Open Research Online Oro.Open.Ac.Uk

Total Page:16

File Type:pdf, Size:1020Kb

Open Research Online Oro.Open.Ac.Uk Open Research Online The Open University’s repository of research publications and other research outputs Investigating Exoplanets and Transients Using Small-Aperture Telescopes Thesis How to cite: Busuttil, Richard (2017). Investigating Exoplanets and Transients Using Small-Aperture Telescopes. PhD thesis The Open University. For guidance on citations see FAQs. c 2016 The Author Version: Version of Record Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Investigating Exoplanets and Transients Using Small-Aperture Telescopes Submitted for the degree of Doctor of Philosophy in Astronomy and Astrophysics Richard Busuttil MPhys (Hons) Supervisors: Dr. Ulrich Kolb, Dr. Carole Haswell The Open University Submitted September 2016 Abstract This work characterises PIRATE’s primary camera, the SBIG STX-16803, as well as assessing the usefulness and impact of a small-aperture semi-autonomous facility in Mallorca for exoplanet studies and studies of transient sources. Additionally, a method for exploring the Roche lobe of an exoplanet and the effects this has on the shape and density of the planet is also described. PIRATE is a small aperture photometric facility that can be operated remotely or autonomously, is constructed from commercially available hardware and utilised by The Open University for research, education and outreach. The camera gain measure- ments are within the manufacturer specifications while the read noise deviates quite significantly. The camera shutter is also verified to evenly illuminate the CCD which may be suffering from a form of residual image. Regarding exoplanets, PIRATE has helped to identify 108 false positives as well as 24 real and plausible planets. Combined, this is 67% of PIRATE’s total exoplanet candidate observations. Several of these targets are explored in further detail. Still on the subject of exoplanets, Roche calculations are applied to 207 known exoplanets and highlight that WASP-12b, WASP-19b and WASP-103b are likely to have strong distortions from a spherical shape. Look-up charts were also generated for mass ratios of 10−6 through to 10−1. These look-up charts are intended to provide a quick reference volume correction to exoplanets (or any other system of similar mass ratios). As part of the Gaia transient preparatory and to demonstrate the capabilities of PIRATE, SN 2014J is provided as an example. A peak B apparent magnitude, Bmax of 11.80 ± 0.14 mag is observed at a tmax of 56690.79 ± 0.01 MJD and provides Dm15 = 0.98 ± 0.20 mag. A peak E(B −V) extinction of 1.24 ± 0.16 mag (E(B −V)host = 1.19 ± 0.16 mag) is determined. Acknowledgements First and foremost I wish to thank my supervisors, Ulrich Kolb and Carole Haswell for their excellent guidance and feedback over the last few years. They have provided me with the intellectual freedom to explore the subject matter as well as providing en- couragement during the tough times of the PhD. I also wish to thank and acknowledge Geoff Bradshaw and his colleagues for their amazing dedication to ensuring that the Open University’s CEPSAR Linux systems are kept up and running as smoothly as possible. I am grateful to Stefan Holmes and his research on PIRATE; he was an excellent teacher and provided plenty of support during my early PIRATE days. I’m also grateful to Jakub Bochinski, Johanna Jarvis and Shripathy Hadigal; several of their PIRATE observations were of use to this thesis and they provided insightful discussions and solutions