innovation-led Growth 45 1.4.2 Competition Policy against Industrial Policy 45 1.4.3 Reforming the State 48 1.4.4 Macroeconomic Policy 49 iv Contents 1.4.5 Innovation, Inequality, and Social Mobility: Making Growth Inclusive 50 1.5 Technological Waves and the Debate on Secular Stagnation 53 1.5.1 The Debate 53 1.5.2 Historical Wave Patterns 54 1.6 Schumpeterian Insights into R&D Policy 56 1.6.1 R&D Policies and Firm Selection
    [Show full text]
  • An Epigenome-Wide Association Study Meta-Analysis of Educational Attainment
    OPEN Molecular Psychiatry (2017) 22, 1680–1690 www.nature.com/mp IMMEDIATE COMMUNICATION An epigenome-wide association study meta-analysis of educational attainment R Karlsson Linnér1,2,57, RE Marioni3,4,57, CA Rietveld2,5,6,57, AJ Simpkin7, NM Davies8, K Watanabe1, NJ Armstrong9, K Auro10,11, C Baumbach12, MJ Bonder13, J Buchwald10, G Fiorito14,15, K Ismail10, S Iurato16, A Joensuu10,11, P Karell10, S Kasela17,18, J Lahti19,20, AF McRae21, PR Mandaviya22,23, I Seppälä24,25, Y Wang26, L Baglietto27, EB Binder16,28, SE Harris3,4, AM Hodge29,30, S Horvath31, M Hurme32,33,34, M Johannesson35, A Latvala36, KA Mather37, SE Medland38, A Metspalu17,18, L Milani17, RL Milne29,30, A Pattie39, NL Pedersen26, A Peters12, S Polidoro14, K Räikkönen19, G Severi14,29,40, JM Starr4,41, L Stolk22,42, M Waldenberger12, BIOS Consortium, JG Eriksson43,44,45, T Esko17,46, L Franke13, C Gieger12, GG Giles29,30, S Hägg26, P Jousilahti11, J Kaprio10,36, M Kähönen47,48, T Lehtimäki24,25, NG Martin49, JBC van Meurs23,42, M Ollikainen10,36, M Perola10,11, D Posthuma1, OT Raitakari50,51, PS Sachdev37,52, E Taskesen1,53, AG Uitterlinden6,23,42, P Vineis14,54, C Wijmenga13, MJ Wright55, C Relton8, G Davey Smith8, IJ Deary4,39,58, PD Koellinger1,2,58 and DJ Benjamin56,58 The epigenome is associated with biological factors, such as disease status, and environmental factors, such as smoking, alcohol consumption and body mass index. Although there is a widespread perception that environmental influences on the epigenome are pervasive and profound, there has been little evidence to date in humans with respect to environmental factors that are biologically distal.
    [Show full text]
  • David Laibson “Be Careful with More Freedom in the Pension System”
    BEHAVIORAL ECONOMICS INTERVIEW David Laibson “Be careful with more freedom in the pension system” RUBEN ith his research into savings and self-con- teams can use that company’s consumer base. Because of VAN OOSTEN trol problems, David Laibson is one of the the scope of this collaboration it is then much easier to Editor ESB founders of contemporary behavioral eco- find corporate partners.” nomics. His groundbreaking research focu- Wses on people’s inner struggle when having to make inter- Do you already see any results of that project? temporal choices (box 1). About his 1994 thesis (Laibson, “Absolutely. For example, the first meeting, also recorded in 1994), in which he formalizes the work of the psychologist a Freakonomics podcast (Freakonomics, 2018), acted as a George Ainslie, The New York Times (2001) wrote: “In catalyst for my study on facilitating laptop use in the class- the histories of economics still to be written, the spring of room, which I didn’t think would become a formal study. At 1994 will almost certainly be flagged as momentous.” Not the beginning of the year, students are offered the choice on much later Laibson is appointed as professor at Harvard; which side of the lecture hall they want to sit: the side where the first one to have actually trained as a behavioral econo- everyone can use a laptop, or where laptops aren’t allowed. mist (The New York Times, 2001). The first meeting of the Behavior Change for Good initia- Laibson just stepped down as dean of the Harvard tive yielded enough momentum, so that we could convert economics faculty.
