1985Apjs...57...63M the Astrophysical Journal Supplement

Total Page:16

File Type:pdf, Size:1020Kb

1985Apjs...57...63M the Astrophysical Journal Supplement The Astrophysical Journal Supplement Series, 57:63-76,1985 January © 1985. The American Astronomical Society. All rights reserved. Printed in U.S.A. AN EMPIRICAL Hy LUMINOSITY CALIBRATION FOR CLASS V-III STARS 1985ApJS...57...63M Christopher G. Millward and Gordon A. H. Walker Geophysics and Astronomy Department, University of British Columbia Received 1984 March 21; accepted 1984 June 1 ABSTRACT High signal-to-noise Reticon spectra for 87 members of eight open clusters and associations, together with 37 stars having rehable parallaxes (early A-type stars with reliable trigonometric parallaxes, eclipsing binaries, and visual binaries), have been used to calibrate the W(Ry)-Mv relation for spectral types O to early A of luminosity classes III-V. The new calibration has a mean probable dispersion of ± 0.28 mag. The distance modulus of the Pleiades is 5.54 + 0.06 mag, which is in excellent agreement with other, recent determinations, as are the distance moduli for all the calibrating clusters. The use of visual binary parallaxes implies a Hyades distance modulus of ~ 3.0 which is significantly smaller than the Hanson value of 3.30 mag. Although no spectral type corrections are necessary, stellar evolution probably affects the construction of the new calibration, and special care should be taken when determining distance moduli from slightly evolved cluster sequences or for individual stars. Systematic departures from the calibration may be present for stars with F sin / > 220-250 km s-1. Significant residuals are found between our values of W(Hy) and those of Petrie in the range 1-13 À equivalent width, which are due in part to systematic errors in Petrie’s JF(Hy) measures. Our distance modulus of 11.11 mag for NGC 2244 is in excellent agreement with the photometric distance. The new calibration is compared to other early-type star calibrations. It is 1.2 mag brighter than Petrie’s Hy calibration at spectral type 06 and 0.7 mag brighter at A3. For types B1 and earlier, the new calibration averages 0.4 mag brighter than the Balona and Cramp ton Hy calibration. There is generally good agreement with the Blaauw MK calibration, although the latter is 0.4 mag brighter at spectral type B0. The Crawford Hß calibration is up to 0.5 mag brighter for the earlier spectral types and 0.4 mag fainter for later types. Subject headings: clxisttrs: associations—clusters: open — line profiles — stars: early-type — stars: luminosities I. INTRODUCTION Petrie (1950, 1953) produced two calibrations, one for B Since the pioneering work of Adams and Joy (1923), it has stars, the other for A stars. There were systematic differences been recognized that the appearance of various spectral fea- between his luminosities and those from other calibrations tures correlate with stellar luminosity. Williams (1929), Anger such as Johnson and Iriarte (1958) and Blaauw (1963). (1931), and Gunther (1933), among others, were the first to Unfortunately, no OB stars have sufficiently accurate trigo- use the strength of the hydrogen Balmer lines to predict nometric parallaxes to provide a basis for direct luminosity luminosity. Because of the difficulty, at the time, in deriving calibration, and indirect methods must be used. Petrie (1965) quantitative line strengths, luminosity calibrations took a vi- published a single, revised, JF(Hy) calibration covering spec- sual form culminating in the MKK classification scheme of tral types O to early A. The form of the relation was defined Morgan, Keenan, and Kellman (1943). The rather large by fitting a number of early-type galactic cluster W(Hy)-V0 luminosity dispersion of ~ 1 mag for most spectral types in sequences and tying the V0 scale to luminosity using A stars this system is due in part to the discrete nature of the with rehable trigonometric parallaxes. This procedure made classification scheme. the calibration independent of the Hyades distance. The new The equivalent widths of the Balmer lines are dominated by calibration compared better with others than the earlier ver- Stark broadening which, being a function of electron pressure, sions, but there were still important differences with other is directly related to surface gravity. There is also a depen- calibrations. dence on effective temperature. Both of these effects imply Significant residuals continue to exist between the various that, for a main-sequence star, there should be a unique Hy and Hß calibrations, as well as between the Hy and MK relationship between the strength of the Balmer lines and calibrations (especially for spectral types 09-B2), and these luminosity. have been discussed by Walbom (1972), Walker and Hodge With the advent of semiautomatic devices to measure line (1968), Balona and Crampton (1974; hereafter BC), Crawford strengths from photographic spectra, Petrie and collaborators (1978), Turner (1976), Eggen (1977), and