Curriculum on Coastal and Marine Biodiversity and Protected Area Management fdukjh vkf.k leqnzh tSofofoèkrk vkf.k lajf{kr {ks= O;oLFkkiu ;kojhy vH;klØe Module 6 Assessment and Monitoring of Coastal and Marine Biodiversity and Associated Issues For Field-Level MPA Managers eksMîqy 6% fdukjh vkf.k leqnzhtSofofoèkrk vkf.k lacafèkr leL;kaps ewY;ekiu vkf.k lafu;a=.k {ks=h;&ikrGhojhy MPA O;oLFkkidkalkBh Imprint vksG[kfpUg Training Resource Material on Coastal and Marine Biodiversity and Protected Area Management for field-level MPA egkjk"Vªkrhy {ks=&Lrjh; MPA O;oLFkkidkalkBh fdukjh vkf.k leqæhtSofofo/krk vkf.k lajf{kr {ks= O;oLFkkiu çf’k{k.k managers of lalk/ku lkfgR;

Module 1: An Introduction to Coastal and Marine Biodiversity and Ecosystem Services eksMîqy 1% fdukjh vkf.k leqnzhtSofofoèkrk vkf.k ifjfLFkrhd O;oLFkk lsospk ifjp; Module 2: Coastal and Marine Biodiversity and Ecosystems Services in the Overall Environment and Development Context eksMîqy 2% ,dw.k i;kZoj.k vkf.k fodklkP;k lanHkkZr fdukjh vkf.k leqnzhtSofofoèkrk vkf.k ifjfLFkrhd O;oLFkk lsok Module 3: Mainstreaming Coastal and Marine Biodiversity Conservation Concerns into Overall Development and Environmental Planning eksMîqy 3% ,dw.k fodkl vkf.k i;kZoj.kh; fu;kstukeè;s fdukjh vkf.k leqnzhtSofofoèkrk laoèkZukckcrps fo”k; eq[; çokgkr vk.k.ks Module 4: Coastal and Marine Protected Areas and Sustainable Fisheries Management eksMîqy 4% fdukjh vkf.k leqæh lajf{kr {ks=s vkf.k ‘kkÜor eRL;ks|ksx O;oLFkkiu Module 5: Governance, Law and Policies for Managing Coastal and Marine Ecosystems, Biodiversity and Protected Areas eksMîqy 5% fdukjh vkf.k leqæh ifjfLFkrhd O;oLFkk] tSofofoèkrk vkf.k lajf{kr {ks=kaps O;oLFkkiu dj.;klkBh ç’kklu] dk;nk o èkksj.ks Module 6: Assessment and Monitoring of Coastal and Marine Biodiversity and Relevant Issues eksMîqy 6% fdukjh vkf.k leqnzhtSofofoèkrk vkf.k lacafèkr leL;kaps ewY;ekiu vkf.k lafu;a=.k Module 7: Effective Management Planning of Coastal and Marine Protected Areas eksMîqy 7% fdukjh vkf.k leqæh lajf{kr {ks=kaps çHkkoh O;oLFkkiu fu;kstu Module 8: Communicating Coastal and Marine Biodiversity Conservation and Management Issues eksMîqy 8% fdukjh vkf.k leqnzhtSofofoèkrk laoèkZu vkf.k O;oLFkkiukP;k leL;k O;ä dj.ks

ISBN 978-81-933215-4-6 ISBN 978-81-933215-4-6

November 2016 (first edition) uksOgsacj 2016 ¼ifgyh vko`Ùkh½

Published by: }kjs çdkf’kr% Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Wildlife Institute of (WII) Mangrove Cell- Maharashtra Forest Department Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH okÃYMykÃQ bfULVVîwV v‚Q bafM;k (WII) [kkjQqVh lsy & egkjk”Vª ou foHkkx Indo-German Biodiversity Programme P.O. Box 18, Chandrabani 2nd Floor, A Wing, S.R.A. Building, Anant Hkkjr&teZuh tSofofoèkrk dk;ZØe ih-vks- c‚Dl 18] paæcuh 2 jk etyk] , foax] ,l-vkj-,- bekjr] A-2/18, Safdarjung Enclave Dehradun 248001 Kanekar Marg, ,&2@18] lQnjxat ,uDysOg MsgjkMwu 248001 vuar dk.ksdj ekxZ] New Delhi 110029, India Uttarakhand, India Bandra East- 400051, uoh fnYyh 110029, Hkkjr mÙkjk[kaM] Hkkjr okaæs iwoZ& 400051] eqacbZ- T +91-11-4949 5353 T +91-135-2640 910 Mumbai. nw $ 91–11–4949 5353 nw $ 91&135&2640 910 nw $22& 26476151 E [email protected] E [email protected] T +22- 26476151 bZ [email protected] Ã [email protected] bZ [email protected] W http://www.indo-germanbiodiversity.com W www.wii.gov.in E [email protected] os http://www.indo-germanbiodiversity.com os www.wii.gov.in

GIZ is a German government-owned not-for-profit enterprise supporting sustainable development. GIZ gk ,d teZu ‘kklukP;k ekydhpk fouk uQk m|ksx vkgs tks ‘kkÜor fodklkl vkèkkj nsrks-

This training resource material has been developed under the Human Capacity Development component of the project ‘Conservation and Sustainable MoEFCC Management of Existing and Potential Coastal and Marine Protected Areas (CMPA)’, under the Indo-German Biodiversity Programme, in partnership with the gs çf’k{k.k lkèkuL=ksr lkfgR; i;kZoj.k] ou vkf.k gokeku cny ea=ky; ¼ ½] Hkkjr ljdkjP;k Hkkxhnkjheè;s baMks&teZuh tSofofoèkrk dk;ZØekeè;s Ministry of Environment, Forest and Climate Change (MoEFCC), Government of India. The CMPA Project has been commissioned by the German Federal ^fo|eku fdukjh vkf.k leqæh lajf{kr {ks=kaP;k laoèkZu vkf.k ‘kkÜor O;oLFkkiu ¼CMPA½* çdYikP;k ekuoh {kerk fodkl ?kVdkarxZr fodlhr dj.;kr vkys Ministry for Environment, Nature Conservation, Building and Nuclear Safety (BMUB) with the funds provided under the International Climate Initiative (IKI). vkgs- CMPA çdYi teZu QsMjy i;kZoj.k] fulxZ laoèkZu] mHkkj.kh o v.kw lqj{kk ea=ky; (BMUB) ;kaP;k}kjs vkarjjk”Vªh; gokeku iq

With Guidance from: ;kaP;k ekxZn’kZuklg% Director, Indo-German Biodiversity Programme, GIZ India lapkyd] baMks&teZu tSofofoèkrk dk;ZØe] GIZ bafM;k] Dr. V B Mathur, Director, Wildlife Institute of India M‚- Ogh ch ekFkwj] lapkyd okÃYMykÃQ bfULVVîwV v‚Q bafM;k Dr. J. Michael Vakily, Team Leader, CMPA Project, Indo-German Biodiversity Programme, GIZ India M‚- ts ek;dsy oWfdyh] la?k usrk] CMPA çdYi] baMks&teZu tSofofoèkrk dk;ZØe] GIZ bafM;k

Compiled and edited by: ladyu o laiknu] }kjs% Dr. Neeraj Khera, Senior Advisor, Indo-German Biodiversity Programme, GIZ India M‚- uhjt [ksjk] ofj”B lYykxkj] baMks&teZu tSofofoèkrk dk;ZØe] GIZ bafM;k Dr. K. Sivakumar, Scientist E, Wildlife Institute of India M‚- ds- flokdqekj] oSKkfud Ã] okÃYMykÃQ bfULVVîwV v‚Q bafM;k Dr. Sarang Kulkarni, Marine Biologist, Indian Institute of Scuba Diving and Aquatic Sports (IISDA) M‚- lkjax dqyd.kÊ] leqæh tho’kkL=K] bafM;u bfULVVîwV v‚Q Ldqck Mk;Çox v¡M ,WDosfVd LiksV~lZ (IISDA) Mr. N. Vasudevan, IFS, Mangrove Cell, Maharashtra Forest Department Jh- ,u oklqnsou] [kkjQqVh lsy] egkjk”Vª

