Margot Loussouarn-Yvon Le 07 Novembre 2017

Total Page:16

File Type:pdf, Size:1020Kb

Margot Loussouarn-Yvon Le 07 Novembre 2017 AIX-MARSEILLE UNIVERSITE Ecole Doctorale des Sciences de la Vie et de la Santé (ED SVS 62) THESE pour obtenir le grade de DOCTEUR D’AIX-MARSEILLE UNIVERSITE EN BIOLOGIE VEGETALE Présentée et soutenue publiquement par Margot Loussouarn-Yvon Le 07 novembre 2017 L'ACIDE CARNOSIQUE ET LE CARNOSOL, DEUX SUPER-ANTIOXYDANTS DU ROMARIN (ROSMARINUS OFFICINALIS) Rôles, mécanismes, physiologie et applications Laboratoire d’Ecophysiologie Moléculaire des Plantes DSV/BIAM/LEMP, UMR 7265 CNRS/CEA/AMU CEA Cadarache Composition du jury: Alain Tissier, Professeur, Leibniz-Institute of Plant Biochemistry, Halle Rapporteur Laurent Urban, Professeur, Université d’Avignon et du Pays du Vaucluse Rapporteur Stefano Caffarri, Professeur, Université d’Aix-Marseille Président Michel Havaux, Directeur de Recherche, CEA Directeur de thèse Simona Birtić, Docteur, Naturex Co-encadrante de thèse Christophe Bailly, Professeur, Université Pierre et Marie Curie Examinateur Marie-Elisabeth Cuvelier, Docteur, INRA-Agroparistech Examinatrice Remerciements : Tout d’abord, je souhaite exprimer ma gratitude aux membres du jury pour l’évaluation de ce travail, notamment au Professeur Laurent Urban et au Professeur Alain Tissier pour avoir accepté d’en être les rapporteurs. Je remercie le Docteur Stefano Caffarri de bien vouloir présider le jury ainsi que le Professeur Christophe Bailly et au Docteur Marie-Elisabeth Cuvelier pour leur participation à ce jury. J’adresse également mes remerciements aux Docteurs Antoine Bily et Simona Birtić de la société Naturex de m’avoir fait confiance pendant ses 3 années pour mener à bien le sujet de thèse qu’ils m’ont proposé. Je remercie Simona Birtić en particulier pour ses conseils et son investissement quand j’en ai eu besoin. Je souhaite remercier particulièrement le Docteur Michel Havaux, directeur du laboratoire et directeur de ma thèse, pour son accueil, son encadrement, son investissement et ses conseils précieux. Je le remercie également pour sa capacité à prendre du recul et à répondre de manière perspicace aux questions posées, qu’elles soient scientifiques, professionnelles ou personnelles. Au-delà d’un excellent directeur de thèse, je suis heureuse d’avoir rencontré une personne avec de grande qualité humaine qui a su être à l’écoute lors d’épisode personnel douloureux. Je tiens également à remercier les personnes qui ont participé à ce projet. J’aimerais remercier le Professeur Anja Krieger-Liszkay pour m’avoir accueillie à plusieurs reprises dans son laboratoire, formée et conseillée sur les expériences de RPE. Je remercie aussi l’ingénieure Ljubica Svilar de la plateforme CRIBIOM pour son aide et son accompagnement lors des expériences de spectrométrie de masse. Je remercie toute l’équipe du GRAP (Groupe de Recherche Appliquée en Phytotechnologie) pour ses compétences techniques, et en particulier Patrice Ruellan, Frederic Espanet et Anne-Laure Benoit pour leur soutien dans les moments difficiles et pour les moments de détentes passés en leur compagnie. Je tiens à remercier chaleureusement Brigitte Ksas pour m’avoir formée aux différentes extractions et techniques HPLC du laboratoire, et surtout, je la remercie pour tous les moments agréables passés avec elle, son soutien, ses conseils et ce qu’elle est (si elle n’existait pas, il aurait fallu l’inventer). J’adresse également un très grand Merci aux étudiants du service, avec un spécial big-up à Fred, Louis, Ivana et Inès pour les rires, l’écoute, les sorties au grand air, les soirées Games of Thrones, les discussions philosophico-scientifiques de comptoirs et pour tous les moments doux et sincères passés ensemble. Ils ont été une réelle soupape de sécurité pour moi. J’ai aussi une pensée d’amitié pour Léo et Anne