Shobbrook (1983a, at Victoria initiated a program to measure the strength of Hy. b\ It is conveniently located for photographic work, is relatively In this paper we report on a reinvestigation of the uncontaminated by line blends, and does not suffer to the JF(Hy)-himinosity relation using high signal-to-noise (S/N) same degree as Hß from emission. Reticon spectra. The high S/N of the digital spectra is a 63 © American Astronomical Society • Provided by the NASA Astrophysics Data System 64 MILLWARD AND WALKER particular advantage since it simplifies the setting of accurate 3. Secondary component certain from present data, litera- continua, as well as helping to compensate for line blends and ture, or both. AK= +0.2 mag. the effects of duplicity. We have followed Petrie’s technique In double-lined spectroscopic binaries where Am, the which he used in his 1965 calibration, except that we have not magnitude difference between the two components, was known included supergiants. They will be the subject of another or estimated, corrections to the IL(Hy) were made following 1985ApJS...57...63M paper. Petrie (1953), with the exception that, /, the secondary-to- primary light ratio, was restricted to / > 0.4 mag instead of II. OBSERVATIONS AND DATA REDUCTION / > 0.5 mag. One hundred seven high S/N, Reticon spectra of 96 mem- The projected rotational velocities were measured from the bers of the Pleiades, a Per, Orion OBI, Cepheus OB3, Cygnus FWHM of the He H A4387, He i 4471, and Mg il A4481 OB7, NGC 2244, NGC 2264, and the UMa moving cluster, as fines. Twenty three standards (Slettebak 1954,1956; Slettebak well as 57 spectra of 36 early-type stars with rehable paral- and Howard 1955) were observed for the He u À4387 and laxes (early A-type stars with reliable trigonometric parallaxes, He i A4471 fines, and 35 for the Mg n A4481 fine. The “new” eclipsing binaries, and visual binaries), were obtained over a Slettebak et al. (1975) system was not used since only 10 stars 14 month period from 1981 September to 1982 November were observed in common. with the 32 inch (0.8 m) coudé camera spectrograph of the Figure 1 shows examples of the Reticon spectra. Using the 1.22 m telescope at the DAO. The spectra were recorded with Reticent command language (Pritchet, Mochnacki, and Yang a liquid nitrogen cooled RL 1872 F/30 Reticon (Walker 1972; 1982), the data reduction sequence was as follows: Walker, Johnson, and Yang 1983). All spectra have a recipro- 1. Baseline (dark) subtraction from a data frame. cal dispersion of 40 A mm-1 (0.6 À per diode) and cover the 2. Division of the resulting data frame by a flat field frame. region 4000-5000 À. Since a major goal of this work was to 3. A third-order polynomial fitted to selected points to determine whether the observed scatter in the Hy luminosity define the continuum. relation is dependent on the quality of the spectrograms used, 4. Rectification and application of a dispersion relation. an effort was made to achieve a S/N > 100 in each point since The spectra have not been filtered. Details of the reduction 100 is the maximum obtainable with photographic methods. procedure are given in Walker, Johnson, and Yang (1983). The general range of S/N in the cluster spectra is 120-1000 Third-order polynomials were fitted to selected Fe/Ar fines per point, with the mean value near 350. In a few instances (20) from comparison arc spectra taken during each night’s signal levels of between only 50-90 were obtained. The trigo- observations to determine the spectral dispersion. nometric group has a mean S/N of 1400, while the eclipsing While, in theory, it is possible to define fine profiles and and visual binary groups average 400 and 450, respectively. integrate equivalent widths digitally, we found it more satis- Table 1 lists the cluster and association members observed, factory to draw in the Hy wing profiles by hand on tracings. and Table 2 the parallax stars. In Table 1, column (2) gives the Care was taken to maintain symmetry about the fine centers. HD number, column (3) the spectral type, column (4) the Areas were measured with a planimeter. Following Petrie (1965) and BC, the contribution of the O u A4349 fine was apparent visual magnitude corrected for absorption, VQ, col- umn (5) the measured W(Hy) in angstroms, column (6) the estimated and subtracted. This was a relatively easy task given measured projected rotational velocity, V sin /, in kilometers the high S/N of the spectra. The high S/N also facilitated the per second, column (7) the signal-to-noise level of the spectra, continuum and fine wing placement. While it is difficult to and column (8) the number of spectra. Table 2 is similar, quantify the procedures employed in this aspect of the work, it except for column (4), which gives the absolute magnitude, is fair to say the interpretive aspect was considerably reduced as compared to using photographic data, and consistent re- Mv, based on our calibration, and column (6), which gives the Pleiades distance modulus, m — M.
