Number Theory: a Historical Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Asymptotic Formulae for the Number of Repeating Prime Sequences Less Than N
Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 22, 2016, No. 4, 29–40 Asymptotic formulae for the number of repeating prime sequences less than N Christopher L. Garvie Texas Natural Science Center, University of Texas at Austin 10100 Burnet Road, Austin, Texas 78758, USA e-mail: [email protected] Received: 21 April 2016 Accepted: 30 October 2016 Abstract: It is shown that prime sequences of arbitrary length, of which the prime pairs, (p; p+2), the prime triplet conjecture, (p; p+2; p+6) are simple examples, are true and that prime sequences of arbitrary length can be found and shown to repeat indefinitely. Asymptotic formulae compa- rable to the prime number theorem are derived for arbitrary length sequences. An elementary proof is also derived for the prime number theorem and Dirichlet’s Theorem on the arithmetic progression of primes. Keywords: Primes, Sequences, Distribution. AMS Classification: 11A41. 1 Introduction We build up the sequences of primes using a variant of the sieve process devised by Eratosthenes. In the sieve process the integers are written down sequentially up to the largest number we wish to check for primality. We first remove from consideration every number of the form 2n (n≥2), find the smallest number >2 that was not removed, that is 3 (the next prime), and similarly now remove all numbers of the form 3n (n≥2). As before find again the next number not removed, that is the next prime 5. The process is continued up to a desired prime Pr. -
Problems in Relating Various Tasks and Their Sample Solutions to Bloomâ
The Mathematics Enthusiast Volume 14 Number 1 Numbers 1, 2, & 3 Article 4 1-2017 Problems in relating various tasks and their sample solutions to Bloom’s taxonomy Torsten Lindstrom Follow this and additional works at: https://scholarworks.umt.edu/tme Part of the Mathematics Commons Let us know how access to this document benefits ou.y Recommended Citation Lindstrom, Torsten (2017) "Problems in relating various tasks and their sample solutions to Bloom’s taxonomy," The Mathematics Enthusiast: Vol. 14 : No. 1 , Article 4. Available at: https://scholarworks.umt.edu/tme/vol14/iss1/4 This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. TME, vol. 14, nos. 1,2&3, p. 15 Problems in relating various tasks and their sample solutions to Bloom’s taxonomy Torsten Lindstr¨om Linnaeus University, SWEDEN ABSTRACT: In this paper we analyze sample solutions of a number of problems and relate them to their level as prescribed by Bloom’s taxonomy. We relate these solutions to a number of other frameworks, too. Our key message is that it remains insufficient to analyze written forms of these tasks. We emphasize careful observations of how different students approach a solution before finally assessing the level of tasks used. We take the arithmetic series as our starting point and point out that the objective of the discussion of the examples here in no way is to indicate an optimal way towards a solution. -
Induction for Tetrahedral Numbers
Induction for Tetrahedral Numbers Teacher Notes and Answers 7 8 9 10 11 12 TI-84PlusCE™ Investigation Student 50 min Teacher Notes: “Inductive Tetrahedrals” is part two of this three-part series. [Refer to Inductive Whole Numbers for Part One]. Part two follows a similar format to part one but is slightly more challenging from an algebraic perspective. Teachers can use part two in this series as a more independent environment for students focusing on providing feedback rather than instruction. A set of Power Point slides is provided that can be used to enhance the visual aspect of this lesson, the ability to visualise solutions can give problems more meaning. “Cubes and Squares” is part three of this three-part series. This section is designed as an assessment tool, marks have been allocated to each question. The questions are more reflective of the types of questions that students might experience in the short answer section of an examination where calculators may be used to derive answers or to simply verify by-hand solutions. A set of Power Point slides is provided that can be used to introduce students to this task. Introduction The purpose of this activity is to use exploration and observation to establish a rule for the sum of the first n tetrahedral numbers then use proof by mathematical induction to show that the rule is true for all whole numbers. What are the Tetrahedral numbers? The prefix ‘tetra’ refers to the quantity four, so it is not surprising that a tetrahedron consists of four faces, each face is a triangle. -
Tetrahedral Numbers