to several PIRATE solutions. The staff at the OAM are also acknowledged for their efforts behind the scenes which allowed PIRATE to function. I wish to thank Liam Steele, Robert Farmer, Anthony Davenport, Ziad el Otell, Kieran ’Kiz’ Natt, Andrew Carter, Elena Nickson and Jonathan Gregson for their help and expertise across a variety of topics, in addition to their friendship. Similarly, many thanks to Maria Duffy, Rebecca Wolsey, Alan Bradshaw, Feargus Abernethy, Peter Landsberg, Phillipa Smith and Roy Adkin for their amusing chats and entertaining anecdotes during the ritualistic 3:30pm coffee club. On the subject of coffee club, a massive thank you goes to Victoria Bending, James Holmes and Emma Fegan for keeping coffee club supplied with an abundance of Jaffa cakes, doughnuts and coffee which fuelled me through some of the long nights of writing. There are many others who have provided support and friendship that I have likely neglected to mention and to them, I offer my thanks. vi I would also like to thank my parents, Paul and Pauline Busuttil, for all their support and encouraging me to follow my dreams. Finally, I wish to thank my girlfriend, Catherine Hill, for putting up with my various complaints, supporting me through the tough times and most importantly believing in me even when I had stopped believing in myself. Contents List of Publications xiii List of Figures xv List of Tables xix 1 Introduction 1 1.1 PIRATE - Physics Innovations Robotic Astronomical Telescope Explorer3 1.1.1 Other Small Aperture Facilities . .4 1.2 SuperWASP . .5 1.3 Exoplanets . .6 1.3.1 Direct Imaging . .7 1.3.2 Astrometry . .7 1.3.3 Radial Velocity . .8 1.3.4 Gravitational Microlensing . .8 1.3.5 Pulsar Timing Variations . .9 1.3.6 Transits . .9 1.4 Astronomical Transient Events . 12 1.4.1 Supernovae . 12 1.4.1.1 Type-I SNe . 12 1.4.1.2 Type-II SNe . 14 1.4.2 Cataclysmic Variables (Novae, Dwarf Novae) . 15 1.4.3 Tidal Disruption Events . 16 1.4.4 Other Transient Events . 17 viii Contents ix 2 Camera Characterisation 20 2.1 PIRATE’s Primary Camera - SBIG STX-16803 . 20 2.2 Photon Transfer Curves . 22 2.3 Method & Results . 23 2.3.1 Setup . 23 2.3.2 CCD Overscan . 23 2.3.3 Standard Photon Transfer Curve . 28 2.3.3.1 PTC Errors . 33 2.3.3.2 Flat Correction . 33 2.4 Shutter Lag . 35 2.5 Discussion . 41 2.5.1 STX-16803 Gain and Read Noise . 41 2.5.2 Residual Images . 43 2.5.3 Flat Correction . 45 2.6 Key Results . 46 3 PIRATE Observations - Exoplanets 47 3.1 Observational Method . 48 3.1.1 Target Selection . 49 3.2 PIRATE Exoplanet Pipeline . 51 3.2.1 Original Exoplanet Reduction Pipeline . 51 3.2.2 Modifications to the PIRATE Exoplanet pipeline . 54 3.2.2.1 Correction of Bias/Dark/Flat implementation . 55 3.2.2.2 Master Frame Selection . 57 3.2.2.3 Auto-Frame selection . 59 3.2.2.4 On-Off . 61 3.3 Non-Detections and Observed Mimics . 62 3.3.1 Non-Detections . 62 3.3.2 Grazing . 63 3.3.3 Blends . 65 3.4 Observed Plausible Exoplanets . 65 3.4.1 1SWASPJ065329.01+190612.1 . 65 x Contents 3.4.2 1SWASPJ215011.04+514800.8 . 71 3.5 Published Planets . 74 3.5.1 WASP-54b . 75 3.5.2 WASP-56b . 79 3.5.3 WASP-58b . 80 3.5.4 WASP-59b . 81 3.5.5 WASP-60b . 82 3.5.6 WASP-65b . 83 3.5.7 WASP-69b . 84 3.5.8 WASP-86b . 85 3.5.9 WASP-92b . 86 3.5.10 WASP-93b . 87 3.5.11 WASP-125b . 88 3.6 Observation Statistics . 89 3.6.1 PIRATE’s Lightcurve Performance . 92 3.7 Key Results . 95 4 Exoplanetary Roche Lobe and Surface Geometry 97 4.1 Theory - The Roche Potential . 98 4.2 Method . 100 4.2.1 Roche Lobe Calculations . 100 4.2.2 Mapping the Planetary Surface Roche Potential . 