Recommended publications
  • Download This Article in PDF Format
    A&A 601, A29 (2017) Astronomy DOI: 10.1051/0004-6361/201629685 & c ESO 2017 Astrophysics Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction E. Zapartas1, S. E. de Mink1, R. G. Izzard2, S.-C. Yoon3, C. Badenes4, Y. Götberg1, A. de Koter1; 5, C. J. Neijssel1, M. Renzo1, A. Schootemeijer6, and T. S. Shrotriya6 1 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands e-mail: [E.Zapartas;S.E.deMink]@uva.nl 2 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 3 Astronomy Program, Department of Physics and Astronomy, Seoul National University, 151–747 Seoul, Korea 4 Department of Physics and Astronomy & Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT-PACC), University of Pittsburgh, Pittsburgh, PA 15260, USA 5 Institute of Astronomy, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium 6 Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany Received 11 September 2016 / Accepted 1 January 2017 ABSTRACT Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that +9 a significant fraction, 15−8%, of core-collapse supernovae are “late”, that is, they occur 50–200 Myr after birth, when all massive single stars have already exploded.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • Solar Writer Report for Abraham Lincoln
    FIXED STARS A Solar Writer Report for Abraham Lincoln Written by Diana K Rosenberg Compliments of:- Stephanie Johnson Seeing With Stars Astrology PO Box 159 Stepney SA 5069 Australia Tel/Fax: +61 (08) 8331 3057 Email: [email protected] Web: www.esotech.com.au Page 2 Abraham Lincoln Natal Chart 12 Feb 1809 12:40:56 PM UT +0:00 near Hodgenville 37°N35' 085°W45' Tropical Placidus 22' 13° 08°ˆ ‡ 17' ¾ 06' À ¿É ‰ 03° ¼ 09° 00° 06° 09°06° ˆ ˆ ‡ † ‡ 25° 16' 41'08' 40' † 01' 09' Œ 29' ‰ 9 10 23° ¶ 8 27°‰ 11 Ï 27° 01' ‘ ‰02' á 7 12 ‘ áá 23° á 23° ¸ 23°Š27' á Š à „ 28' 28' 6 18' 1 10°‹ º ‹37' 13° 05' ‹ 5 Á 22° ½ 27' 2 4 01' Ü 3 07° Œ ƒ » 09' 23° 09° Ý Ü 06° 16' 06' Ê 00°ƒ 13° 22' Ý 17' 08°‚ Page 23 Astrological Summary Chart Point Positions: Abraham Lincoln Planet Sign Position House Comment The Moon Capricorn 27°Cp01' 12th The Sun Aquarius 23°Aq27' 12th read into 1st House Mercury Pisces 10°Pi18' 1st Venus Aries 7°Ar27' 1st read into 2nd House Mars Libra 25°Li29' 8th Jupiter Pisces 22°Pi05' 1st Saturn Sagittarius 3°Sg08' 9th read into 10th House Uranus Scorpio 9°Sc40' 8th Neptune Sagittarius 6°Sg41' 9th read into 10th House Pluto Pisces 13°Pi37' 1st The North Node Scorpio 6°Sc09' 8th The South Node Taurus 6°Ta09' 2nd The Ascendant Aquarius 23°Aq28' 1st The Midheaven Sagittarius 8°Sg22' 10th The Part of Fortune Capricorn 27°Cp02' 12th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Square Mars 1°32' Separating The Moon Conjunction The Part of Fortune 0°00' Applying The Sun Trine Mars 2°02' Applying The Sun Conjunction The Ascendant