qui ont suivi de près mes débuts à Cadarache et avec qui j’ai passé des moments inoubliables. En guest-star, je voudrais remercier ma meilleure amie, Alix Richard, Docteur en bien-vivre, qui me soutient depuis 18 ans dans tout ce que j’entreprends et qui a toujours cru en moi (vive le fromage, la tisane et les lits !). Avec beaucoup d’amour, je dis un grand Merci à Gabriel et à ma grande famille pour m’avoir accompagnée et supportée ces derniers mois ardus. Ils sont contents que ce cycle se termine pour qu’un nouveau redémarre, et moi aussi. Je tiens également à transmettre ma gratitude à mes chats, Misépé, Patafoin et Snooky qui m’ont donné tellement d’amour dans les moments de solitude. Enfin, je dédie cette thèse à mon grand-père, le Professeur André Roux, qui a insufflé le goût de la science à ma famille et à moi-même ; et à mon grand frère Sébastien, passionné de la nature à toutes les échelles, sans qui, je n’aurais pas fait de biologie. Abréviations : 15-HEDE Acide 15-hydroxy-11,13 (Z,E)-eicosadienoique ABA Acide abscissique ADN Acide désoxyribonucléique ADNc AND complémentaire ADP Adénosine di-phosphate AE Acerola extract (actarit d’acérola) AGPI Acide gras polyinsaturé AIA Acide indole acétique AOX Alternative oxydase APX Ascorbate peroxydase ARN Acide ribonucléique ATP Adénosine tri-phosphate BET Bromure d’éthidium BHA Butylated hydroxyanisole BHT Butylated hydroxytoluene CA Carnosic acid (Acide carnosique) CARN Carnosol CAT Catalase CCD Charge coupled-device Col-0 Type sauvage columbia CPS Copalyl phosphate synthase CYP7/CYP8 Cytochrome P450 Cys Cystéine DGDG Digalactosyl diacyl glycérol DHA/MDHA Déhydroascorbate/Monodéhydroascorbate DHAR/MDHAR Déhydroascorbate réductase/Monodéhydroascorbate réductase dNTP Désoxyribonucléotides triphosphate DPPH 2,2-Diphenyl-1-picrylhydrazyl DTT Dithiothréitol EDTA Acide éthylène-diamine-tétraacétique ERE Espèces réactives électrophiles ERO Espèces réactives de l’oxygène FADH2/FAD Flavine adénine dinucléotide réduite/oxydée Fd Ferrédoxine FNR Ferrédoxine-NADP+ oxydoréductase FS Ferruginol synthase GAL l-Galactone-γ-lactone déshydrogénase GGDP Géranylgéranyl diphosphate GPX Glutathion peroxydase GR Glutathion réductase GSH/GSSG Glutathion réduit/oxydé HFS Hydroxyferruginol synthase HNE 4-hydroxy-2-nonenal HODE Acide octadécadiénoique HOTE Acide hydroxy octadécatriénoique HPLC-UV High performance liquid chromatography LA Linolenic acid LC-MS Liquid chromatography-mass spectrometry LHC Light harvesting complexe (antennes collectrices de lumière) MAPK Mitogen-activated proteine kinase MDA Malondialdéhyde MEBE Microscope électronique à balayage environnemental Met Méthionine MGDG Monogalactosyl diacyl glycérol MiS Miltiradiène synthase MSR Méthionine sulfoxide réductase MyoG Myoglobine G NAD(H) Nicotinamide adenine dinucleotide (réduit) NADP(H) Nicotinamide adenine dinucleotide phosphate (réduit) NCED 9-cis-epoxycarotenoide dismutase NPQ Non-photochemical quenching (piégeage non photochimique) OA/OSR Cocktails d’extraits végétaux enrichi en extrait de romarin PC/PC-OH Plastochromanol réduit/oxydé PCR Polymerase chain reaction PE Promegranate extract (extrait de grenade) PMSF Phenyl methylsulfonyl POBN 4-pyridyl-1-oxyde-N-tert-butylnitrone PQH2/PQ Plastoquinone réduite/oxydée PRX Peroxyrédoxine PSI/PSII Photosystème I/photosystème II qPCR Quantitative PCR RE Rosemary extract (extrait de romarin) RMN Résonance magnétique nucléaire RPE Résonance paramagnétique électronique RT Reverse transcriptase RubisCO Ribulose-1,5-biphosphate carboxylase/oxygénase SC Stabilisateur classique SOD Superoxyde dismutase SOSG Singlet oxygen sensor green SRX Sulfirédoxine TEMPD 2,2,6,6-tetraméthyl-4-pipéridone hydrochloride TOC Tocophérol TRX Thiorédoxine UPLC-MS Ultra-performance liquid chromatography-mass spectrometry XOD Xanthine oxydase SOMMAIRE : I. Synthèse bibliographique ........................................................................ - 1 - 1. La production d’espèces réactives de l’oxygène (ERO) ............................................. - 3 - 1.1. L’oxygène singulet .......................................................................................................... - 3 - 1.2. Le radical superoxyde ..................................................................................................... - 4 - 1.3. Le peroxyde d’hydrogène ............................................................................................... - 4 - 1.4. Le radical hydroxyle ....................................................................................................... - 5 - 2. Les sites de production des ERO ................................................................................ - 5 - 2.1. Les sites majoritaires de production des ERO ................................................................ - 5 - 2.1.1. Les mitochondries ................................................................................................... - 5 - 2.1.2. Les peroxysomes ..................................................................................................... - 7 - 2.1.3. Les chloroplastes ..................................................................................................... - 8 - 2.2. Les sites secondaires de production des ERO ................................................................. - 9 - 3. Les cibles macromoléculaires des ERO .................................................................... - 10 - 3.1. Les lipides ..................................................................................................................... - 10 - 3.2. Les protéines ................................................................................................................. - 13 - 3.3. Les acides nucléiques ...................................................................................................
Recommended publications
  • 1 AMINO ACIDS Commonly, 21 L-Amino Acids Encoded by DNA Represent the Building Blocks of Animal, Plant, and Microbial Proteins
    1 AMINO ACIDS Commonly, 21 L-amino acids encoded by DNA represent the building blocks of animal, plant, and microbial proteins. The basic amino acids encountered in proteins are called proteinogenic amino acids 1.1). Biosynthesis of some of these amino acids proceeds by ribosomal processes only in microorganisms and plants and the ability to synthesize them is lacking in animals, including human beings. These amino acids have to be obtained in the diet (or produced by hydrolysis of body proteins) since they are required for normal good health and are referred to as essential amino acids. The essential amino acids are arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. The rest of encoded amino acids are referred to as non-essential amino acids (alanine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, serine, and tyrosine). Arginine and histidine are classified as essential, sometimes as semi-essential amino acids, as their amount synthesized in the body is not sufficient for normal growth of children. Although it is itself non-essential, cysteine (classified as conditionally essential amino acid) can partly replace methionine, which is an essential amino acid. Similarly, tyrosine can partly replace phenylalanine. 1.1 The glutamic acid group 1.1.1 Glutamic acid and glutamine Free ammonium ions are toxic to living cells and are rapidly incorporated into organic compounds. One of such transformations is the reaction of ammonia with 2-oxoglutaric acid from the citric acid cycle to produce L-glutamic acid. This reaction is known as reductive amination. Glutamic acid is accordingly the amino acid generated first as both constituent of proteins and a biosynthetic precursor.