Text and editing contributions from: etdwj vkf.k laiknu ;ksxnku] }kjs% Dr. J.A. Johnson, Scientist D, Wildlife Institute of India; Dr. Ramesh Chinnasamy, Scientist C, Wildlife Institute of India; Dr. D. Adhavan, Project Associate, M‚- ts-,- t‚Ulu] oSKkfud Mh] okÃYMykÃQ bfULVVîwV v‚Q bafM;k( M‚- jes’k fpUulkeh] oSKkfud lh] okÃYMykÃQ bfULVVîwV v‚Q bafM;k( M‚- Mh- vkèkou] Wildlife Institute of India; Dr. Pradeep Mehta, Research and Programme Manager, Earthwatch Institute India; Mr. Luke Mendes, Writer, Filmmaker and Media çdYi lgdkjh] okÃYMykÃQ bfULVVîwV v‚Q bafM;k( M‚- çnhi esgrk] la’kksèku vkf.k dk;ZØe O;oLFkkid] vFkZo‚p bfULVVîwV v‚Q bafM;k( Jh- Y;qd esaMsl] Trainer, Mumbai; Mr. S. Gopikrishna Warrier, Regional Environment Manager, PANOS South Asia [Module 8]; Mr. Darryl D’Monte, Chairperson, Forum of ys[kd] fQYeesdj vkf.k fefM;k çf’k{kd] eqacÃ( Jh- xksih—”.k o‚fjvj] çknsf’kd i;kZoj.kh; O;oLFkkid] iWuksl nf{k.k vkf’k;k ¼eksMîqy 8½] Jh- Msjhy fM^ek¡Vs] Environmental Journalists of India (FEJI) [Module 8]; Dr. Dirk Asendorpf, Journalist and Media Trainer, Germany [Module 8]; Ms Atiya Anis, Communications psvjilZu] Qksje v‚Q ,UOgk;uZesaVy tukZfyLV~l v‚Q bafM;k (FEJI) ¼eksMîqy 8½( M‚- MdZ ,lsuMksQZ] i=dkj vkf.k fefM;k çf’k{kd teZuh ¼eksMîqy 8½( dq- vfr;k Expert, Indo-German Biodiversity Programme, GIZ India; Mr. Sanjay Dave, Charkha and Mr. Bharat Patel, MASS Gujarat [case studies of turtle rescue and ,ful] lapkj rK] baMks&teZu tSofofoèkrk dk;ZØe] GIZ bafM;k( Jh- lat; nos] pj[kk vkf.k Jh- Hkjr iVsy] MASS xqtjkr ¼dklo cpko vkf.k [kkjQqVhP;k leqnk; community plantation of mangroves]; Dr. R. Ramesh and team, NCSCM [ecosystem services, differences between terrestrial and coastal ecosystems, GIS]; Ms o`{kkjksi.kkP;k dsl LVMht½( M‚- vkj- jes’k vkf.k la?k] NCSCM ¼bdksflfLVe lÆOglsl] Hkwçns’kh; vkf.k fdukjh ifjfLFkrhd O;oLFksrhy Qjd] thvk;,l½( dq- gsfyuk Helina Jolly [economic valuation methods and examples]; Ms Janki Teli [case study of Whale Shark]; tksyh ¼vkÆFkd ewY;kadu i)rh vkf.k mnkgj.ks½( dq tkudh rsyh ¼Ogsy ‘kkdZP;k dsl LVMht½(

Designed by: fM>kÃu }kjs% Aspire Design, New Delhi ,WLik;j fM>kÃu] uoh fnYyh

Translated from English to Marathi: ejkBhe/;s vuqokn% Cuttingedge Translation Services Pvt. Ltd dfVax,t VªkUlys’ku lfOgZlsl izk-fy- (Cuttingedge Translation Services Pvt. Ltd.)

Photos by: Nk;kfp=s }kjs% Neeraj Khera, unless credited otherwise. uhjt [ksjk] tksi;±r vU;Fkk Js; fnys tkr ukgh- Disclaimer: vLoh—rh% This training resource material is work in progress. The material in this publication is meant to be used for educational purposes only. It has been compiled, gs çf’k{k.k lkèkuL=ksr lkfgR; gs çxrhiFkkojhy dke vkgs- ák çdk’kukrhy lkfgR; dsoG ‘kS{kf.kd mís’kkalkBh vkgs- ukekafdr ys[kd] ;ksxnkudrsZ vkf.k laikndkauh developed and edited by the named authors, contributors and editors and does not necessarily reflect the views of the GIZ or its partners. The master text has gs ladfyr] fodlhr vkf.k laikfnr dsys vkgs vkf.k R;keè;s GIZ Çdok R;kaP;k Hkkxhnkjkaps –”Vhdksu çfrÇcfcr gksrhyp vls ukgh- çeq[k etdwj gk etdwjkeè;s been created and compiled from documented and published references/resources, as cited in the text. The master text has subsequently been edited and ekaMY;kuqlkj] nLr,sothr vkf.k çdkf’kr lanHkZ@lkèkuL=ksrkarwu fuekZ.k o ladfyr dsysyk vkgs- R;kuarj çeq[k etdwj {ks= ikrGhojhy MPA O;oLFkkid] ofj”B customized to develop training material for field-level MPA managers, senior MPA managers, media students and trainers. While due care has been taken in MPA O;oLFkkid] fefM;k fo|kFkÊ vkf.k çf’k{kdkalkBh çf’k{k.k lkfgR; fodlhr dj.;klkBh laikfnr o lkuqdwy dsyk xsyk vkgs- gk nLr,sot r;kj djrkuk ;ksX; preparing this document, the publisher, editors and text contributors assume no responsibility for the authenticity, correctness, sufficiency or completeness rh dkGth ?ksryh xsyh vlyh rjh] çdk’kd] laiknd vkf.k etdwj ;ksxnkudrsZ v’kk ekfgrh Çdok mnkgj.kkaP;k lR;rk] vpwdrk] iwjdrk Çdok iw.kZrsckcr of such information or examples. Any geographical maps are for informational purposes only and do not constitute recognition of international boundaries dks.krhgh tckcnkjh x`ghr èkjr ukghr- dks.krsgh HkkSxksfyd udk’ks dsoG ekfgrhij mís’kkus vkgsr vkf.k vkarjjk”Vªh; lhek Çdok çns’kkaph vksG[k ukgh udk’kkaP;k or regions; publishers make no claims concerning the accuracy of the maps nor assumes any liability resulting from the use of the information therein. Any vpqdrsckcr çdk’kd dks.krsgh nkos djr ukghr Çdok R;krhy ekfgrhP;k okijkrwu mn~Hko.kkjs dks.krsgh nkf;Ro x`ghr èkjr ukghr- ák çf’k{k.k lkfgR;keè;s feedback and suggestions for improving this training material are welcomed at [email protected]. lqèkkj.kk dj.;klkBhP;k dks.kR;kgh vfHkçk; o lwpukaps ;sFks Lokxr vkgs [email protected] Curriculum on fdukjh vkf.k leqnzh tSofofoèkrk vkf.k lajf{kr {ks= O;oLFkkiu Coastal and Marine Biodiversity and Protected Area Management ;kojhy vH;klØe

Module 6 eksMîqy 6 Assessment and Monitoring of Coastal and Marine Biodiversity fdukjh vkf.k leqnzhtSofofoèkrk vkf.k lacafèkr and Associated Issues leL;kaps ewY;ekiu vkf.k lafu;a=.k

For Field-Level MPA Managers {ks=h;&ikrGhojhy MPA O;oLFkkidkalkBh

Summary lkjka’k

This module has been designed to provide the required information on different coastal and marine gk Hkkxfofo/k fdukjh vkf.k leqæh ifjfLFkrhdh] fparktudleqæh oLR;k] R;kaps egRo vkf.k eqY;kadu ;kaoj vko’;d ecosystems, critical marine habitats, their importance and assessment. It will also help participants in vlysyh ekfgrhiqjo.;klkBh cuoyk xsyk vkgs- rlsp rks lgHkkxhauk fdukjh o leqæh ifjfLFkrhdhae/;s lkiM.kkÚ;k identification of species found in coastal and marine ecosystems. This will equip them with assessment Átkrhal vksG[k.;krgh enr djsy- ;keqGs rs fofo/k fparktudoLrhLFkkukaP;k eqY;kadu dk;Zi/nrhaph pkaxyh tk.k methodologies of different critical habitats species. This module will be delivered through different learning feGsy- gk Hkkxfofo/k i/nrhauh f’kdoyk tkbZy] T;kr oxkZrhy vH;kl] vkf.k ryko rlsp [kqY;k ik.;krhy ifjfLFkrh techniques, comprising class room session, and hands-on assessment practice in contained pool as well as let.;klkBh Ák;ksfxd eqY;kadu vlsy-fdukjh vkf.k leqnzh oLrhLFkkus vkf.k lacaf/kr iztkrhaojhy loZ egRokP;k open-water conditions. Hands on experience will be provided on all important topics covered in this module eqÌÓkaoj vf/kd mRre let feG.;klkBh okLro vuqHko fnyk tkbZy- ;k [kaMkpk ,d Hkkx Eg.kwu] leqnzfdukjs] for better understanding of the coastal and marine habitats and the associated species. As a part of this var%Tojh; tehu rlsp [kkjQqVh ifjfLFkrhd O;oLFkkauk usys tkbZy- module, exposure visits will be organized to beach, intertidal and mangrove ecosystems.

3 4 Table of contents fo”k; lkj.kh

Acronyms 7 vk|k{kjs 7

6.1 Why assessment, monitoring, evaluation and review of MPAs 11 6.1 MPAs ps eqY;kadu] lafujh{k.k] eqY;fu/kkZj.k vkf.k leh{kk d’kklkBh\ 11

6.2 Assessment Planning 13 6.2 eqY;kadu fu;kstu 13 6.2.1 Assessing ecological integrity and threats status 14 6.2.1 ifjfLFkrhd vfoHkkT;rkfo’ys”k.k vkf.k tks[kehaP;k fLFkrh 14 6.2.2 Assessing the status of social and cultural values 16 6.2.2 lkekftd vkf.k lkaLÑfrd eqY;kaP;k fLFkrhaps eqY;kadu 16

6.3 Difference between inventory, assessment and monitoring 17 6.3 oLrqlqph] eqY;kadu vkf.k lafujh{k.k;kae/khy Qjd 17

6.4 Critical Habitat Assessment & Monitoring 19 6.4 fparktud oLR;kaps eqY;kadu vkf.k lafujh{k.k 19 6.4.1 Key questions regarding monitoring by managers: 19 6.4.1 Áca/kdkaOnkjs lafujh{k.kkckcr mi;qDr Á’u 19 6.4.2 What is monitoring? 20 6.4.2 lafujh{k.k Eg.kts dk;\ 20 6.4.3 Some Important Definitions 20 6.4.3 dkgh egRokP;k O;k[;k 20 6.4.4 How can monitoring help the MPA managers in effective management of their MPAs ? 21 6.4.4 vkikiY;k MPAs P;kÁHkkoh O;oLFkkiukr MPA Áca/kdkauk lafujh{k.k d’kkÁdkjs enr d: ‘kdrs 21