104 4.3 Results . 109 4.3.1 Planetary Lobes . 109 4.3.2 Roche implications for WASP-12b . 116 4.3.3 Earth-like Planets Orbiting Cool White Dwarfs . 118 4.3.4 Roche Correction Look-up Chart . 119 4.4 Key Results . 120 5 PIRATE Observations - Gaia Transients 123 5.1 PIRATE’s Previous Transient Contributions . 124 5.2 Gaia Transient Alert Preparation . 125 5.2.1 ACP Scheduler and The VOEvent Receiver . 125 Contents xi 5.2.2 Gaia Data Reduction Pipeline . 129 5.2.3 Cambridge Photometry Calibration Server . 130 5.2.3.1 Calibrating PIRATE’s Filters . 133 5.2.4 PIRATE’s Limiting Magnitudes . 137 5.3 PIRATE Observed Transients . 138 5.3.1 SN 2014J - An Initial Inspection . 138 5.3.2 Other Observed Transients . 143 5.4 Key Results . 145 6 Conclusions and Outlook 146 6.1 Summary . 146 6.1.1 SBIG STX-16803 CCD Camera . 146 6.1.2 PIRATE’s Exoplanet Results . 148 6.1.3 Exoplanet Roche Lobes . 150 6.1.4 Gaia Transient Event with PIRATE . 151 6.2 Areas of Improvement and Future Work . 152 6.2.1 CCD Characterisation . 152 6.2.2 Improving Exoplanet Target Selection . 154 6.2.3 Improving the Exoplanet and Transient Reduction Pipelines . 155 6.2.4 Exoplanet Roche Lobes . 158 A Exoplanet Observation List 159 B Roche Code 174 C Known Exoplanet Roche Density Corrections 180 Bibliography 189 xii Contents List of Publications During the course of the PhD the author has directly and indirectly contributed to several publications and Astronomical Telegrams which are listed below: • Brothwell, R. D. et al. (2014). A window on exoplanet dynamical histories: Rossiter-McLaughlin observations of WASP-13b and WASP-32b. MNRAS, 440, 3392-3401. • Campbell, H. C. et al. (2015). Total eclipse of the heart: the AM CVn Gaia14aae / ASSASN-14cn.
Recommended publications
  • Massimiliano De Pasquale, Phd
    Prot. n. 0070016 del 29/07/2020 - [UOR: SI001070 - Classif. II/7] !1 Massimiliano De Pasquale, PhD a) Personal Details Date and Place of Birth: 3 August 1975, Messina (Italy). Nationality: Italian. Current Address: Istanbul University, Beyazıt Campus, Department of Astronomy and Space Sciences. Beyazıt, Istanbul, 34119, Turkey. Telephone: +90 505 033 6800 Fax: +90 2124400370 E-mail: [email protected] b) Education 1999–2002 PhD in Physics at University of Rome “La Sapienza”, Italy. Dissertation delivered on 20/01/2003. Title: “Progenitors and energy sources of Gamma-ray Bursts: a study of BeppoSAX observation archive”. Supervisors: Dr. L. Piro, Prof. R. Ruffini. Final grade: “very good”. 1993–1999 Master of Science in Physics at University of Messina, Italy. Dissertation delivered on 20/10/1999. Title: "Estimates of ultra high energy neutrino fluxes from Gamma-ray Bursts detectable by large scale Cherenkov submarine telescopes”. Final grade: 110/110 cum laude. c) Professional History November 2016 – present: Assistant Professor at Istanbul University, Department of Astronomy and Space Sciences. May 2015 – October 2016: Research Associate – Swift UV/Optical Telescope (UVOT) Instrument Scientist at Mullard Space Science Laboratory, University College London (MSSL- UCL). UVOT Burst Support Scientist (UBS) in the Swift Gamma-ray Burst (GRB) mission. 2014 – April 2015: Post-Doctoral position at Institute of Space Astrophysics and Cosmic Physics of Palermo (IASF-Palermo), Italy. X-ray Telescope Burst Support Scientist (XBS) and Burst Advocate (BA) in the Swift GRB mission. 2013 – 2014: Research Associate – Swift/UVOT Instrument Scientist at MSSL-UCL. UBS and BA in the Swift GRB mission. 2011 – 2012: Post-Doctoral Research Scholar at University of Nevada, Las Vegas, USA.