    [Show full text]
  • Developmental Changes in Scots Pine Transcriptome During Heartwood Formation
    Developmental changes in Scots pine transcriptome during heartwood formation Kean-Jin Lim, Tanja Paasela, Teemu Teeri University of Helsinki Anni Harju, Martti Venäläinen, Katri Kärkkäinen Luke Punkaharju, June 2016 Heartwood of Scots pine (Pinus sylvestris) is naturally decay resistant Variation in wood extractives correlates with decay resistance — Variation in wood extractives is large and mostly genetic Trees higest in heartwood extractives are most decay resistant. Harju & Venäläinen 2006. Can J. For Res. Heartwood — Does not contain living cells — Reserve materials (e.g. starch) have been converted to ”heartwood substances” — May have different color, lower permeability and increased decay resistance than sapwood — In conifers, heartwood is usually dryer than sapwood Robinia Pinus Picea Heartwood formation Magel 2000 — Type 1 heartwood: Accumulation of (phenolic) extractives takes place in tissue between sapwood and heartwood (transition zone). — Type 2 heartwood: Precursors to phenolics accumulate gradually in ageing sapwood. — Pine heartwood is thought to be of Type 2. Heartwood formation — Much evidence in literature summarizes that heartwood formation takes place during the dormant season. — Pine — From midsummer to autumn (Fukuzawa et al. 1980) — From midsummer to dormant season (Shain and Mackay 1973) — No specific period for heartwood formation (Bergström et al. 1999) Heartwood extractives in Scots pine — Resin acids abietic acid — 50% of heartwood extractives — Stilbenes — 15% of heartwood extractives — Free fatty acids
    [Show full text]
  • Combining Metabolic and Protein Engineering of a Terpenoid Biosynthetic Pathway for Overproduction and Selectivity Control
    Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control Effendi Leonarda,1, Parayil Kumaran Ajikumara,1, Kelly Thayerb,c,d,3, Wen-Hai Xiaoa, Jeffrey D. Moa, Bruce Tidorb,c,d, Gregory Stephanopoulosa, and Kristala L. J. Prathera,2 aDepartment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; bComputer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139; cDepartment of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and dDepartment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited* by Arnold L. Demain, Drew University, Madison, NJ, and approved June 22, 2010 (received for review May 4, 2010) A common strategy of metabolic engineering is to increase the en- Sequence analysis of these enzymes showed that they are para- dogenous supply of precursor metabolites to improve pathway logous proteins evolved through gene duplications that subse- productivity. The ability to further enhance heterologous produc- quently diverged in functional roles to catalyze the formation tion of a desired compound may be limited by the inherent capacity of different terpenoid structures (16, 17, 19). Particularly, terpe- of the imported pathway to accommodate high precursor supply. noid synthases generate enzyme-bound carbocation intermedi- Here, we present engineered diterpenoid biosynthesis as a case ates that undergo a cascade of rearrangements and quenchings of where insufficient downstream pathway capacity limits high- carbocations to create structural diversity (20). These enzymes level levopimaradiene production in Escherichia coli. To increase are highly promiscuous (21), and the functional promiscuity is levopimaradiene synthesis, we amplified the flux toward isopen- often associated with unwanted product formation and poor cat- tenyl diphosphate and dimethylallyl diphosphate precursors and alytic properties (22).
    [Show full text]
  • A Single Residue Switch Converts Abietadiene Synthase Into a Pimaradiene Specific Yc Clase P
    Biochemistry, Biophysics and Molecular Biology Biochemistry, Biophysics and Molecular Biology Publications 2007 A Single Residue Switch Converts Abietadiene Synthase into a Pimaradiene Specific yC clase P. Ross Wilderman Iowa State University Reuben J. Peters Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/bbmb_ag_pubs Part of the Biochemistry Commons, Molecular Biology Commons, and the Structural Biology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ bbmb_ag_pubs/122. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Biochemistry, Biophysics and Molecular Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Biochemistry, Biophysics and Molecular Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Published on Web 12/01/2007 A Single Residue Switch Converts Abietadiene Synthase into a Pimaradiene Specific Cyclase P. Ross Wilderman and Reuben J. Peters* Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniVersity, Ames, Iowa 50011 Received July 5, 2007; E-mail: [email protected] Terpene synthases often catalyze the committed step in natural Scheme 1. AgAS Mediated Cyclization Reactions product biosynthetic pathways and mediate complex reactions, leading