    [Show full text]
  • The Promises and Pitfalls of Genoeconomics Daniel J
    The Promises and Pitfalls of Genoeconomicsà Daniel J. Benjamin,1 David Cesarini,2 Christopher F. Chabris,3 Edward L. Glaeser,4 and David I. Laibson4 Age, Gene/Environment Susceptibility-Reykjavik Study Vilmundur Guðnason,5 Tamara B. Harris,6 Lenore J. Launer,6 Shaun Purcell,7 and Albert Vernon Smith5 Swedish Twin Registry Magnus Johannesson8 and Patrik K.E. Magnusson9 Framingham Heart Study Jonathan P. Beauchamp10 and Nicholas A. Christakis11 Wisconsin Longitudinal Study Craig S. Atwood,12 Benjamin Hebert,13 Jeremy Freese,14 Robert M. Hauser,15 and Taissa S. Hauser15 Swedish Large Schizophrenia Study Alexander Grankvist,9 Christina M. Hultman,9 and Paul Lichtenstein9 Annu. Rev. Econ. 2012. 4:627–62 Keywords First published online as a Review in Advance on genetics, heritability, GWAS June 18, 2012 The Annual Review of Economics is online at Abstract economics.annualreviews.org This article reviews existing research at the intersection of genetics This article’s doi: and economics, presents some new findings that illustrate the state of 10.1146/annurev-economics-080511-110939 genoeconomics research, and surveys the prospects of this emerging Copyright © 2012 by Annual Reviews. field. Twin studies suggest that economic outcomes and preferences, All rights reserved once corrected for measurement error, appear to be about as herita- JEL codes: A12, D03, Z00 ble as many medical conditions and personality traits. Consistent by Harvard University on 09/19/12. For personal use only. 1941-1383/12/0904-0627$20.00 with this pattern, we present new evidence on the heritability of ÃPlease see the Acknowledgments section permanent income and wealth. Turning to genetic association stud- Annu.
    [Show full text]
  • Research Transparency and Reproducibility Training (RT2) Participant Manual Los Angeles, CA September 5-7, 2018
    Research Transparency and Reproducibility Training (RT2) Participant Manual Los Angeles, CA September 5-7, 2018 Contents About RT2 ........................................................................................................................................................................................................... 2 Pre-Training Actions ................................................................................................................................................................................ 3 1. Sign up for an OSF account ............................................................................................................................................... 3 2. Review study pre-registration ......................................................................................................................................... 3 3. Install Git and create Github.com account ........................................................................................................... 3 4. Install software for Dynamic Documents – for R or Stata ....................................................................... 4 5. Install Anaconda - for Jupyter Notebooks ............................................................................................................. 4 6. Install LaTeX .................................................................................................................................................................................... 5 7. Install a decent text editor
    [Show full text]
  • Are Genetic Markers of Interest for Economic Research? Steven F
    Lehrer and Ding IZA Journal of Labor Policy (2017) 6:2 DOI 10.1186/s40173-017-0080-6 REVIEW Open Access Are genetic markers of interest for economic research? Steven F. Lehrer1,2,3* and Weili Ding1,2 * Correspondence: [email protected] 1School of Policy Studies and Abstract Department of Economics, Queen’s University, Kingston K7L3N6, The idea that genetic differences may explain a multitude of individual-level outcomes Ontario, Canada studied by economists is far from controversial. Since more datasets now contain 2NYU-Shanghai, 1555 Century measures of genetic variation, it is reasonable to postulate that incorporating genomic Avenue Office 1127, Pudong New District, Pudong 200122, Shanghai, data in economic analyses will become more common. However, there remains much China debate among academics as to, first, whether ignoring genetic differences in empirical Full list of author information is analyses biases the resulting estimates. Second, several critics argue that since genetic available at the end of the article characteristics are immutable, the incorporation of these variables into economic analysis will not yield much policy guidance. In this paper, we revisit these concerns and survey the main avenues by which empirically oriented economic researchers have utilized measures of genetic markers to improve our understanding of economic phenomena. We discuss the strengths, limitations, and potential of existing approaches and conclude by highlighting several prominent directions forward for future research. JEL Classification: I12, J19, I26 Keywords: Genetic markers, Gene–environment interactions, Genome-wide association studies, Candidate genes, Genetic instruments, Within-family variation 1 Introduction It would not be an exaggeration to say that the mere mention of the word genetics to an economist a decade ago could cause alarm.