6.5 Before assessment and monitoring 23 6.5 eqY;kadu vkf.k lafujh{k.kkP;k vk/kh 23 6.5.1 Defining the objectives of research and monitoring 23 6.5.1 la’kks/ku vkf.k lafujh{k.kkP;k mfí”Vkaph ifjHkk”kk dj.ks 23 6.5.2 Establish the ambit of research and monitoring 24 6.5.2 la’kks/ku vkf.k lafujh{k.kkph O;kIrh LFkkfir dj.ks 24 6.5.3 Find out what is already known 24 6.5.3 ts vk/khp Kkr vkgs rs ‘kks/kwu dk<.ks 24 6.5.4 Design and establish the research and monitoring programme 25 6.5.4 la’kks/ku vkf.k lafujh{k.k dk;ZØekph jpuk o LFkkiuk dj.ks 25 6.5.5 Getting Familiar with Critical Coastal & Marine Habitats: Overview 26 6.5.5 egÙoiw.kZ fdukjh vkf.k leqæh oLR;ka’khvksG[k d:u ?ks.ks% fogaxkoyksdu 26 6.5.6 Functioning of critical habitats 36 6.5.6 egÙoiw.kZ oLR;kapsizdk;Z 36 6.5.7 Importance of critical habitat 37 6.5.7 fparktud oLR;kaps egRo 37 6.5.8 Getting familiar with critical coastal and marine species 38 6.5.8 egÙoiw.kZ fdukjh vkf.k leqæh Átkrha’kh ifjfpr gks.ks 38

6.6. Conducting the assessment 39 6.6. eqY;kadukl vk;ksftr dj.ks 39 6.6.1 Basic steps 39 6.6.1 eqyHkwr VIis 39 6.6.2 Assessment of Mangrove Habitats 39 6.6.2 [kkjQqVh oLR;kaps eqY;kadu 39 6.6.3 Estuarine Ecosystems 46 6.6.3 ,’pvjkbZu bdksflLVhEl ¼unheq[ks@[kkMÓkaps i;kZoj.k’kkL=½ 46 6.6.4 Beach Ecosystems 47 6.6.4 leqæfdukjP;k ifjfLFkrhdh 47 6.6.5 Assessment methods for sea turtles 50 6.6.5 leqæh dklokalkBhP;k eqY;kadu i/nrh 50 6.6.6 Assessment methods for coastal birds 56 6.6.6 fdukjiV~VhP;k i{kkalkBhP;k eqY;kadu i/nrh 56 6.6.7 Preparing for underwater assessment: Scuba diving 60 6.6.7 ik.;k[kkyhy cqMhlkBh r;kjh% Ldqck Mk;foax 60 6.6.8 Sea grass habitat assessment 64 6.6.8 leqæh xorkP;k oLrhLFkkukps eqY;kadu 64 6.6.9 Seaweeds 69 6.6.9 leqæh ‘ksokG 69 6.6.10 Methods of assessing sea mammals 72 6.6.10 leqæhlLru çk.;kaP;k eqY;kadu i/nrh 72

5 6.6.11 Coral reef 74 6.6.11 izokG csV 74 6.6.12 Assessment of biodiversity of rocky shores 108 6.6.12 [kMdkG fdukÚ;kaP;k tSofofo/krsps eqY;kadu 108 6.6.13 Fish census 110 6.6.13 ekls x.krh 110

6.7 Overview of data analysis 118 6.7 MsVk fo’ys”k.kkps fogaxkoyksdu 118

6.8 Application in management 120 6.8 O;oLFkkiukr mi;ksT;rk 120

Main sources 122 eq[; lzksr 122

Further resources 123 iq

6 Acronyms la{ksi

ASC Aquaculture Stewardship Council ASC vWDokdYpj LVqoMZf’ki dkmafly

CBD Convention on Biological Diversity CBD dUosU’ku vkWu ck;ksykWftdy Mk;oflZVh

CCRF Code of Conduct for Responsible Fisheries CCRF dksM vkWQ daMDV QkWj jhLikWfUlcy fQ’kjht

CITES Convention on International Trade in Endangered Species of Wild Fauna and Flora CITES dUosU’ku vkWu baVjuW’kuy VªsM bu ,uMsatMZ Lis’kht vkWQ okbYM QkWuk v¡M ¶yksjk

CMPAs Coastal and marine protected areas CMPAs dksLVy v¡M ejhu ÁksVsDVsM ,jh;kt

CRZ Coastal regulation zone CRZ dksLVy jsX;qysVsM>ksUl

CZMA Coastal Zone Management Authorities CZMA dksLVy >ksu eWustesaV vkWFkkWjhVht

DMS Department of Merchant Shipping DMS MhikVZesaV vkWQ epZaV f’kihax

DTEPA Dahanu Taluka Environment Protection Authority DTEPA Mgk.kw rkyqdk ,uok;juesaV ÁksVsDVsM vkWFkkWjhVh

EEZ Exclusive economic zone EEZ ,DLywftOg bdkWukWfed >ksUk

EIA Environmental impact assessment EIA ,uok;juesaV bEiWDV vlslesaV

EPA Environment Protection Act EPA ,uok;juesaV ÁksVsD’ku vWDV

ESA Ecologically sensitive area ESA bdkWykWftdyh lsaflVhOg ,jh;k

FAO Food and Agriculture Organization FAO QwM v¡M vWxzhdYpj vkWxZuk;ts’ku

FRA Forest Rights Act FRA QkWjsLV jkbV~l vWDV

ICRW International Convention for the Regulation of Whaling ICRW baVjuW’kuy dUosU’ku QkWj n jsX;qys’ku vkWQ Ogsfyax

ITPGR International Treaty on Plant Genetic Resources for Food and Agriculture ITPGR baVjuW’kuy VªhVh vkWu IykaV tsusVhd jhlkslZsl QkWj QwM v¡M vWxzhdYpj

MFRA Marine Fishing Regulation Act MFRA ejhu fQ’khax jsX;qys’ku vWDV

SBSTTA Subsidiary Body on Scientific, echnicalT and Technological Advice SBSTTA lcflMh;jh ckWMh vkWu lk;aVhfQd] VsfDudy v¡M VsDukWykWftdy vWMokbl

UNCCD United Nations Convention to Combat Desertification UNCCD ;quk;VsM us’kUl dUosU’kUk Vw dk¡cWV MslVhZfQds’ku

UNCLOS United Nations Convention on the Law of the Sea UNCLOS ;quk;VsM us’kUl dUosU’kUk Vw n ykW vkWQ lh

UNEP United Nations Environment Programme UNEP ;quk;VsM us’kUl ,uok;juesaV Áksxzke

UNFCCC United Nations Framework Convention on Climate Change UNFCCC ;quk;VsM us’kUl ÝseodZ dUosU’ku vkWu Dyk;esaV psat

WHC World Heritage Convention WHC oYMZ gsjhVst dUosU’ku

WWF World Wide Fund for Nature WWF oYMZ okbM QaM QkWj uspj

7

Learning outcomes ;keqGs gks.kkjs cks/k

After completing this module, the participants are able to gk Hkkx iw.kZ dsY;kuarj] lgHkkxh gks.kkjs iq

fo’ks”k egRo vlysys lans’k Key messages • tkxfrd vkf.k ifjfLFkrhdh ÁfØ;kaoj y{k dsafnzr Bso.ks [kjks[kjp vko’;d vlrkuk] ns[kjs[kh[kkyhy eSnkuh Á;ksx vkf.k dkGthiwoZd • While the focus on global and ecosystem processes is indeed imperative, controlled field experiments and cuoysyh losZ{k.ks vkf.k lafujh{k.k dk;ZØe ;kaP;kcjkscj LdqckdMwu feGkysY;k MsVklgh lkehy u dsY;kl iw.kZi.ks pqdhps vkdyu dsys carefully designed surveys and monitoring programs could be completely misinterpreted if analysis of data tkÅ ‘kdrs- obtained via scuba is not also incorporated. • Ldqckus thokoj.kkP;k ik.;k[kkyhy fo’kky tkxsrhy oLrhLFkkukauk FksV ikspk;yk feGkY;kus eksBk cny ?kMyk vkgs- cjhp’kh ukeh O;oLFkk • Scuba created a scientific revolution by providing direct access to underwater habitats composing a large vlrkukgh] leqæh thox.kuk] lekt] vkf.k ifjfLFkrhdhi;kZoj.k’kkL= ;kalkBhLdqckP;k ykHkkadMs fo’ks”k /;ku ns.ks t#jh vkgs vkepk part of the biosphere. While there have been many important specific advances, we believe that the over- fo’okl vkgs dh]T;keqGs R;k R;k tho/kkjhaph tSfodrk vkf.k R;kaP;k lHkksorkyP;k ifjfLFkrhaps FksV fujh{k.k lqyHkrsus dsys tkÅ ‘kdrs- arching benefit of scuba for marine population, community, and ecosystem ecology has been to facilitate the direct observation and manipulations of individual organisms and their surrounding conditions..

Key terms Okijysys egRokps ‘kCn

Ecosystem; habitat; coral reef; mangroves; sea grass; seaweed; rocky shore biodiversity hotspots; meth- ifjfLFkrhdh( oLrhLFkkus( izokG csV( [kkjQqVh( leqæh xor( leqæh ‘ksokG( [kMdkG leqæfdukjk ifjfLFkrhdh gkWVLikWV~l( dk;Zi/nrh( odology; assessment; monitoring; quadrats; transects; manta tow board; analysis; marine protected area; eqY;kadu( lafujh{k.k( PkkSdV{ks=( vuqPNsn( ekaVk Vks cksMZ( fo’ys”k.k( leqæh lajf{kr {ks=( ,dkReh—r fdukjh {ks=kps O;oLFkkiu- integrated coastal zone management.