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • The Origin of Nonradiative Heating/Momentum in Hot Stars
    NASA Conference Publication 2358 NASA-CP-2358 19850009446 The Origin of Nonradiative Heating/Momentum in Hot Stars Proceedings of a workshop held at NASA Goddard Space Flight Center Greenbelt, Maryland June 5-7, 1984 NI_SA NASA Conference Publication 2358 The Origin of Nonradiative Heating/Momentum in Hot Stars Edited by A. B. Underhill and A. G. Michalitsianos Goddard Space Flight Center Greenbelt, Maryland Proceedings of a workshop sponsored by the National Aeronautics and Space Administration, Washington, D.C., and the American Astronomical Society, Washington, D.C., and held at NASA Goddard Space Flight Center Greenbelt, Maryland June 5-7, 1984 N/LS/X NationalAeronautics and SpaceAdministration ScientificandTechnical InformationBranch J 1985 TABLE OF CONTENTS ORGANIZING COMMITTEE v LIST OF PARTICIPANTS vi OPENING REMARKS A.B. Underhill I SESSION I. - EVIDENCE FOR NONRADIATIVE ACTIVITY IN STARS EVIDENCE FOR NONRADIATIVE ACTIVITY IN HOT STARS J.P. Cassinelli (Invited review) 2 EVIDENCE FOR NON-RADIATIVE ACTIVITY IN STARS WITH Tef f < i0,000 K Jeffrey L. Linsky (Invited review) 24 OBSERVATIONS OF NONTHERMAL RADIO EMISSION FROM EARLY TYPE STARS D.C. Abbott, J.H. Bieging and E. Churehwell 47 NONRADIAL PULSATION AND MASS LOSS IN EARLY B STARS G. Donald Penrod and Myron A. Smith 53 NARROW ABSORPTION COMPONENTS IN Be STAR WINDS C.A. Grady 57 LIGHT VARIATIONS OF THE B-TYPE STAR HD 160202 Gustav A. Bakos 62 ULTRAVIOLET SPECTRAL MORPHOLOGY OF 0-TYPE STELLAR WINDS Nolan R. Walborn 66 NONTHERMAL RADIO EMISSION AND THE HR DIAGRAM D.M. Gibson 70 X-RAY ACTIVITY IN PRE-MAIN SEQUENCE STARS Eric D. Feigelson 75 ACTIVE PHENOMENA IN THE PRE-MAIN SEQUENCE STAR AB AUR F.
    [Show full text]
  • Arxiv:1402.5240V1 [Astro-Ph.SR]
    Accepted in ApJ A Preprint typeset using LTEX style emulateapj v. 04/17/13 DISK-LOSS AND DISK-RENEWAL PHASES IN CLASSICAL BE STARS. II. CONTRASTING WITH STABLE AND VARIABLE DISKS Zachary H. Draper1,2, John P. Wisniewski3, Karen S. Bjorkman4, Marilyn R. Meade5, Xavier Haubois6,7, Bruno C. Mota6, Alex C. Carciofi6, Jon E. Bjorkman4 Accepted in ApJ ABSTRACT Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCD) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observational study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of 9 additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as sys- tems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization be- havior. We find that many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, and the outer region of the edge-on disk starts to self absorb a significant number of Balmer jump photons. The intrinsic V -band polarization and polarization position angle of γ Cas exhibits variations that seem to phase with the orbital period of a known one-armed density structure in this disk, similar to the theoretical predictions of Halonen & Jones.