Tetrahedral Numbers Student Worksheet TI-30XPlus Activity Student 50 min 7 8 9 10 11 12 MathPrint™ Finding Patterns What are the Tetrahedral numbers? The prefix ‘tetra’ refers to the quantity four, so it is not surprising that a tetrahedron consists of four faces, each face is a triangle. This triangular formation can sometimes be found in stacks of objects. The series of diagrams below shows the progression from one layer to the next for a stack of spheres. Row Number 1 2 3 4 5 Items Added Complete Stack Question: 1. Create a table of values for the row number and the corresponding quantity of items in a complete stack. Question: 2. Create a table of values for the row number and the corresponding quantity of items that are added to the stack. Question: 3. The calculator screen shown here illustrates how to determine the fifth tetrahedral number. The same command could be used to determine any of the tetrahedral numbers. Explain how this command is working. Question: 4. Verify that the calculation shown opposite is the same as the one generated in Question 3. Question: 5. Enter the numbers 1, 2 … 10 in List 1 on the calculator. Enter the first 10 tetrahedral numbers in List 2. Once the values have been entered try the following: a) Quadratic regression using List 1 and List 2. Check the validity of the result via substitution. b) Cubic regression using List 1 and List 2. Check the validity of the result via substitution. Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes Author: P. -
The Frobenius Number for Sequences of Binomial Coefficients
The Frobenius number for sequences of binomial coefficients Aureliano M. Robles-Perez´ Universidad de Granada A talk based on a joint work with Jose´ Carlos Rosales (J. Number Theory 186 (2018) 473–492.) INdAM meeting: International meeting on numerical semigroups - Cortona 2018 3-7th September 2018 A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 1 / 29 Frobenius coin problem I Given relatively prime positive integers a1;:::;an, n ≥ 2, find a formula to compute the largest integer that is not representable as a non-negative integer linear combination of a1;:::;an. I F(a1;:::;an) (the Frobenius number of the set fa1;:::;ang) denotes the solution of the previous problem. I F(a1;a2) = a1a2 − a1 − a2: I Frobenius problem is open for n ≥ 3. ∗ Curtis: it is impossible to find a polynomial formula that computes the Frobenius number if n = 3. ∗ Ram´ırez Alfons´ın: the problem is NP-hard for n variables. A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 2 / 29 Particular cases I Arithmetic and almost arithmetic sequences (A. Brauer; M. Lewin; J. B. Roberts; E. S. Selmer), I Fibonacci sequences (J. M. Mar´ın, J. L. Ram´ırez Alfons´ın and M. P. Revuelta), I geometric sequences (D. C. Ong and V. Ponomarenko), I Mersenne, repunit, and Thabit sequences (J. C. Rosales, M. B. Branco, D. Torrao),˜ I squares and cubes sequences (M. Lepilov, J. O’Rourke and I. Swanson; A. Moscariello), I ... A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 3 / 29 Particular cases: motivations (i) I Brauer: n − 2 F(n;n + 1;:::;n + k − 1) = + 1 n − 1: k − 1 I Baker (conjecture): If Tn is the nth triangular (or triangle) number, then 8 3 2 > 6n +18n +12n−8 if n is even; <> 8 F(Tn;Tn+1;Tn+2) = :> 6n3+12n2−6n−20 8 if n is odd. -
Problem Solving and Recreational Mathematics
Problem Solving and Recreational Mathematics Paul Yiu Department of Mathematics Florida Atlantic University Summer 2012 Chapters 1–44 August 1 Monday 6/25 7/2 7/9 7/16 7/23 7/30 Wednesday 6/27 *** 7/11 7/18 7/25 8/1 Friday 6/29 7/6 7/13 7/20 7/27 8/3 ii Contents 1 Digit problems 101 1.1 When can you cancel illegitimately and yet get the cor- rectanswer? .......................101 1.2 Repdigits.........................103 1.3 Sortednumberswithsortedsquares . 105 1.4 Sumsofsquaresofdigits . 108 2 Transferrable numbers 111 2.1 Right-transferrablenumbers . 111 2.2 Left-transferrableintegers . 113 3 Arithmetic problems 117 3.1 AnumbergameofLewisCarroll . 117 3.2 Reconstruction of multiplicationsand divisions . 120 3.2.1 Amultiplicationproblem. 120 3.2.2 Adivisionproblem . 121 4 Fibonacci numbers 201 4.1 TheFibonaccisequence . 201 4.2 SomerelationsofFibonaccinumbers . 204 4.3 Fibonaccinumbersandbinomialcoefficients . 205 5 Counting with Fibonacci numbers 207 5.1 Squaresanddominos . 207 5.2 Fatsubsetsof [n] .....................208 5.3 Anarrangementofpennies . 209 6 Fibonacci numbers 3 211 6.1 FactorizationofFibonaccinumbers . 211 iv CONTENTS 6.2 TheLucasnumbers . 214 6.3 Countingcircularpermutations . 215 7 Subtraction games 301 7.1 TheBachetgame ....................301 7.2 TheSprague-Grundysequence . 302 7.3 Subtraction of powers of 2 ................303 7.4 Subtractionofsquarenumbers . 304 7.5 Moredifficultgames. 305 8 The games of Euclid and Wythoff 307 8.1 ThegameofEuclid . 307 8.2 Wythoff’sgame .....................309 8.3 Beatty’sTheorem . 311 9 Extrapolation problems 313 9.1 Whatis f(n + 1) if f(k)=2k for k =0, 1, 2 ...,n? . 313 1 9.2 Whatis f(n + 1) if f(k)= k+1 for k =0, 1, 2 ...,n? . -