6.1 Why assessment, 6.1 MPAs ps eqY;kadu] lafujh{k.k] monitoring, evaluation eqY;fu/kkZj.k vkf.k iMrkG.kh and review of MPAs d’kklkBh\

Effective management of a complex ecosystem under human foKkukP;k okijkf’kok; ekuoh nckok[kkyh vlysY;k fdpdV ifjfLFkrhdhps ÁHkkoh pressure is not possible without science. The natural sciences are O;oLFkkiu ‘kD; ukgh- uSlfxZd foKkus ifjfLFkrhdhps dke letqu ?ks.;klkBh rlsp needed to understand the functioning of the ecosystem and the lkekftd ‘kkL=s ekuo&fufeZr leL;kauk let.;klkBh rlsp R;koj mik; dj.;klkBh social sciences are needed to understand human-induced problems vko’;d vkgsr- MPA lkBhps ‘kkL= O;oLFkkiu xjtkaizek.ks vlkos- and how they can be solved. The science done for an MPA has to be driven by management needs.

6.2 Assessment Planning 6.2 eqY;kadu fu;kstu

Scientific data obtained from a monitoring programme in a marine leqæh lajf{kr {ks=kr dsysY;k fujh{k.kkP;k dkekrwu feGoysyk oSKkfud MsVk] protected area are often sought to gain a clear understanding of ifjfLFkrhdhP;k dk;Zi/nrh d’kh vlrs gs Li”V letrk ;kos ;klkBh cÚ;kpnk xksGk the functioning of the ecosystem. However, monitoring is expen- dsyk tkrks- rFkkfi] lafujh{k.k [kfpZd dke vkgs( rlsp eksBÓk vlysY;k jpukaps fdaok sive; and the management of large systems or Protected Areas cjsp gsrw eukr Bsowu dsysY;k lajf{kr {ks=kaP;k O;oLFkkiuklkBhikBcG e;kZfnr vlrs] with multiple objectives and many values, usually with limited re- Eg.kwup gs dke dkGthiwoZd dj.ks vko’;d vlrs-lafujh{k.k gksr vkgs gs n’kZo.kkÚ;k sources, means that monitoring efforts must be carefully targeted xks”Vhauh ‘kD; frrD;k tkLRk ekfgrh iqjok;yk goh & mnkgj.kkFkZ fo’kky olrhLFkkus and well designed. The particular indicators chosen for monitoring rlsp tukojkP;k LoLFk tula[;k lkgftdi.ksifjfLFkrhdhP;k ,danj vkjksX;kckcr should if possible provide at least some information on as wide pkaxysp n’kZosy- ÁR;sd lajf{kr {ks=klkBhns[kjs[khlkBhpseukr vlysys gsrwosxosxGs a range of values as possible – for example healthy populations vlrkr] R;keqGs fujh{k.kkps lkeku vkf.k R;krwu feG.kkÚ;k xks”Vh ;k rqyuk dsY;kl of an animal with a large home-range will often say something lkgftdi.ks fHkUu vlrhy- as well about the overall health of the ecosystem. Because the specific objectives for management will be different for each pro- tected area, the content of monitoring and evaluation programmes for assessing outcomes will be correspondingly diverse To monitor status of any value, it is usually necessary to decide: dqBY;kgh eqY;kP;k fLFkrhps lafujh{k.k dj.;klkBh] gs Bjo.ks vko’;d vlrs% • What attributes will be considered; • dqBys xq.k/keZigk;ps vkgsr( • What indicators of this attribute will be measured/assessed; and • ;k xq.k/kekZauk nk[kowu ns.kkjs fun’kZd ekiys@voyksfdr dsys tkrhy( vkf.k • Methods to be used in measuring the indicator. • fun’kZdkps ekst ekidj.;klkBh dks.kR;k i/nrh okijk;P;k vkgsr-

Table: Example of monitoring attributes, indicators and methods dks”Vd% oSf’k”VÓs] fun’kZd vkf.k i/nrhaps mnkgj.k Value Attributes Indicators Method eqY; oSf’k”VÓs fun’kZds i/nr Population of an Breeding success Number if breeding Counting nests /kksD;kr vlysY;ktukojkph tuu ;’k lkbZVyk vl.kkÚ;k ?kjVh ekst.ks endangered animal females at sites x,y,z tula[;k TkuudR;kZeknkaph la[;k x,y,z Mortality rate Tag and recapture ej.k iko.;kpk nj VWx dj.ks vkf.k ijridM.ks Integrity of an Visibility of artwork Vibrancy and clarity Photo-monitoring and indigenous art compared with the analysis LFkkuh; dysps ,d=hdj.k dykdqlj fnl.;kph ekxhy o”kkZP;k rqyusr QksVksaps lafujh{k.k vkf.k Disturbance level of site previous years fLFkrhlkbZVojhy vMFkGk tks’kiw.kZrk vkf.k fuHksZGrk fo’ys”k.k fdrir vkgs ;kph fLFkrh Evidence of graffiti, Photo-monitoring xzkQhrh] V¡ifyax vkf.k ekrhps trampling and soil and soil compaction compaction measures dk¡iWD’kukps iqjkos QksVkaps lafujh{k.k vkf.k ekrhP;k Level of cooperation Proportion of Number of incursions Patrol database ?kuhdj.kkP;k mik;;kstuk with local community community supporting by local people LFkkuh; lektk’kh lgdk;kZph lajf{kr {ks=kl ikBcG LFkkuh; yksdkauh fdrhank xLr Bso.;kpk MsVkcsl the protected area recorded ikrGh ns.kkÚ;klektkps Áek.k gLr{ksi dsyk ;kph uksan Report of positive Subjective quarterly progress at meetings reports reviewed cSBdhr ldkjkRed Áxrhpk vgoky iMrkGysys foLrkjd =Sekfld vgoky

6.2.1 Assessing ecological integrity and threats status

Most Protected Areas are managed to conserve a range –sometimes a vast range – of natural values, 6.2.1 i;kZoj.kh; ,dhdj.k vkf.k laHko vlysY;k izHkkokaph leh{kk including ecosystem function and services, biodiversity at all levels from landscape and ecosystem through species and population to genetic; and human-wildlife interactions. Monitoring and evaluating vf/kdrj lajf{kr {ks=kaph ns[kjs[k lk/kkj.kr% dkgh uSlfxZd xks”Vhuk( dkghnk eksBÓk izek.kkrhy xks”Vhaukvckf/kr Bso.;klkBh dsys ecological integrity and threats to it is a significant topic of research and discussion at present. While tkrs] T;kr ifjfLFkrhdh dk;Z vkf.k lsok] n`”;rsP;k lxGÓk LrjkP;k ifjfLFkrhdh vkf.k Átkrh o tul[;sP;k ek/;ekus rs every protected area has its own values and objectives, some organizations have standardized the is- vuqokaf’kd( rlsp ekuoh&oU;thou nso?ksohapk lekos’k vlrks- i;kZoj.kh; ,dhdj.kkapslafujh{k.k vkf.k eqY;fu/kkZj.k dj.ks rlsp R;kl sues and areas to be measured in each park. For example: vlysY;k tks[keh gk l/;kpk ,d la’kks/ku dj.;k;ksX; vkf.k ppsZpk fo”k; vkgs- ÁR;sd lajf{kr {ks=kph vkiyk Lor%ph eqY;s o mfn~n”VÓs vlrkukp] dkgh la?kVukauh leL;kauk vkf.k ekstekik djk;P;k {ks=kal ekinaM cloysys vkgsr mnkgj.kkFkZ% • Is the park losing native species? • m|kukrhy LFkkuh; Átkrh yksi ikor vkgsr dk;\ • Are selected indicators within acceptable ranges? • fuoM dsysys fun’kZd fLodkjkgZ Js.khar clrkr dk\ • Are herbivores and predators playing their role? • ‘kkdkgkjh vkf.k ekalkgkjh R;kaph Hkwfedk ikj ikMr vkgsr dk;\ • Are biological communities at a mix of ages and spacing that will support native biodiversity? • tSo lekt fefJr th.kZrk dkyko/khaps rlsp LFkkuh; tSofofo/krsl ikBcG ns.;k;ksX; o;kpsvkgsr dk\ • Are productivity and decomposition operating within acceptable limits? • mRikndrk vkf.k vi?kVu fLodkj dj.;k;ksX; lhekaae/;s vkgsr dk\ • Is the system cycling nutrients within acceptable limits? • ;a=.kk ?kVukpØ iqjs dj.kkjh iks”kds ;ksX; lhekanjE;ku vkgsr dk\ • Are key physical processes supporting biodiversity? • egÙokP;kHkkSfrd ÁfØ;k tSofofo/krsl leFkZu nsr vkgsr dk\ • What are the key stressors we are concerned about? • vkiY;kyk T;kaP;kfo”k;h fpark vkgs] vls egÙokps ?kVd dks.krs vkgsr\ To answer such questions and to evaluate the achievement of ecologically-related objectives, monitor- ing information based on solid science is highly desirable. To obtain such information, indicators are v’kk Á’ukal mRrjs ns.;klkBh rlsp i;kZoj.kh; ekeY;ka’kh lacaf/kr mfnn~”VÓkal feGo.;kps eqY;fu/kkZj.k dj.;kl] ?kuinkFkZ chosen for each value, objective or question, and methods to measure and report on these indicators foKkukoj vk/kkfjr lafujh{k.k ekfgrhph eksBÓk izek.kkr vko’;drk vkgs- v’kh ekfgrh feGo.;klkBh] ÁR;sd eqY;] mfn~n”VÓ fdaok are developed. Á’u] rlsp ekiuklkBhP;k i/nrh ;kalkBhfun’kZd fuoMys tkrkr rlsp ;k fun’kZdkaoj vk/kkfjr vgoky r;kj dsys tkrkr-

48 49 The Nature Conservancy’s Conservation Action Planning methodology 48 49 has been used to mea- fulxkZl tru dj.;kP;k Ñrh fu;kstu dk;Zi/nrh ;kapk fdR;sd fHkUUk lajpukae/;s i;kZoj.klaca/kh ,d#irk ekiu xx sure ecological integrity in many different systems. The process is summarised in Figure xx. dj.;klkBh okij dsyk xsysyk vkgs. vkÑrh e/;s ;k ÁfØ;sps o.kZu fnys xsysys vkgs-

Ratings are often used to report on the status of indicators and outcomes in a ‘report-card’ format fun’kZdkaph fLFkrh dGo.;kl jsVhaxpk okij dsyk tkrks rlsp ;krwu feGkysY;k xks”Vh *vgoky&i=* Eg.kwu fnyh tkrkr th Áca/kd A,B,C,D which can easily be understood by managers. These ratings (usually poor/fair/good/very good or lgt letw ‘kdrks- ;k jsVhaXtuk ¼lglk nqcZy@BhdBkd@pkaxyh@[kwi pkaxyh fdaok ½ pkaxys ikBcG vko’;d vkgs- A,B,C,D) need to be built on a solid foundation.