    [Show full text]
  • The Detailed Properties of Leo V, Pisces II and Canes Venatici II
    Haverford College Haverford Scholarship Faculty Publications Astronomy 2012 Tidal Signatures in the Faintest Milky Way Satellites: The Detailed Properties of Leo V, Pisces II and Canes Venatici II David J. Sand Jay Strader Beth Willman Haverford College Dennis Zaritsky Follow this and additional works at: https://scholarship.haverford.edu/astronomy_facpubs Repository Citation Sand, David J., Jay Strader, Beth Willman, Dennis Zaritsky, Brian Mcleod, Nelson Caldwell, Anil Seth, and Edward Olszewski. "Tidal Signatures In The Faintest Milky Way Satellites: The Detailed Properties Of Leo V, Pisces Ii, And Canes Venatici Ii." The Astrophysical Journal 756.1 (2012): 79. Print. This Journal Article is brought to you for free and open access by the Astronomy at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact [email protected]. The Astrophysical Journal, 756:79 (14pp), 2012 September 1 doi:10.1088/0004-637X/756/1/79 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. TIDAL SIGNATURES IN THE FAINTEST MILKY WAY SATELLITES: THE DETAILED PROPERTIES OF LEO V, PISCES II, AND CANES VENATICI II∗ David J. Sand1,2,7, Jay Strader3, Beth Willman4, Dennis Zaritsky5, Brian McLeod3, Nelson Caldwell3, Anil Seth6, and Edward Olszewski5 1 Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117, USA; [email protected] 2 Department of Physics, Broida Hall,
    [Show full text]
  • Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects
    Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Porto Alegre 2017 Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Dissertação elaborada sob orientação do Prof. Dr. Eduardo Luis Damiani Bica, co- orientação do Prof. Dr. Charles José Bon- ato e apresentada ao Instituto de Física da Universidade Federal do Rio Grande do Sul em preenchimento do requisito par- cial para obtenção do título de Mestre em Física. Porto Alegre 2017 Acknowledgements To my parents, who supported me and made this possible, in a time and place where being in a university was just a distant dream. To my dearest friends Elisabeth, Robert, Augusto, and Natália - who so many times helped me go from "I give up" to "I’ll try once more". To my cats Kira, Fen, and Demi - who lazily join me in bed at the end of the day, and make everything worthwhile. "But, first of all, it will be necessary to explain what is our idea of a cluster of stars, and by what means we have obtained it. For an instance, I shall take the phenomenon which presents itself in many clusters: It is that of a number of lucid spots, of equal lustre, scattered over a circular space, in such a manner as to appear gradually more compressed towards the middle; and which compression, in the clusters to which I allude, is generally carried so far, as, by imperceptible degrees, to end in a luminous center, of a resolvable blaze of light." William Herschel, 1789 Abstract We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties.
    [Show full text]
  • Eight New Milky Way Companions Discovered in First­Year Dark Energy Survey Data
    Eight new Milky Way companions discovered in first-year Dark Energy Survey Data Article (Published Version) Romer, Kathy and The DES Collaboration, et al (2015) Eight new Milky Way companions discovered in first-year Dark Energy Survey Data. Astrophysical Journal, 807 (1). ISSN 0004- 637X This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/61756/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk The Astrophysical Journal, 807:50 (16pp), 2015 July 1 doi:10.1088/0004-637X/807/1/50 © 2015.