    [Show full text]
  • The Genetic Architecture of Economic and Political Preferences
    The genetic architecture of economic and political preferences Daniel J. Benjamina,1, David Cesarinib,c, Matthijs J. H. M. van der Loosd, Christopher T. Dawese, Philipp D. Koellingerd, Patrik K. E. Magnussonf, Christopher F. Chabrisg, Dalton Conleyh, David Laibsoni, Magnus Johannessonj,2, and Peter M. Visscherk,2 aDepartment of Economics, Cornell University, Ithaca, NY 14853; bCenter for Experimental Social Science, Department of Economics, New York University, New York, NY 10012; cResearch Institute of Industrial Economics, SE-102 15 Stockholm, Sweden; dDepartment of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands; eDepartment of Politics, New York University, New York, NY 10012; fDepartment of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-171 77 Stockholm, Sweden; gDepartment of Psychology, Union College, Schenectady, NY 12308; hDepartment of Sociology, New York University, New York, NY 10012; iDepartment of Economics, Harvard University, Cambridge, MA 02138; jDepartment of Economics, Stockholm School of Economics, SE-113 83 Stockholm, Sweden; and kUniversity of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba 4102, Australia Edited* by Eric S. Lander, The Broad Institute of MIT and Harvard, Cambridge, MA, and approved March 22, 2012 (received for review December 19, 2011) Preferences are fundamental building blocks in all models of Existing studies claiming to have established genetic associa- economic and political behavior. We study a new sample of tions with economic and political traits typically use samples of comprehensively genotyped subjects with data on economic and several hundred individuals, and no such study has used a sample political preferences and educational attainment. We use dense larger than 3,000 individuals (for a recent review, see ref.
    [Show full text]
  • Genetic and Economic Interaction in the Formation of Human Capital: the Case of Obesity
    Genetic and Economic Interaction in the Formation of Human Capital: The Case of Obesity. Pietro Biroli ∗ January 10, 2015 Please download the latest version here Abstract Small genetic differences at birth confer a comparative advantage in health and human capital formation, and can lead to substantial inequality in long term social and economic outcomes. I develop a structural model of health and human capital formation illustrating the dynamic interaction between genetic inheri- tance and investments in health over the life cycle. Genetic heterogeneity across individuals can change the utility cost of investments and the production func- tion of health, shifting the incentives to invest in healthy habits. Focusing on Body-Mass-Index (BMI) as a measure of poor health, I consider physical activity and food intake as investments in health, and I evaluate their interaction with specific variants in FTO and other genes associated with BMI in Genome-Wide Association Studies. Applying this model to two different datasets, one of British adolescents and one of US adults, I find that Gene-Environment interaction plays a pivotal role in the evolution of BMI. Food intake has a stronger impact on BMI for those individuals with a particular genetic makeup, and yet they tend to dis- play a higher demand for food. The association of variants in the FTO gene with the hypothalamic regulation of food intake gives a biological foundation to the observed differences in healthy investments. This analysis provides an economic framework of health and human capital formation that integrates recent findings in genetics and molecular biology and sheds light on the interdependence between genes and economic choices of investment.
    [Show full text]
  • RT2) Participant Manual
    Research Transparency and Reproducibility Training (RT2) Participant Manual September 21-25, 2020 Contents Contents 1 About RT2 3 Pre-Training Actions 5 1. Sign up for a Zoom account 5 2. Sign up for a Slack account 5 3. Sign up for an OSF account 5 4. Review study pre-registration 5 5. Create a GitHub account and install the GitHub Desktop app or GitKraken 6 6. Install software for Dynamic Documents – for R or Stata 6 7. Install DeclareDesign in R 7 Companion software 7 8. Install LaTeX 7 9. Install a decent text editor 8 Suggested Reading List 9 1. Foundational literature 9 2. P-curve 10 3. Researcher Degrees of Freedom 11 4. Power and Priors 11 5. Reproducibility and Replication 11 6. Pre-Registration and Pre-Analysis Plans 12 7. Statistical Disclosure Limitation 13 1 8. Meta-analysis 14 9. Transparent Reporting and Disclosure 14 Other Useful Resources 16 Glossary 18 Meet the RT2 Faculty and BITSS! 22 Appendix A: OSF Pre-Registration 27 2 All instruction materials can be found at: https://osf.io/a9hck/ About RT2 Welcome to the BITSS community! We are pleased to host you for our Research Transparency and Reproducibility Training (RT2), hosted for the first time online Sep. 21-25, 2020. RT2 provides an overview of tools and practices for transparent and reproducible social science research. We focus on topics such as: ● Scientific norms and threats to credibility: The scientific ethos as interpreted by Robert Merton in 1942 asserts collaborative, ethical, transparent, and reproducible research as a means of advancing the credibility of the scientific enterprise.
    [Show full text]