14 [case study: Report Card of Gulf of Kachchh by NCSCM) .. . [ekeY;kps v/;;u% NCSCM }kjs vk[kkrkpss fdaok dPNps vgoky dkMZ) ...

Identify focal biodiversity targets to be the focus of planning and represent all biodiversity ukfHkdh; tSofofo/krk y{;kal Bjok th fu;kstuklkBh >ksrkr Bso.;kr ;koh rlsp leLr tSofofo/krkaps Áfrfu/khRo djsy-

Identify key ecological attributes for focal biodiversity targets (TNC terminology for those species tSofofo/krk y{;kalkBh egRo vlysys i;kZoj.k laca/kh ?kVd uDdh djk ¼fof’k”V y{;s Eg.kwu fuoMysY;k ;k Átkrh rlsp and ecosystems selected as particular targets for conservation) — factors that characterize and limit i;kZoj.k’kkL=kalkBh TNC laKk½ & vksG[k iVowu ns.kkjs vkf.k forj.kkl lhek ?kky.kkjs ?kVd T;kr tSfod vi?kVu] distribution including attributes of biological composition, spatial structure, biotic interactions, varjkG vkjk[kMk] tSfod nso?ksoh] i;kZoj.kh; ço`fÙk vkf.k laca/nrk vf/kd vkdkj] fLFkrh vkf.k eSnkun`”; ladYiuk environmental regimes and connectivity plus size, condition and landscape context

Identify indicators for key attributes (that need to be maintained if biodiversity is to be conserved) — egRokP;k ?kVdkalkBhP;k fun’kZdkal uDdh djk ¼tSofofo/krsl vckf/kr Bso.;kps vlY;kl ;kl fujarj jk[k.ks vko’;d vkgs½ these should reflect target health, be recognised by stakeholders, reflect threats, provide early warning, & ;kus n’kZoko;kl gos y{; vkjksX;] T;kl Hkkx/kkjd Eg.kwu vksG[krkr] tks[kehal n’kZoko;kl gos] vfxze lwpuk |ko;kl and be cost effective and relatively easy to measure to measure goh] vkf.k eqY;kl [kjh mrjko;kl goh rlsp ekiuklkBh rqyukRedrsus lqyHk vlk;yk goh-

Rate the indicator status (for instance the natural range of variation to identify and distinguish fun’kZd fLFkrhl jsfVax |k ¼mnkgj.kklkBh ekuotU; Qjdkaph vksG[k iVo.;klkBh rlsp Qjd iVowu ns.;klkBh anthropogenic variation) Qjdkaph uSlfxZd J`a[kyk½

Integrate rating to determine status of key ecological attributes, specific elements of biodiversity, egRo vlysY;k i;kZoj.kh; ?kVdkaph fLFkrh] tSofofo/krsps fof’k”V ?kVd] leLr lajf{kr {ks=kph fadaok eSnkuhn`”;rsph integrity of entire protected area or landscape ,dla?krk Bjo.;klkBh ,dhÑr jsfVax

Figure: The Nature Conservancy’s Conservation Action Planning methodology for Monitoring Ecological integrity vkd`rh% i;kZoj.kh; ,dkRersps lafu;a=.k dj.;klkBh fulxZ trudj.;kph trudj.k;qDr d`rh fu;kstu dk;Zi/nrh

IMPROVE IMPROVE O;oLFkkiu O;oLFkkiu MANAGEMENT MANAGEMENT lq/kkj.ks lq/kkj.ks Phase 1: pj.k 1: Define evaluation objectives eqY;fu/kkZj.k mfn~n”VÓkaph O;k[;k • Clarify the purpose/s of dj.ks tha assessment • • Determine the scope eqY;kadukP;k gsrql Li”V dj.ks of the assessment (i.e. • eqY;kadukP;k okokps fu/kkZj.k dj.ks scale and frequency) ¼Eg.ktsp Áek.k vkf.k okjaokjrk½ • Agree capacity and • {kersph rlsp eqY;kadu ikrGhl level of assessment Phase 2: lgefr ns.ks pj.k 2: Choose/develop methodology dk;Zi/nrhaph fuoM@fodkl vkf.k Phase 4: and plan evaluation process pj.k 4: eqY;kadu ÁfØ;sps fu;ksftu • Choose/develop an over Analyse, communicate and fudkykaps fo’ys”k.k] lapkj vkf.k • ,danji.ks ,dkp dk;Zi/nrhph implement results all methodology ,talh vkf.k Work with and ykxwdj.k fuoM@fodkl • Analyse results and • Decide how to conduct lacaf/krkalkscr • • eqY;kadu dls djkos rlsp R;kr develop reccomendations listen to agency and the assessment and who fudkykaps fo’ys”k.k vkf.k f’kQkj’kh stakeholders to involve fodlu dke dj.ks vkf.k dq.kkl lkehy djkos gs Bjo.ks • Implement R;kaps ,sd.ks recoomendations for • Develop plan or TOR for • lq/kkj.kkiw.kZ O;oLFkkiuklkBh • eqY;kadu ÁfØ;slkBh rlsp improved management the assessment process f’kQkj’khaps ykxwdj.k fudkykaP;k fo’ys”k.kklkBh] • Reporting results and for analysing, • fudkykal dGo.ks lapkjklkBh o ykxwdj.klkBh communicating and ;kstuspk fodkl fdaok TOR implementing the results

Phase 3: pj.k 3: Implement Evaluation eqY;fu/kkZj.kkps ykxwdj.k • Gain approval and support for • eqY;fu/kkZj.kklkBh vuqeksnu vkf.k evaluation plan leFkZu feGo.ks • Carry out the evaluation: collect information • eqY;fu/kkZj.k dj.ks% ekfgrh xksGk Coduct consultations dj.ks o iw.kZ dj.k IMPROVE IMPROVE O;oLFkkiu O;oLFkkiu MANAGEMENT MANAGEMENT lq/kkj.ks lq/kkj.ks

Figure: The four major phases of the assessment process vkÑfr% eqY;kadu ÁfØ;sph pkj pj.ks

15 6.2.2 Assessing the status of social and cultural values 6.2.2 lkekftd vkf.k lkaLÑfrd eqY;kaP;k fLFkrhaps eqY;kadu

Cultural heritage values and objectives relate to both material culture (art sites, buildings, lkaLÑfrd okjlk eqY;s vkf.kmfn~n”VÓs gh ;k nksgksa’kh lacaf/kr vlrkr( lkexzh laLÑrh ¼dyk lkbV~l] bekjrh] traditional roads and pathways, etc.) and non-material aspects such as people’s connections ijaijkxr jLrs vkf.k ekxZ] b-½ vkf.k xSj&lkexzh fo”k;] tls dh yksdkaphHkweh’kh] lksgGs] dFkk] xk.kh] u`R;s vkf.k to land, ceremonies, stories, songs, dances and ways of life. thou’kSyh’kh] layXurk.

While cultural values, especially the non-material aspects, are not always easy to define, lkaLÑfrd eqY;s] fo’ks”kr% xSj&lkexzh fo”k;d O;k[;k dj.;kl usgehp lksih ulrkr] R;kauk uksanfoys tkÅ ‘kdrkr] they can be recorded, have associated indicators, and be assessed and rated in much the R;kaps lg;ksxh fun’kZd vlrkr] vkf.k oj ppkZ dsY;kÁek.ks R;kaps eqY;kadu vkf.k jsfVax ns.ks vxnh i;kZoj.kh; same way as the ecological values discussed above. For example, condition attributes and eqY;kaP;k leku dsys tkrs- mnkgj.kkFkZ] ,[kk+|k ijaijkxr bekjrhps fLFkrh ?kVd vkf.k fun’kZd frpk

A better integration of social, economic and institutional indicators across a range of pro- grammes will enable a better understanding of impacts on protected areas and of broader regional trends outside protected areas.