    [Show full text]
  • Kugelsternhaufen
    www.vds-astro.de ISSN 1615-0880 IV/2010 Nr. 35 Zeitschrift der Vereinigung der Sternfreunde e.V. Schwerpunktthema Kugelsternhaufen Klein, rund und plump! Die Botschaft von den Grundlagen der JPG-Foto- Seite 54 Sternen metrie Seite 87 Seite 111 [email protected] • www.astro-shop.com Tel.: 040/5114348 • Fax: 040/5114594 Eiffestr. 426 • 20537 Hamburg Astroart 4.0 Canon EOS 1000D Astro Photoshop Astronomy Die aktuellste Version Ab sofort erhalten Sie bei uns speziell für die Der Autor arbeitet seit fast 10 Jahren mit Photo- des bekannten Bildbe- Astronomie modizierte Canon EOS Kameras, shop, um seine Astrofotos zu bearbeiten. Die arbeitungspro- ab Lager und mit Garantie! dabei gemachten Erfahrungen hat er in diesem grammes gibt es jetzt Die 1000D Astro hat eine um den Faktor 5 speziell auf die Bedürfnisse des Amateurastro- mit interessanten höhere Rotempndlichkeit im Bereich von nomen zugeschnitte- neuen Funktionen. H-alpha nen Buch gesammelt. Moderne Dateifor- bzw. SII. Die behandelten The- men sind unter ande- mate wie DSLR-RAW Endlich rem: die technische werden unterstützt, können Ausstattung, Farbma- Bilder können Regionen nagement, Histo- durch automa- am Himmel gramme, Maskie- tische Sternfelderken- sichtbar rungstechniken, nung direkt überlagert werden, was die Bild- gemacht Addition mehrerer feldrotation vernachlässigbar macht. Auch die werden, die Bilder, Korrektur von Bearbeitung von Farbbildern wurde erweitert. vorher auf Astroaufnahmen nur ansatzweise Vignettierungen, Besonderes Augenmerk liegt auf der Erken- sichtbar waren oder im Himmelshintergrund Farbhalos, Deformationen oder nung und Behandlung von Pixelfehlern der schlicht 'abgesoen' sind. Somit stellt die EOS überbelichteten Sternen, LRGB und vieles Aufnahme-Chips. 1000D Astro eine preisgünstige Alternative zu mehr.
    [Show full text]
  • Arxiv:1508.03622V2 [Astro-Ph.GA] 6 Nov 2015 – 2 –
    Eight Ultra-faint Galaxy Candidates Discovered in Year Two of the Dark Energy Survey 1; 2;3; 4;5 6;7 6;7 8;4;5 A. Drlica-Wagner ∗, K. Bechtol y, E. S. Rykoff , E. Luque , A. Queiroz , Y.-Y. Mao , R. H. Wechsler8;4;5, J. D. Simon9, B. Santiago6;7, B. Yanny1, E. Balbinot10;7, S. Dodelson1;11, A. Fausti Neto7, D. J. James12, T. S. Li13, M. A. G. Maia7;14, J. L. Marshall13, A. Pieres6;7, K. Stringer13, A. R. Walker12, T. M. C. Abbott12, F. B. Abdalla15;16, S. Allam1, A. Benoit-L´evy15, G. M. Bernstein17, E. Bertin18;19, D. Brooks15, E. Buckley-Geer1, D. L. Burke4;5, A. Carnero Rosell7;14, M. Carrasco Kind20;21, J. Carretero22;23, M. Crocce22, L. N. da Costa7;14, S. Desai24;25, H. T. Diehl1, J. P. Dietrich24;25, P. Doel15, T. F. Eifler17;26, A. E. Evrard27;28, D. A. Finley1, B. Flaugher1, P. Fosalba22, J. Frieman1;11, E. Gaztanaga22, D. W. Gerdes28, D. Gruen29;30, R. A. Gruendl20;21, G. Gutierrez1, K. Honscheid31;32, K. Kuehn33, N. Kuropatkin1, O. Lahav15, P. Martini31;34, R. Miquel35;23, B. Nord1, R. Ogando7;14, A. A. Plazas26, K. Reil5, A. Roodman4;5, M. Sako17, E. Sanchez36, V. Scarpine1, M. Schubnell28, I. Sevilla-Noarbe36;20, R. C. Smith12, M. Soares-Santos1, F. Sobreira1;7, E. Suchyta31;32, M. E. C. Swanson21, G. Tarle28, D. Tucker1, V. Vikram37, W. Wester1, Y. Zhang28, J. Zuntz38 (The DES Collaboration) arXiv:1508.03622v2 [astro-ph.GA] 6 Nov 2015 { 2 { *[email protected] [email protected] 1Fermi National Accelerator Laboratory, P.