    [Show full text]
  • US 2013/0224809 A1 Bohlmann Et Al
    US 20130224809A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0224809 A1 Bohlmann et al. (43) Pub. Date: Aug. 29, 2013 (54) DITERPENE SYNTHASES AND METHOD Publication Classification FOR PRODUCING DITERPENOIDS (51) Int. Cl. (71) Applicants: Joerg Bohlmann, Vancouver (CA); CI2N 9/88 (2006.01) Philipp Zerbe, North Vancouver (CA) (52) U.S. Cl. CPC ........................................ CI2N 9/88 (2013.01) (72) Inventors: Joerg Bohlmann, Vancouver (CA); USPC ....... 435/127: 536/23.2:435/232; 435/320.1; Philipp Zerbe, North Vancouver (CA) 435/252.3; 435/254.11: 435/419,435/348; 435/325; 435/252.33: 435/254.2:435/155 (21) Appl. No.: 13/694,350 (57) ABSTRACT Provided herein are diterpene synthases (diTPS) and methods (22) Filed: Nov. 21, 2012 for producing diterpenoids. Also provided herein are nucleic acid sequences encoding diTPS, diTPS amino acid Related U.S. Application Data sequences, diTPS proteins, vectors, cells, transgenic organ (60) Provisional application No. 61/562,280, filed on Nov. isms, uses, compositions, methods, processes, and kits 21, 2011. thereof. Patent Application Publication Aug. 29, 2013 Sheet 1 of 12 US 2013/0224809 A1 VIGRIQ?IH Patent Application Publication Aug. 29, 2013 Sheet 2 Of 12 US 2013/0224809 A1 Patent Application Publication Aug. 29, 2013 Sheet 3 of 12 US 2013/0224809 A1 Figure 2 neoabietadiere palustradiene 12 12.2 24 12.6 12.8 13 3.2 13.4 13.6 13.8 14 Time (min) B Abdi TPS4 product (8) 40 80 - 200 240 280 miz Patent Application Publication Aug. 29, 2013 Sheet 4 of 12 US 2013/0224809 A1 Figure 3 Abdi PS4 abietadiene Time min Patent Application Publication Aug.
    [Show full text]
  • Efficient Heterocyclisation by (Di)Terpene Synthases
    Biochemistry, Biophysics and Molecular Biology Publications Biochemistry, Biophysics and Molecular Biology 9-11-2015 Efficient heterocyclisation by (di)terpene synthases S. Mafu Iowa State University K. C. Potter Iowa State University M. L. Hillwig Iowa State University S. Schulte Iowa State University J. Criswell Iowa State University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/bbmb_ag_pubs Part of the Biochemistry Commons, Molecular Biology Commons, and the Structural Biology Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ bbmb_ag_pubs/128. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html. This Article is brought to you for free and open access by the Biochemistry, Biophysics and Molecular Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Biochemistry, Biophysics and Molecular Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Efficient heterocyclisation by (di)terpene synthases Abstract While cyclic ether forming terpene synthases are known, the basis for such heterocyclisation is unclear. Here it is reported that numerous (di)terpene synthases, particularly including the ancestral ent-kaurene synthase, efficiently oducepr isomers of manoyl oxide from the stereochemically appropriate substrate. Accordingly, such heterocyclisation is easily accomplished by terpene synthases. Indeed, the use of single residue changes to induce production of the appropriate substrate in the upstream active site leads to efficient bifunctional enzymes oducingpr isomers of manoyl oxide, representing novel enzymatic activity. Disciplines Biochemistry | Molecular Biology | Structural Biology Comments This is a manuscript of an article published as Mafu, S., K.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Dedicated Ent-Kaurene and Ent-Atiserene Synthases for Platensimycin and Platencin Biosynthesis