16 6.3 Difference between 6.3 oLrqlqph] eqY;kadu vkf.k inventory, assessment lafu;a=.k ;kaP;krhy Qjd and monitoring oLrqlqph% cslykbu LFkkiR; oLrqlqphlkBh ifjfLFkrhdh] ncko vkf.k i;kZoj.kh; Hkwfedsrhy çfrdwy Inventory: Establish baseline cnykaP;k lacaf/kr tks[keh] vkf.k lafu;a=.k xfrfo/kh] T;kr dks.kR;kgh çek.kki;aZr ekfgrh iqjfoyh tkrs v’kk losZ{k.k vkf.k ikGrhpk lekos’k vlrks] It is essential for the inventory to collect baseline informa- v’kk ckchaP;k Hkwfedsps o.kZu dj.;klkBh ns.;klkBh vk/kkjjs”ksph ekfgrh xksGk tion to describe the ecological character of the ecosystem, dj.ks xjtsps vlrs- ;k loZ egRokP;k vkf.k vkarjfØ;k;qDr ekfgrh ,d= pressures and associated risks of adverse change in ecologi- dj.;kph dljr vkgs- ykxw dsY;koj R;kauk ;k ,danj ÝseodZe/khy fyaDM cal character, and monitoring activities, which can include ?kVd Eg.kwu fopkjkr ?ks.;kr ;kos] ts lajf{kr {ks=kP;k O;fDreRokP;k egRokP;k both survey and surveillance that provides information xq.k/kekZaph vksG[k iVorkr- on the extent of any change. All these are important and interactive data gathering exercises. They should be consid- ered as linked elements of this overall integrated framework eqY;kadu% fLFkrh] #

Assessment: Status, trends and threats lafu;a=.k The identification of the status of, and threats to, the ecosystems as a basis for the collection of more specific lafu;a=.k Eg.kts fLFkrhrhy] #

6.4 Critical Habitat 6.4 egÙokP;k oLR;kaps eqY;kadu Assessment & Monitoring vkf.k lafu;a=.k

6.4.1 Key questions regarding monitoring by 6.4.1 Áca/kdka}kjs lafu;a=.kkckcr egRoiw.kZ Á’u: managers: txHkjkrhy egÙokP;k oLrhLFkkus Áca/kdkauk leku leL;k vkf.k Á’u vlrkr T;kaph Critical habitat managers around the world have similar problems mRrjs lafu;a=.k nsÅ ‘kdrs- mnkgj.kkFkZ] Áca/kdkauk gs tk.k.ks t#jh vkgs tj%: and questions that monitoring can answer. For example, manag- • egÙokP;koLR;k fujksxh vkf.k lq/kkjd vkgsr( ers need to know if: • tks[keh egÙokP;k oLRkhLFkkukaP;k fdaok vU; thofo’okaP;k xkHkk tukojkal@ • Critical habitats are healthy and improving; jksikal gkfudkjd vkgsr( • Threats are damaging the core animals/plants of the critical habi- • ek’kkaph tula[;k lajf{kr {ks=kr ok

And some specific questions on the monitoring: rlsp lafu;a=.kkojhy dkgh fof’k”V Á’u: • How monitoring can help management; • lafu;a=.k O;oLFkkiukph d’kk Ádkjs enr d# ‘kdrs; • How to choose the best methods to suit your needs; and • rqeP;k xjtkauk tqG.kkÚ~;k i/nrh d’kk Ádkjs fuoMkO;kr( vkf.k • The good and bad points and associated costs of a wide range of monitoring methods. • pkaxys rlsp okbZV eqn~ns olafu;a=.k i/nrhaP;k foLr`r Js.khaps lacaf/kr [kpZ.

Monitoring can be specific or general. There are different management information needs for lafu;a=.k gs fofufnZ”V fdaok loZlk/kkj.k vlw ‘kdrs- ÁR;sd fdukjh ok leqæh {ks=klkBh fofHkUu O;oLFkkiu ekfgrh vlrkr] each coastal or marine area, so monitoring programs must be designed to include a selection of R;keqGs vkjsf[kr lafgrsP;k fuoMhpk vkf.k R;k xjtk Hkkxfo.;klkBh i)rhapk lekos’k dj.;klkBh laj{k.k dk;ZØekaph jpuk protocols and methods to meet those needs. The protocols and methods outlined in this sec- dsyh ikfgts- ;k foHkkxkr vkjsf[kr lafgrk o i/nrhspk egRo vlysY;k oLRkhLFkkukaoj lokZrlk/kkj.ki.ks okij dsyk tkrks- tion represent the ones most commonly used on critical habitats around the world. Our advice is vkiY;k egRokP;k oLrhLFkkukaps lafu;a=.k dj.;kl ekud o okjaokj okijY;k tk.kkÚ;k i/nrhapk okij dj.;kpk vkEgh to use the standard and frequently used methods to monitor your critical habitat because these lYyk nsrks dkj.k ;kaph l[kksy pkp.kh >kysyh vlrs- ekud i/nrhaP;k okijkpk vFkZ vlk gksrks dh rqEgh rqeP;k egRokP;k have been extensively tested. Using standard methods also means that you will be able to com- oLrhLFkkukaP;k fLFkrhaph {ks=h; rlsp oSf’od Lrjkoj nqlÚ;kalkscr rqyuk d# ‘kdky- pare the status of your critical habitat with other critical habitat at regional and global scales. 6.4.2 lafu;a=.k Eg.kts dk;\ 6.4.2 What is monitoring? lafu;=.k Eg.kts ifjfLFkrhdhoj fdaok v’kk yksdkaojhy MsVk vkf.k ekfgrh xksGk dj.ks ats egÙoiw.kZ oLRkhLFkku L=ksrkapk okij Monitoring is the gathering of data and information on a ecosystems or on those people who djrkr- lafu;a=.k lks;huqlkj ok

• Understanding government rules and regulations on coral reefs and conservation; and egRo vlysY;k oLrhLFkku Áca/kdkus dks.kR;k pykauk ¼ekiko;kP;k xks”Vh½ lafu;a=.k dk;ZØekr lkehy djkos ;kph vo’; • Determining the decision making process in local communities. fuoM djko;kph vlrs- ;k foHkkxkr] lafu;a=.k laKsr vk/kkjjs[kk losZ{k.k vkf.k fujarj lafu;a=.k ;k nksUgh xks”Vh lkehy vkgsr-

The critical habitat manager has to select which variables (things to measure) to be included 6.4.3 dkgh egRokP;k O;k[;k into a monitoring program. In this section, the term monitoring includes both the initial baseline survey and continued monitoring. lafu;a=.kkckcr cksyr vlrkuk cÚ;kp’kk laKk okijY;k tkrkr- vki.k let.;kl lksis tkos ;klkBh laiw.kZ Hkkxkr leku O;k[;k oki#- 6.4.3 Some Important Definitions • loZs{k.k Eg.kts ÁokG csVkP;k fBdk.kkckcr MsVk vkf.k ekfgrh xksGk dj.ks gks;( There are lots of terms used when talking about monitoring. We use the same definitions through- • tsOgk losZ{k.ks ¼fdaok R;kaps Hkkx½okjaokj dsyh tkrkr rsOgk R;kl lafu;a=.k EgVys tkrs( out the section to make it simple to follow. • lafu;a=.k dk;ZØekr lafu;=.k f’k”Vkpkjkaph ekfydkvlrs] TkhÁca/kdkl csVkaps O;oLFkkiu dj.;klkBh vko’;d vlysyh • A survey is collecting data and information about a coral reef site; ekfgrh ,df=ri.ks iqjors- • Monitoring is when surveys (or parts of them) are repeated; • f’k”Vkpkj Eg.kts i/nrhaph fuoM rlsp ,[kk+|k LFkGkyk ekfgrh feGo.;klkBh R;kapk okij dlk dsyk tkrks gk vlrks- • A monitoring program consists of series of monitoring protocols that together provide a man- ;kr iqujko`Rrh] vuqPNsn js[kkaph ykach] xksGk dsysyh fof’k”V ekfgrh mnk- ekstko;kph tukojs fdaok ouLirh( ager with the information needed to manage their reefs; • i/nr Eg.kts ekfgrh d’kh xksGk dsyh ;kps o.kZu gks; mnk- js[kk fdaok fcanw vkarjNsn vuqPNsn fdaok d’kk rÚgsus vuqPNsn • Protocols are the selections of methods and how they are used to gain information at a site. ekaMkosr( This will include numbers of replicates, lengths of transect lines, specific information gath- ered, e.g. animals or plants to be counted or measured; • A method is the description of how the information is collected, e.g. line or point intercept transect or how to lay the transect;

20 • Ecological monitoring is monitoring the natural environment, e.g. the fififi sh or coral. • ifjfLFkrhdh; lafu;a=.k Eg.kts uSlfxZd okrkoj.kkps lafu;a=.k dj.ks gks;] mnk- ekls fdaok ÁokG- ;kr tSfod This includes both biological and physical monitoring; vkf.k ÁkÑfrd lafu;a=.ks lekfo”V vlrkr( • Socio-economic monitoring is monitoring the way humans use the natural resources, • lkekftd&vkfFkZd lafu;a=.k Eg.kts ekuo T;k Ádkjs uSlfxZd L=ksrkapk okij djrkr vls lafu;a=.k gks;] e.g. the methods used to catch fifi sh; mnk- ekls idM.;klkBh okijY;k tk.kkÚ;k i/nrh( • A monitoring site is the area of coral reef selected for monitoring; • Lkafu;a=.k fBdk.k Eg.kts ÁokG csVkps ,d {ks= ts lafu;a=.kklkBh vlrs- • A sample is the area where you count the animals and plants e.g. along a transect or • uewuk Eg.kts vls {ks= tsFks rqEgh tukojs fdaok jksis ekstrk mnk- vuqPNsnkP;k lyx fdaok vk;rkP;k vkr- inside a quadrat. The sample areas selected for monitoring will depend upon the type lafu;a=.kklkBh fuoMysyh uewuk {ks=s gO;k vlysY;k ekfgrhpk Ádkj rlsp rqEgkyk ekstk;P;k vlysY;k of information needed and the type of things you want to count. You will need to use xks”Vhapk Ádkj ;koj fuHkZj vlrhy- rqEgkyk ,dk lkbZVps losZ{k.k dj.;klkBh cÚ;kp osxGÓk osxGÓk a number of separate samples to survey one site. These are called replicates. uewU;kapk okij djkok ykxsy- ;kauk iqujko`Rrh Eg.krkr-