    [Show full text]
  • Liverpool Telescope 2: a New Robotic Facility for Rapid Transient Follow-Up
    Noname manuscript No. (will be inserted by the editor) Liverpool Telescope 2: a new robotic facility for rapid transient follow-up C.M. Copperwheat · I.A. Steele · R.M. Barnsley · S.D. Bates · D. Bersier · M.F. Bode · D. Carter · N.R. Clay · C.A. Collins · M.J. Darnley · C.J. Davis · C.M. Gutierrez · D.J. Harman · P.A. James · J.H. Knapen · S. Kobayashi · J.M. Marchant · P.A. Mazzali · C.J. Mottram · C.G. Mundell · A. Newsam · A. Oscoz · E. Palle · A. Piascik · R. Rebolo · R.J. Smith Received: date / Accepted: date Abstract The Liverpool Telescope is one of the world’s premier facilities for time domain astronomy. The time domain landscape is set to radically change in the coming decade, with synoptic all-sky surveys such as LSST providing huge numbers of transient detections on a nightly basis; transient detections across the electromagnetic spectrum from other major facilities such as SVOM, SKA and CTA; and the era of ‘multi-messenger astronomy’, wherein astro- physical events are detected via non-electromagnetic means, such as neutrino or gravitational wave emission. We describe here our plans for the Liverpool Telescope 2: a new robotic telescope designed to capitalise on this new era of time domain astronomy. LT2 will be a 4-metre class facility co-located with the Liverpool Telescope at the Observatorio del Roque de Los Muchachos on the Canary island of La Palma. The telescope will be designed for extremely C.M. Copperwheat · I.A. Steele · R.M. Barnsley · S.D. Bates · D. Bersier · M.F. Bode · D.
    [Show full text]
  • EAS BUSINESS…  Scheduled EAS Star Parties at Ron Tam’S: 
    1 Volume MMXIII No. 4 April 2013 President: Mark Folkerts (425) 486-9733 folkerts at seanet dot com The Stargazer VP and Programs: Ron Mosher ron.mosher69 at gmail dot net P.O. Box 13272 Librarian: Chris Dennis chrisandlinda at frontier dot net Mill Creek, WA 98082 Treasurer: Cindy Perkins Web assistance: Cody Gibson cgibson41 at austin dot rr dot com Publicity Bill Ferguson / Mike Kozak Intro Astro Classes Jack Barnes jackdanielb at comcast dot net See EAS website at: Public Outreach coord. Mike Tucker scalped_raven at yahoo dot com http://everettastro.org STAR PARTY INFO EAS BUSINESS… Scheduled EAS Star Parties at Ron Tam’s: *** Friday April 5th, 7:30 pm at Ron’s place. *** APRIL EAS MEETING – SATURDAY APRIL 20, 3:00 PM, AT EVERGREEN BRANCH LIBRARY, MEETING ROOM EAS member Ron Tam has offered a flexible opportunity to EAS members to come to his home north of Snohomish for observing on The next EAS monthly meeting will be 3:00 pm clear weekend evenings and for EAS star parties. Anyone wishing to do Saturday April 20th. Presentation will be ‘Saturn: Lord of so needs to contact him in advance and confirm available dates, and let the Rings’ (as it comes to opposition). EAS meetings have him know if plans change. “Our place is open for star parties any speakers or presentations, and updates on calendar events and Saturday except weekends of the Full Moon. People can call to get upcoming activities, and are open to the public at no charge. weather conditions or to confirm that there is a star party.