Pascal's Triangle
PASCAL’S TRIANGLE Todd Cochrane 1 / 29 Robert’s Dream In his dream, Robert and the Number Devil build a giant pyramid of blocks. Being two-dimensional they agree to call it a triangle of blocks. Then they start marking the blocks with a felt pen, labeling the top block 1, the next two 1,1, and then each block thereafter the sum of the two values above it. Thus, the third row is 1,2,1, the fourth 1,3,3,1 and so on. 2 / 29 Pascal’s Triangle 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 ; 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 Rule: Each term in Pascal’s triangle is the sum of the two terms above it. Pascal’s triangle is named after Blaise Pascal, who put together many of its properties in 1653. 3 / 29 Triangle Numbers. Diagonal 3: 1; 3; 6; 10; 15; 21;::: Diagonal 4: 1; 4; 10; 20; 35; 56;::: Tetrahedral Numbers. Diagonal’s of Pascal’s Triangle 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 ; 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 Diagonals: Note, the Southwesterly and Southeasterly diagonals are the same. Diagonal 1: 1; 1; 1; 1;::: (yawn) Diagonal 2: 1; 2; 3; 4; 5; : : : ::: Natural Numbers . -
The Personality of the Integers from One to One Gross
ETY CI O O F S The Dozenal Society of America E 0 1 A L X 2 M A 9 3 E The Personality of the Integers N R E 8 4 I Z 7 5 C from One to One Gross A O 6 D Jay Schiffman S Introduction n his fascinating paperback entitled The Lore of integer that lends a special personality to them es- I Large Numbers,1 author Philip J. Davis devotes a pecially when one resorts to duodecimals. Finally, detailed chapter to The Personality of Numbers and my goal is to furnish number theoretic characteris- provides a list entitled Who’s Who Among The Inte- tics related to each of the integers that are perhaps gers from One to One Hundred in the decimal base. omitted from the average list. Our initial task is to The purpose of my paper is to expand his list to the present the reader with a dictionary which is termed first gross and present additional characteristics of A Glossary of Symbols and Terms. These symbols these integers. It is indeed the uniqueness of each and terms will be illustrated in this section. A Glossary of Symbols and Terms 1. n! The factorial of the positive integer n. We de- 6. Ln The nth Lucas Number. n is a Lucas Number fined n!, known as n factorial, recursively as if n satisfied the Lucas Sequence defined recur- follows: 0! = 1 and (n + 1)! = (n + 1)(n!). sively as follows: L1 = 1, L2 = 3, and Ln = Hence 1! = (0 + 1)(0!) = (1)(1) = 1 and Ln−2 + Ln−1 for n ≥ 3. -
The Complexity of Prime Number Tests
Die approbierte Originalversion dieser Diplom-/ Masterarbeit ist in der Hauptbibliothek der Tech- nischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng The Complexity of Prime Number Tests Diplomarbeit Ausgeführt am Institut für Diskrete Mathematik und Geometrie der Technischen Universität Wien unter der Anleitung von Univ.Prof. Dipl.-Ing. Dr.techn. Michael Drmota durch Theres Steiner, BSc Matrikelnummer: 01025110 Ort, Datum Unterschrift (Student) Unterschrift (Betreuer) The problem of distinguishing prime numbers from composite numbers and of re- solving the latter into their prime factors is known to be one of the most important and useful in arithmetic. Carl Friedrich Gauss, Disquisitiones Arithmeticae, 1801 Ron and Hermione have 2 children: Rose and Hugo. Vogon poetry is the 3rd worst in the universe. Acknowledgements First, I would like to thank my parents, Rudolf and Doris Steiner, without them I would not be where I am now. I would also like to thank my professor Michael Drmota for supporting me and helping me with my thesis. Throughout the writing process he was always there for me and his input was always helpful. I would also like to thank my colleagues who made this stage of my life truly amazing. Also, a special thanks to the people that gave me valuable input on my thesis, mathematically or grammatically. 4 5 is the 5th digit in π. Abstract Prime numbers have been a signicant focus of mathematics throughout the years. -
Mathematical Constants and Sequences