    [Show full text]
  • A STUDY of INTRINSIC POLARIZATION in Be STARS
    t 70-26,253 BOTTEMILLER, Robert Leland, 1942- A STUDY OF INTRINSIC POLARIZATION IN Be STARS. The Ohio State University, Ph.D., 1970 Astronomy University Microfilms, A XEROX Company, Ann Arbor, Michigani TWTR nTRRFBTATTnW HAS PFFN MTrRnTTT.MFn FVAfTT-Y AS RFTIFTVFT1 A STUDY OF INTRINSIC POLARIZATION IN Be STARS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Robert Leland Bottemiller, B.S., B.S. A A * A A A The Ohio State University 1970 Approved by lfff.tr *a 'f K ' — I Adviser Department of Astronomy ACKNOWLEDGMENTS Gratitude is extended to Dr. George W. Collins, II, who suggested this research problem and who contributed many beneficial ideas throughout the pursuit of this work. Thanks also go to Drs. Robert F. Wing and Terry P. Roark who made a number of suggestions which increased the clar­ ity and accuracy of this dissertation. All observations were made using the Perkins reflector of the Ohio Wesleyan and Ohio State Universities at Lowell Observatory. The author is indebted to these institutions for the use of their facilities, and special thanks go to Dr. John S. Hall, Director of Lowell Observatory, for the use of his polarimeter and for hospitality extended to the author during his visits to Lowell Observatory. The Com­ puter Center of The Ohio State University is also to be thanked for the allotment of machine time necessary for data reduction. This work was initiated while the author held a Traineeship from the National Science Foundation whose support is appreciated.
    [Show full text]
  • Be Star Spectroscopy Using the UCA Fiber-Fed Spectrograph Scott Austin University of Central Arkansas
    Journal of the Arkansas Academy of Science Volume 58 Article 5 2004 Be Star Spectroscopy Using the UCA Fiber-Fed Spectrograph Scott Austin University of Central Arkansas Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Austin, Scott (2004) "Be Star Spectroscopy Using the UCA Fiber-Fed Spectrograph," Journal of the Arkansas Academy of Science: Vol. 58 , Article 5. Available at: http://scholarworks.uark.edu/jaas/vol58/iss1/5 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 58 [2004], Art. 5 Be Star Spectroscopy Using the UCA Fiber-Fed Spectrograph Scott Austin Department of Physics and Astronomy University of Central Arkansas Conway, AR 72035 Abstract Beginning inJune 2003, undergraduate students and the author have spectroscopically monitored bright Be stars using a custom built fiber-fed spectrograph attached to the UCA Observatory 11-inch Schmidt- Cassegrain telescope. We have obtained 0.8 Angstrom/pixel resolution spectra of the H-alpha line for over forty Be-Stars.
    [Show full text]
  • 59 Cygni: a Tilted <F> Persei Like System Th. Rivinius
    The Be Phenomenon in Early-Type Stars, IAU Colloquium 175 ASP Conference Series, Vol. 214, 2000 M. A. Smith, H. F. Henrichs, and J. Fabregat, eds. 59 Cygni: A Tilted <f> Persei like System Th. Rivinius Landessternwarte Konigstuhl, D-69117 Heidelberg, Germany S. Stefl Astronomical Institute, Academy of Sciences, CZ-251 65 Ondfejov, Czech Republic Abstract. The binarity of 59 Cygni was confirmed and orbital param­ eters from the radial velocity curve of the primary derived. The observed emission variability resembles the one of 4> Per in quite some detail, sug­ gesting a similar nature of the companion: a hot, compact star. 1. Introduction 59 Cygni (HR8047, HD 200120, B1.5Ve) is for several reasons a famous and well observed Be star. Several investigators reported variability with a typical timescale of 28 to 29 days and suggested that the star is a spectroscopic binary (Barker 1983, Doazan et al. 1985 and 1989, Tarasov and Tuominen 1987). It has furthermore spatially resolved companions, being quadruple in total. The onset of a new Be phase in the late 70's made the star a primary target for IUE monitoring of the envelope formation. Soon after the emission re-appeared, the intensity ratio of the violet and red peaks (V/R) of Ha started to vary with a quasiperiod of about 2 years. The variations ceased in the mid 80's. Additionally, it is one of the few Be stars for which "spectacular variations" have been observed (Barker 1983, Hummel 1998). Up to now, however, neither reliable orbital parameters were published nor was an investigation about the nature of the secondary undertaken.