6.4.4 How can monitoring help the MPA managers in effective man- agement of their MPAs ? 6.4.4 lafu;a=.k MPA Áca/kdkal R;kaP;k MPAs P;k ÁHkkoh O;oLFkkiukr A major goal of a critical habitat monitoring program is to provide the data to support d’kk Ádkjs enr iqjow ‘kdrs\ effective management. As more Marine Protected Areas (MPAs) are established, it is becoming increasingly important to monitor whether they are achieving their manage- egRokP;k oLrhLFkkukP;k lafu;a=.k dk;ZØekps eq[; y{; vkgs ÁHkkoh O;oLFkkiukP;k leFkZuklkBh MsVk iqjo.ks- ment goals. vf/kdkf/kd leqæh lajf{kr {ks=s ¼MPAs½ LFkkfir gksr vlY;kus] vkrk rs R;kaps O;oLFkkiukps y{; lk/; djr vkgsr dh ukgh ;kps lafu;a=.k dj.;kps egRo ok

21

6.5 Before assessment and 6.5 eqY;ekiu vkf.k lafu;a=.kkP;k monitoring vxksnj

6.5.1 Defining the objectives of research and moni- 6.5.1 la’kks/ku vkf.k lafu;a=.kkP;k mfí”Vkaph O;k[;k toring dj.ks

Research is about understanding the functioning of a system and la’kks/ku Eg.kts ,[kk|k jpusP;k fufgr dk;kZl letqu ?ks.ks gks; rlsp lafu;a=.k monitoring is the repeated observation of a phenomenon over Eg.kts ,[kk|k ?kM.kkÚ;k fØ;sps osGksosGh iqUgk iqUgk dsysys fujh{k.k gks;- la’kks/ku time. The goal of research and monitoring is to enable manage- vkf.k lafu;a=.kkps y{; Eg.kts O;oLFkkiukl MPA lkBh BjoysY;k gsrqauk xkB.;kl ment to meet the purposes set for the MPA. lcyrk ns.ks gks;-

Research and monitoring should provide answers to the following la’kks/ku vkf.k lafu;a=.kkus iq

* Adapted from GESAMP (1996), with input on monitoring from Richard Kenchington and Kathy Walls. 6.5.2 Establish the ambit of research and monitoring 6.5.2 la’kks/ku vkf.k lafu;a=.kkPkhd{kk LFkkfir dj.ks

‘Ambit’ means the topics to be included in research and monitoring, such as testing whether *ijh?k* Eg.kts la’kks/ku vkf.k lafu;a=.kkr lekfo”V djko;kps fo”k;] tls dh ik.;kph ir lq/kkjr vkgs dk ;kph rikl.kh water quality is improving, monitoring changes in fish stocks, and measuring the level of dj.ks] ek’kkaP;k lkBÓkr cnykaps lafu;a=.k] rlsp i;ZVdkph la[;k ok

Table 1 contains examples of research and monitoring relevant to particularly common issues 6.5.3 ts vk/khp Kkr vkgs rs ‘kks/kwu dk<.ks – pollution, fishery management and the destruction and restoration of coastal habitats. The guidance in Table 1 is suitable for large MPAs covering marine ecosystems or to integrated ,dnk dk la’kks/kukph vkf.k lafu;a=.kkph mfn~n”VÓs Bjoyh] dh iq

Once the objectives and ambit of the research and monitoring are decided, the next stage is LFkkuh; oSKkfud vU; LFkkuh; yksdkaçek.ksp la’kks/kukP;k fudkykaps L=ksr vkf.k xq.koRrk ;kaP;k eqY;ekiukr fo’ks”krsus to plan the detailed programme. First, it is vital to find out what is already known. This may enr iqjow ‘kdrkr- çfØ;sus ‘kkL=h; Kkukrhy dks.kR;kgh lkgftd iksdGÓkauk] MPA lkBh R;kaps gksÅ ‘kd.kkjs ifj.kke mean sifting through and assessing a large amount of information of variable quality on a rlsp okLrfod osG vkf.k njkuqlkj R;kauk Hkjk;P;k tckcnkjhal vksG[kk;yk gos- wide range of topics, a process that requires skill and judgement.

Local scientists can help, especially in evaluating the source and quality of research results, as can other local people. The process should identify any obvious gaps in scientific knowl- edge, their likely implications for the MPA and the possibilities of filling them within a realistic time and cost.

24 Table 1. Examples of research and monitoring for MPAs dks”Vd 1- la’kks/ku vkf.k lafu;a=.kkph mnkgj.ks MPAs Topic Examples of research Examples of Monitoring fo”k; la’kks/kukph mnkgj.ks Lkafu;a=.kkph mnkgj.ks Pollution: Contaminant inputs Identifying major sources (indus- Quantify loads of priority con- Ánw”k.k% nwf”kr dj.kkÚ;k Hkjh Áeq[k L=ksrkal uDdh dj.ks ¼vkS|ksfxd] çk/kkU;rkiw.kZ nwf"krdkaP;k Hkkjkl fu;af=r (i.e. to control priorities) try, agriculture, fisheries, sew- taminants (e.g. heavy metals, age, shipping, etc) and pathways nutrients, organochlorines, TBT, ¼Eg.ktsp fu;a=.k Ák/kkU;s½ 'ksrhfo"k;d] eRL;O;olk;] lkaMik.kh] dj.ks ¼tM /kkrw] iks"kds] tSoDyksjhUl] (pipes/sewers, rivers, atmos- oil, faecal coliform bacteria). ukSdkifjogu½ vkf.k ekfxZdk ¼ikbZIl@ TBT] rsy] eylaca/kh thok.kw½ phere, discards from ships, etc); lkaMik.kh] u|k] gokeku] tgktkae/kwu developing suitable sampling Vkdysys fu"dkflr] bZ-½( mfpr uequs and analytical methods. dk<.;kph vkf.k fo'ys"k.kkRed fodflr Fishery management: Stock de- Investigate life-cycles, reproduc- Implement a schedule of meas- dj.ks- pletion. causes and solutions tive features, feeding require- urements to obtain more reliable ments and habitats of affected data on temporal variations in eRL;O;olk; O;oLFkkiu%lkBîkpk viO;;] Tkhou&pØ vUos"k.k] iqu%mRiknu xq.kfo'ks"k] ekiukps ,d osGki=d ykxw djk ts.ksd#u species; identify factors (climat- key parameters as identified dkj.ks vkf.k lek/kku ÁHkkfor ÁtkrhaP;k Hkj.kiks"k.k xjtk vkf.k iwohZP;k la'kks/kukr uDdh dsysY;k rdyknw ic, trophic, human etc) control- from prior research (e.g. num- ifjfLFkrhdh( ;k xq.kfo'ks"kkr vkarj&okf"kZd rQkorhaoj egRokP;k ekinaMkr vf/kd ling inter-annual variations in bers and age-classes of fish or rQkorhauk fu;af=r dj.kkjs ?kVd ¼gokeku] fo'oklkgZ MsVk feGoyk tkbZy ¼mnk- these characteristics; determine shellfish harvested by different local factors limiting recruit- methods, availability of prey spe- VªkWfQd] ekuoh b-½ uDdh djk( fu;qDrh ek'kkapk vkdMk vkf.k vk;qJs.kh fdaok fofo/k ment, such as fishing methods cies, variations in water and prey e;kZfnr dj.kkjs LFkkuh; ?kVd& tls dh i/nrhauh iSnkl dsys dop;qDr ekls] Hk{; and intensity, predation, disease, quality, rates eklsekjh i/nrh vkf.k rhozrk] ywVekj] Átkrhph miyC/krk] ik.;krhy cnyko poor water quality, reduced O;k/kh] ik.;kph fu—"V xq.koRrk] ?kVysyh vkf.k Hk{; xq.koRrk] nj spawning habitat, etc. iSnkl vlysyh oLrhLFkkus] b- Conservation of habitats and Identify, classify and map Implement a long-term pro- biodiversity: Impacts of develop- remaining natural (undeveloped) gramme to quantify physi- oLrhLFkku vkf.k tSofofo/krvckf/kr jk[k.ks% moZfjr uSlfxZd ¼vfodflr½ oLrhLFkkus vf/kd laosnu'khy Átkrhaoj] lekt vkf.k ment/use of coastal areas and habitats and compare with any cal, biological and ecological çHkkofdukjh Áns'k vkf.k lk/kuL=ksrkaP;k vksG[kk] uDdh djk] Js.khc/n djk vkf.k ÁfØ;kaoj y{k dsafær djroLrhLFkkukarhy resources historical records; characterize changes in habitats with a fodklkpk@okijkpk çHkko Áfrfpf=r djk rlsp dqBY;kgh 'kkjhfjd] tSfod vkf.k ifjfLFkrhtU; associated biotic communities particular focus on more sensi- ,sfrgkfld uksanha'kh rqyuk djk( lacaf/kr cnykaoj,d nh?kZ&dkyhu dk;ZØe ykxw and exploitable living resources; tive species, communities and evaluate their inter-dependen- processes; develop indicators of tSfod lektkykrlsp xSjokij dsY;k djk( vk/khP;k la'kks/kukrwu mRiUu nh?kZdkG cies, ecological importance and long-term sustainability derived tk.kkÚ;k ftfor L=ksrkyk fo'ks"krk |k( rx /kj.kkjs fun'kZd fodflr djk( sensitivities to human activi- from prior research; maintain R;kaP;k vkarj&fuHkZjrsps eqY;ekiu djk] 'kkjhfjd fodklkps nj vkf.k iWVUlZe/khy ties; identify factors that may up-to-date records on rates i;kZoj.kh; egRo vkf.k ekuoh xfrfo/khaP;k cny rlsp ekuoh miØekaph rhozrk ;kaoj determine habitat sustainability of physical development and and appropriate measurable changes in patterns and intensi- Áfr laosnu'khyrk( oLrhLFkkukaP;k rx fujarj v|ru uksanh jk[kk( tulkaf[;dh] indicators of these factors; quan- ties of human activities; record /kj.;kps fu/kkZj.k dj.kkÚ;k ?kVdkal uDdh i;ZVdkapk vkdMk] tythou] eRL;ikyu tify relative extents of modified changes in demography, tourist djk rlsp ;k ?kVdkal eki.;klkBh mRiknu] canj jgnkjh] leqækvarxZr ,danj habitats and areas reclaimed for numbers, aquaculture, fishery ;Fkk;ksX; ekiu;ksX; fun'kZd( la'/kr milk] ey vkf.k VkdkÅ r;kj gks.ks vkf.k housing, industry, agriculture, production, port traffic, offshore oLrhLFkkukaP;k lacaf/kr vkokD;kps vkf.k ?kjs vU; ?kVd ts oLrhLFkkus vkf.k aquaculture, forestry, tour- aggregate extraction, sewage and ism and recreation, transport, waste generation and other fac- cka/k.;klkBh] vkS|ksfxdh] 'ksrh] tythou] lk/kuL=ksrkaoj vkf.k ncko ok