    [Show full text]
  • Universidad De Chile Facultad De Ciencias Físicas Y Matemáticas Departamento De Astronomía
    UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE ASTRONOMÍA A COMPREHENSIVE PHOTOMETRIC STUDY OF THE MILKY WAY’S OUTER HALO SATELLITES TESIS PARA OPTAR AL GRADO DE DOCTOR EN CIENCIAS, MENCIÓN ASTRONOMÍA SEBASTIÁN ANDRÉS MARCHI LASCH PROFESOR GUÍA: RICARDO MUÑOZ VIDAL MIEMBROS DE LA COMISIÓN: JULIO CHANAMÉ DOMÍNGUEZ JAMES JENKINS PAULINA LIRA TEILLERY Este trabajo ha sido parcialmente financiado por CONICYT, DAS SANTIAGO DE CHILE 2020 RESUMEN DE LA MEMORIA PARA OPTAR AL TÍTULO DE DOCTOR EN CIENCIAS, MENCIÓN ASTRONOMÍA POR: SEBASTIÁN ANDRÉS MARCHI LASCH FECHA: 2020 PROF. GUÍA: RICARDO MUÑOZ VIDAL UN ESTUDIO FOTOMÉTRICO EXHAUSTIVO DE LOS OBJETOS SATÉLITES DEL HALO EXTERNO DE LA VÍA LÁCTEA. Una de las interrogantes más importantes en la astronomía Galáctica es entender los procesos responsables de la formación y evolución de la Vía Láctea. La mayor parte de la información para estudiar las etapas tempranas de formación Galáctica está contenida en el halo y sus subestructuras, dominadas por poblaciones estelares antiguas. En esta tesis, realizo un estudio fotométrico completo de los satélites del halo externo de la Vía Láctea. Ellos se agrupan en cúmulos globulares, galaxias enanas esferoidales y galaxias enanas ultra-débiles. Para esto, usé un set de datos que al mismo tiempo es profundo, de campo amplio y altamente homogéneo, a diferencia de los existentes en la literatura. En la primera parte de esta tesis, presento evidencia de una correlación entre el índice de Sérsic y el radio efectivo, seguida por una
    [Show full text]
  • Abenteuer Astronomie 13 | Februar/März 2018 Fokussiert
    Abenteuer Astronomie 13 | Februar/März 2018 fokussiert Titelbild: So stellt sich ein Künstler die Oberfläche des Planeten TRAPPIST-1f vor. Ob der Planet in rund 40 Lichtjahren Entfernung aber tatsächlich so aussieht, weiß man noch nicht. NASA/JPL-Caltech REDAKTION IM EINSATZ BoHeTa 2017 Es gibt wohl kaum einen Ort, wo man sich besser über die Möglichkeiten der modernen Amateurastronomie und die Kreativität in der Szene informieren könnte, als die alljähr- Stefan Deiters liche Bochumer Herbsttagung (»BoHeTa«). Die 36. Ausga- Chefredakteur be, erstmals seit Jahren in einem anderen Hörsaal, dessen Eingang auf dem komplex dreidimensionalen Uni-Campus . t nur dank üppiger Ausschilderung durch die Veranstalter g zu finden war, machte da keine Ausnahme. Das Potpourri Liebe Leserinnen, liebe Leser, der Vorträge in den neun Stunden des 11. November 2017 gibt es Leben auf anderen Planeten oder Monden? Diese reichte von originellen Lösungen bei besonders preisgüns- Frage beschäftigt die Wissenschaft und Öffentlichkeit nicht tigem Sternwarten-Bau über Missverständnisse bei Po- ist untersa erst, seit wir in Science-Fiction-Filmen regelmäßig mit außer- g larlichtern bis zu Planetenforschung und Astrophysik auf irdischen Lebensformen konfrontiert werden. Deren Ausse- Profi-Niveau – aber von Amateur- oder Schulastronomen in hen entspringt der Fantasie der Autoren – die Wissenschaft reitun Eigenregie durchgeführt. ist noch nicht soweit, hier irgendwelche konkreten Aussagen b Dazu gehörte zum Beispiel die Messung von Lichtkurven machen zu können. Für unseren Hauptartikel hat der Astro- des Zwergplaneten Haumea in Farbe, die eine regelrech- biologe Johannes Leitner den gegenwärtigen Wissensstand zu- te »Kartierung« des Football-förmigen Körpers im Kui- sammengefasst (Seite 16). Ergänzt wird der Artikel durch ein pergürtel inklusive bunter Flecken ermöglichte.