Mathematical Constants and Sequences a selection compiled by Stanislav Sýkora, Extra Byte, Castano Primo, Italy. Stan's Library, ISSN 2421-1230, Vol.II. First release March 31, 2008. Permalink via DOI: 10.3247/SL2Math08.001 This page is dedicated to my late math teacher Jaroslav Bayer who, back in 1955-8, kindled my passion for Mathematics. Math BOOKS | SI Units | SI Dimensions PHYSICS Constants (on a separate page) Mathematics LINKS | Stan's Library | Stan's HUB This is a constant-at-a-glance list. You can also download a PDF version for off-line use. But keep coming back, the list is growing! When a value is followed by #t, it should be a proven transcendental number (but I only did my best to find out, which need not suffice). Bold dots after a value are a link to the ••• OEIS ••• database. This website does not use any cookies, nor does it collect any information about its visitors (not even anonymous statistics). However, we decline any legal liability for typos, editing errors, and for the content of linked-to external web pages. Basic math constants Binary sequences Constants of number-theory functions More constants useful in Sciences Derived from the basic ones Combinatorial numbers, including Riemann zeta ζ(s) Planck's radiation law ... from 0 and 1 Binomial coefficients Dirichlet eta η(s) Functions sinc(z) and hsinc(z) ... from i Lah numbers Dedekind eta η(τ) Functions sinc(n,x) ... from 1 and i Stirling numbers Constants related to functions in C Ideal gas statistics ... from π Enumerations on sets Exponential exp Peak functions (spectral) .. -
Generator and Verification Algorithms for Prime K−Tuples Using Binomial
International Mathematical Forum, Vol. 6, 2011, no. 44, 2169 - 2178 Generator and Verification Algorithms for Prime k−Tuples Using Binomial Expressions Zvi Retchkiman K¨onigsberg Instituto Polit´ecnico Nacional CIC Mineria 17-2, Col. Escandon Mexico D.F 11800, Mexico [email protected] Abstract In this paper generator and verification algorithms for prime k-tuples based on the the divisibility properties of binomial coefficients are intro- duced. The mathematical foundation lies in the connection that exists between binomial coefficients and the number of carries that result in the sum in different bases of the variables that form the binomial co- efficent and, characterizations of k-tuple primes in terms of binomial coefficients. Mathematics Subject Classification: 11A41, 11B65, 11Y05, 11Y11, 11Y16 Keywords: Prime k-tuples, Binomial coefficients, Algorithm 1 Introduction In this paper generator and verification algorithms fo prime k-tuples based on the divisibility properties of binomial coefficients are presented. Their math- ematical justification results from the work done by Kummer in 1852 [1] in relation to the connection that exists between binomial coefficients and the number of carries that result in the sum in different bases of the variables that form the binomial coefficient. The necessary and sufficient conditions provided for k-tuple primes verification in terms of binomial coefficients were inspired in the work presented in [2], however its proof is based on generating func- tions which is distinct to the argument provided here to prove it, for another characterization of this type see [3]. The mathematical approach applied to prove the presented results is novice, and the algorithms are new. -
Some Links of Balancing and Cobalancing Numbers with Pell and Associated Pell Numbers
Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. 6 (2011), No. 1, pp. 41-72 SOME LINKS OF BALANCING AND COBALANCING NUMBERS WITH PELL AND ASSOCIATED PELL NUMBERS G. K. PANDA1,a AND PRASANTA KUMAR RAY2,b 1 National Institute of Technology, Rourkela -769 008, Orissa, India. a E-mail: gkpanda nit@rediffmail.com 2 College of Arts Science and Technology, Bandomunda, Rourkela -770 032, Orissa, India. b E-mail: [email protected] Abstract Links of balancing and cobalancing numbers with Pell and associated Pell numbers th th are established. It is proved that the n balancing number is product of the n Pell th number and the n associated Pell number. It is further observed that the sequences of balancing and cobalancing numbers are very closely related to the Pell sequence whereas, the sequences of Lucas-balancing and Lucas-cobalancing numbers constitute the associated Pell sequence. The solutions of some Diophantine equations including Pythagorean and Pythagorean-type equations are obtained in terms of these numbers. 1. Introduction The study of number sequences has been a source of attraction to the mathematicians since ancient times. From that time many mathematicians have been focusing their attention on the study of the fascinating triangu- lar numbers (numbers of the form n(n + 1)/2 where n Z+ are known as ∈ triangular numbers). Behera and Panda [1], while studying the Diophan- tine equation 1 + 2 + + (n 1) = (n + 1) + (n +2)+ + (n + r) on · · · − · · · triangular numbers, obtained an interesting relation of the numbers n in Received April 28, 2009 and in revised form September 25, 2009.