    [Show full text]
  • Analysis of Ultraviolet Spectrophotometric Data from Copernicus Theodore P
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) This grant supported research with data obtained with the Copernicus satellite. Some of the data used were obtained before the grant initiation date, while the PI was still on the research staff at Princeton; and the rest were obtained through the Copernicus Guest Investigator program, after the PI's move to the University of Colorado. The original proposal and the attached T43 form both outline the scientific goals of the study. The T43 form also serves to briefly summarize the results of the past year's research, and to outline the intended research plans urOd er a new NASA grant which is forthcoming. To expand on the bare-bones information in the T43 form regarding scientific results achieved during the past year, the following few paragraphs describe in somewhat more detail a few of the more outstanding accomplishments.
    [Show full text]
  • Arxiv:1310.3962V1 [Astro-Ph.SR] 15 Oct 2013 2 Rivinius, Carciofi, and Martayan
    Astronomy & Astrophysics Review manuscript No. (will be inserted by the editor) Classical Be Stars Rapidly Rotating B Stars with Viscous Keplerian Decretion Disks Thomas Rivinius Alex C. Carciofi · · Christophe Martayan Received: date / Accepted: date Abstract In the past decade, a consensus has emerged regarding the nature of clas- sical Be stars: They are very rapidly rotating main sequence B stars, which, through a still unknown, but increasingly constrained process, form an outwardly diffusing gaseous, dust-free Keplerian disk. In this work, first the definition of Be stars is con- trasted to similar classes, and common observables obtained for Be stars are intro- duced and the respective formation mechanisms explained. We then review the cur- rent state of knowledge concerning the central stars as non-radially pulsating objects and non-magnetic stars, as far as it concerns large scale, i.e., mostly dipolar, global fields. Localized, weak magnetic fields remain possible, but are as of yet unproven. The Be phenomenon, linked with one or more mass ejection processes, acts on top of a rotation rate of about 75% of critical or above. The properties of the process can be well constrained, leaving only few options, most importantly, but not exclusively, non-radial pulsation and small scale magnetic fields. Of these, it is well possible that all are realized: In different stars, different processes may be acting. Once the mate- rial has been lifted into Keplerian orbit, memory of the details of the ejection process is lost, and the material is governed by viscosity. The disks are fairly well understood in the theoretical framework of the viscous decretion disk model.
    [Show full text]
  • Sam Moskowitz a Bibliography and Guide
    Sam Moskowitz A Bibliography and Guide Compiled by Hal W. Hall Sam Moskowitz A Bibliography and Guide Compiled by Hal W. Hall With the assistance of Alistair Durie Profile by Jon D. Swartz, Ph. D. College Station, TX October 2017 ii Online Edition October 2017 A limited number of contributor's copies were printed and distributed in August 2017. This online edition is the final version, updated with some additional entries, for a total of 1489 items by or about Sam Moskowitz. Copyright © 2017 Halbert W. Hall iii Sam Moskowitz at MidAmericon in 1976. iv Acknowledgements The sketch of Sam Moskowitz on the cover is by Frank R. Paul, and is used with the permission of the Frank R. Paul Estate, William F. Engle, Administrator. The interior photograph of Sam Moskowitz is used with the permission of the photographer, Dave Truesdale. A special "Thank you" for the permission to reproduce the art and photograph in this bibliography. Thanks to Jon D. Swartz, Ph. D. for his profile of Sam Moskowitz. Few bibliographies are created without the help of many hands. In particular, finding or confirming many of the fanzine writings of Moskowitz depended on the gracious assistance of a number of people. The following individuals went above and beyond in providing information: Alistair Durie, for details and scans of over fifty of the most elusive items, and going above and beyond in help and encouragement. Sam McDonald, for a lengthy list of confirmed and possible Moskowitz items, and for copies of rare articles. Christopher M. O'Brien, for over 15 unknown items John Purcell, for connecting me with members of the Corflu set.
    [Show full text]