    Dedicated ent-kaurene and ent-atiserene synthases for platensimycin and platencin biosynthesis Michael J. Smanskia, Zhiguo Yub,c, Jeffrey Casperb, Shuangjun Linb, Ryan M. Petersonb,c, Yihua Chenb, Evelyn Wendt-Pienkowskib, Scott R. Rajskib, and Ben Shena,b,c,d,e,1 aMicrobiology Doctoral Training Program and bDivision of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705; Departments of cChemistry and dMolecular Therapeutics and eNatural Products Library Initiative at The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458 Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved July 13, 2011 (received for review April 29, 2011) Platensimycin (PTM) and platencin (PTN) are potent and selective has ever been reported. Interestingly, ent-kaurene synthase-cata- inhibitors of bacterial and mammalian fatty acid synthases and lyzed biosynthesis of ent-kaurene from ent-copalyl diphosphate have emerged as promising drug leads for both antibacterial (ent-CPP) can produce ent-atiserene as a minor metabolite (21). and antidiabetic therapies. Comparative analysis of the PTM and Minor mutations to terpene synthases in general (22) and CPP- PTN biosynthetic machineries in Streptomyces platensis MA7327 utilizing terpene synthases in particular (21, 23, 24) are also and MA7339 revealed that the divergence of PTM and PTN bio- known to alter product specificity. These observations, together synthesis is controlled by dedicated ent-kaurene and ent-atiserene with the fact that no ent-atiserene synthase is known, has become synthases, the latter of which represents a new pathway for diter- the basis of the current proposal that ent-kaurene synthase might penoid biosynthesis. The PTM and PTN biosynthetic machineries control the biosynthesis of both ent-kaurene and ent-atiserene- provide a rare glimpse at how secondary metabolic pathway evo- derived diterpenoid natural products (Fig.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Genomic Organization of Plant Terpene Synthases and Molecular Evolutionary Implications
    Copyright 2001 by the Genetics Society of America Genomic Organization of Plant Terpene Synthases and Molecular Evolutionary Implications Susan C. Trapp and Rodney B. Croteau Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 Manuscript received November 30, 2000 Accepted for publication March 1, 2001 ABSTRACT Terpenoids are the largest, most diverse class of plant natural products and they play numerous functional roles in primary metabolism and in ecological interactions. The ®rst committed step in the formation of the various terpenoid classes is the transformation of the prenyl diphosphate precursors, geranyl diphosphate, farnesyl diphosphate, and geranylgeranyl diphosphate, to the parent structures of each type catalyzed by the respective monoterpene (C10), sesquiterpene (C15), and diterpene synthases (C20). Over 30 cDNAs encoding plant terpenoid synthases involved in primary and secondary metabolism have been cloned and characterized. Here we describe the isolation and analysis of six genomic clones encoding terpene synthases of conifers, [(Ϫ)-pinene (C10), (Ϫ)-limonene (C10), (E)-␣-bisabolene (C15), ␦-selinene (C15), and abietadiene synthase (C20) from Abies grandis and taxadiene synthase (C20) from Taxus brevifolia], all of which are involved in natural products biosynthesis. Genome organization (intron number, size, placement and phase, and exon size) of these gymnosperm terpene synthases was compared to eight previously character- ized angiosperm terpene synthase genes and to six putative terpene synthase genomic sequences from Arabidopsis thaliana. Three distinct classes of terpene synthase genes were discerned, from which assumed patterns of sequential intron loss and the loss of an unusual internal sequence element suggest that the ancestral terpenoid synthase gene resembled a contemporary conifer diterpene synthase gene in containing at least 12 introns and 13 exons of conserved size.
    [Show full text]
  • Understanding the Bases for Catalysis in Class II Diterpene Cyclases Results in Novel Product Chemistries Kevin Charles Potter Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2015 Understanding the BASEs for catalysis in class II diterpene cyclases results in novel product chemistries Kevin Charles Potter Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biochemistry Commons, and the Molecular Biology Commons Recommended Citation Potter, Kevin Charles, "Understanding the BASEs for catalysis in class II diterpene cyclases results in novel product chemistries" (2015). Graduate Theses and Dissertations. 14625. https://lib.dr.iastate.edu/etd/14625 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Understanding the BASEs for catalysis in class II diterpene cyclases results in novel product chemistries by Kevin Charles Potter A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Molecular, Cellular and Developmental Biology Program of Study Committee: Reuben J. Peters Major Professor Michael Shogren-Knaak Mark Hargrove Gustavo MacIntosh Jacqueline V. Shanks Iowa State University Ames, Iowa 2015 Copyright © Kevin Charles Potter, 2015. All rights reserved. ii TABLE OF CONTENTS
    [Show full text]