    [Show full text]
  • Instituto De Astrofísica De Andalucía IAA-CSIC
    Cover Picture. First image of the Shadow of the Supermassive Black Hole in M87 obtained with the Event Horizon Telescope (EHT) Credit: The Astrophysical Journal Letters, 875:L1 (17pp), 2019 April 10 index 1 Foreword 3 Research Activity 24 Gender Actions 26 SCI Publications 27 Awards 31 Education 34 Internationalization 41 Workshops and Meetings 43 Staff 47 Public Outreach 53 Funding 59 Annex – List of Publications Foreword coordinated at the IAA. This project, designed to study the central region of the Milky Way with an This Report comes later than usual because of the unprecedented resolution, unravels the history of Covid-Sars2 pandemia. Let us use these first lines star formation in the galactic center, showing that to remember those who died on the occasion of it has not been continuous. In fact, an intense Covid19 and to all those affected personally. We episode of star formation that occurred about a thank all the people, especially in the health sector, billion years ago was detected, where stars with a who worked hard for the good of our society. combined mass of several tens of millions of suns were formed in less than 100 million years. After having received the Severo Ochoa Excellence award in June 2018, 2019 was the first year to be Many other interesting results were published by fully dedicated to our highly competitive strategic IAA researchers in more that 250 publications in research programme. Already the first week of refereed journals, a number of those reflecting our April 2019 was a very special one for the IAA life.
    [Show full text]
  • Lecture Four: Scaling Relations Late Type Galaxies… Masses of Spiral
    Lecture Four: Scaling Relations Measuring galaxy properties contd. One of the main uses of astrophysical surface photometry is for the study of parameter correlations and scaling laws. These contain valuable information about galaxy formation & evolution Kormendy & Djorgovski 1989 ARAA 27 235 Tuesday 11th Feb 1 2 Masses of Spiral galaxies Surface Brightness profiles sample the distribution of luminous matter in a galaxy. This does not necessarily tell us about the mass of the galaxy - due to DARK MATTER. Late Type Galaxies… HI rotation curves allow TOTAL mass determination. Battaglia et al. 2006 A&A, 447, 49 3 4 Rotation Curves of Spiral Galaxies Bosma 1981 Masses of Spiral galaxies correlations : The constant rotational velocities in the outer regions - suggest that mass increases linearly • increasing L rotation curves tend with distance from the centre. In stark contrast to the light distribution, which decreases B exponentially over the same distance. to rise more rapidly with distance from centre and peak at higher This means a rapidly increasing mass-to-light ration (M/L) and a hidden dark matter halo in maximum velocity (Vmax). spiral galaxies (Bosma 1981). • for equal LB spirals of earlier type have larger Vmax. The fact that galaxies of different Hubble types, and therefore different bulge-to-disk luminosity ratios, exhibit rotation curves that are very similar in form if not in amplitude • within a given Hubble type more suggests that the shapes of the gravitational potential do not necessarily follow the luminous galaxies have larger Vmax. distribution of luminous matter. • for a given value of Vmax the rotation curves tend to rise slightly more rapidly with radius for earlier type galaxies.
    [Show full text]