Without careful design and a systematic approach, volumes of information can be collected at 6.5.4 la’kks/ku vkf.k lafu;a=.k dk;ZØekph jpuk o LFkkiuk dj.ks great expense and effort, but these will not enable the critical questions to be answered. Simple and inexpensive technology is often all that is needed. Complex technology often absorbs much dkGthiwoZd lajpuk vkf.k Øec)–”Vhdksukf’kok;] ekfgrhcÚ;kp va’kh vkf.k Á;Rukauh feGoyh tkÅ ‘kdrs] i.k ;kus uktqd time and resources but confers only marginal benefits. Technology should never be applied for its Á’ukaph mRrjs ns.ks ‘kD; gks.kkj ukgh- ;klkBh ljG vkf.k egkx ulysys ra=Kku gos vlrs- fDy”V ra=Kku cÚ;kpnk [kwi osG own sake. o L=ksrs [kpZ djrs] i.k R;kpk Qkjp deh Qk;nk gksrks-- ra=Kkukl R;kP;k Lor%P;k Á;kstuklkBh ykxw dsys tkÅ u;s-

The precise design, scale and scope of a monitoring programme depend on the characteristics of ;FkkFkZ vkdkj] eki vkf.k lafu;a=.k dk;ZØekpk oko MPA P;k xq.kfo’ks”kkaoj voyacwu vlrkr- fdR;sd ekeY;kar] la’kks/kukP;k the MPA. In many cases, the resources to establish and implement fully the level of research and ikrGhl iw.kZi.ks LFkkfir vkf.k ykxw dj.;klkBh uDdh dsysyh L=ksrs miyC/k ulrkr- MPA ph mfí”Vkaps eqY;kadu rlsp monitoring identified are not available. The emphasis should then be on those elements that are R;kauk lk/; dj.;klkBh egRoiw.kZ Bj.kkÚ;k ?kVdkaojp ex tksj fnyk tkok- MPA P;k ifjfLFkrhdhe/khy cny eki.ks gs most critical to assessing and achieving the objectives of the MPA. It is particularly important to fo’ks”k #ikus egRokps vkgs] vkf.k R;kaoj fuHkZj vlysY;k ekuoh lektkaP;k lkekftd&vkfFkZd fLFkrhaojifj.kkeh ÁHkko Vkdrkr-

25 measure changes in the ecology of the MPA, and resulting effects on the socio-economic condi- MPA dk;ZØek}kjs QaMÁkIr leLr foKku fo’ks”kKkaP;k voyksdukP;k v/khu vlkos- Li/kkZRed ÁLrkokalkBh fu/kh uDdh tion of the human communities that depend on it. dj.;kvk/kh R;akps eqY;ekiu gks.ks gs [kkl egRokps vkgs] ts.ksd:u ‘kkL=h; lgdk;Z vÁkekf.kdrsoj ‘kadk ?ksryh tkÅ ‘kd.kkj ukgh- All the science funded by the MPA programme should be subject to peer review. It is especially important for competitive proposals to be reviewed before funding decisions are made, so that vkliklP;k ‘kkL=h; laLFkkauk lkehy dj.ks enriw.kZ B: ‘kdrs- R;kaps la’kks/kd ,sfrgkfld vkf.k lkekftd erHksnkaP;k scientific cooperation is not jeopardized by suspicions of unfairness. eqGkackcr Kkr vlw ‘kdrkr vkf.k dnkfpr R;keqGsp R;kaP;k’kh nso?kso dj.;klkBh lokZsRre Bjr vlrhy- ‘kkjhfjd lkfUu/; cSBdh vkf.k la;qä ç;Ru ;kauk lqyHk cuorkr( vk/kqfud bysDVªkWfud lapkjkaps fdR;sd Qk;ns vkgsr] i.k fDy”V leL;kauk Involving nearby scientific institutions is helpful. Their scientists are likely to be familiar with the lksMo.;kr yksdkaph cSBd gks.ks o ,d= dke dj.ks ;kis{kks çHkkoh dkghgh ulsy- historical and social roots of conflicts and may therefore be best able to deal with them. Physi- cal proximity facilitates meetings and joint effort: modern electronic communication has many 6.5.5 egRoçkIr fdukjh vkf.k leqæh oLR;ka’kh vksG[k d:u ?ks.ks% advantages, but nothing is as effective in solving complex problems as a group of people meeting and working together. fogaxkoyksdu

6.5.5 Getting Familiar with Critical Coastal & Marine Habitats: Overview 6.5.5.1 [kkjQqVh i;kZoj.kh; jpuk: Hkkjrkr fo’oHkjkrhy [kkjQqVhiSdh dsoG 2.66 VDds vkgsr] tks vankts 4827 oxZ fdeh {ks= O;kirs- ;k vkokD;kiSdh 57 6.5.5.1 Mangrove Ecosystem: VDds iwoZ fdukÚ;koj vk

26 6.5.5.2 Sea Grass Ecosystem: 6.5.5.2 leqæh xorkphifjfLFkrhdh%

Sea grasses are underwater flowering plants that often occur in vast meadows and provide nurs- leqæh xor Eg.kts ik.;k[kkyh cgj.kkjh jksis vkgsr th cÚ;kpnk foLrh.kZ dqj.kkar ;srkr vkf.k O;kikjh] euksjatd] vkf.k eries, shelter, and food for a variety of commercially, recreationally, and ecologically important ifjfLFkrhd O;oLFkkauqlkj egRokP;k ÁtkrhalkBh ckyx`gs] vkljk vkf.k [kk| iqjorkr ¼mnk- ekls] leqæh dklos] Mwxksax] leqæh species (e.g., fishes, sea turtles, Dugong, sea horses, crustaceans). Additionally, sea grasses ?kksMs] [koY;kaps tho½- ;k f’kok;] leqæh xors ,’pvjkbZu vkf.k fdukjh ik.;krwuiks”kds] nw”kds] vkf.k xkG fQYVj djrkr filter estuarine and coastal waters of nutrients, contaminants, and sediments and are closely vkf.k vU; leqnk;kaP;k çdkjka’kh toGwu tqMysY;k vlrkr% çokG csVkaP;k vkf.k [kkjQqVh vj.;kP;k m”.k dfVca/kkr] vkf.k linked to other community types: in the tropics to coral reef systems and mangrove forests, and leqæh feBkxjkaP;k le’khrks”.k ik.;kr] dsYi vj.;s] vkf.k dkyokaph csVs- tehuhP;k dkBkoj vkf.k txkP;k lkxjkar vfLrRokr in temperate waters to salt marshes, kelp forests, and oyster reefs. Existing at the interface of vl.kkÚ;k] leqæh xorkyk fdR;sd ekuofufeZrifj.kkekadMwu rlsp oSf’od gokeku cnykpk /kksdk vkgs- euq”;] O;kikjh vkf.k the land margin and the world’s oceans, sea grasses are threatened by numerous anthropogenic ftfodslkBhP;k eklsekjhP;k ek/;ekus] rlsp txHkjkrhy /kksD;kr vlysys thotarq ftoar jgk.;klkBh leqæh xorkoj voyacwu impacts as well as global climate change. Humans, through commercial and subsistence fishing, vkgsr- and endangered fauna worldwide depend on sea grasses for a living. leqæh xors gh vko`rchth ¼cgj.kkjh jksis½ vlrkr th vLly xorkais{kk HkwÁns’kh; fyfy vkf.k vkys ;kaP;k’kh vf/kd lkE; Sea grasses are angiosperms (flowering plants) more closely related to terrestrial lilies and gingers Bso.kkjh vlrkr- mHkh] okksEl½ jpuslg R;kaph ok< leqæh tfeuhoj than to true grasses. They grow in sediment on the sea floor with erect, elongate leaves and a xkGkr gksrs- buried root-like structure (rhizomes). txHkjkr leqæh xorkP;k 12 tudh;] vkf.k 4 dqVwackanjE;ku o.kZu dsY;k xsysY;k toGikl 60 Átkrh vkgsr- cgj.kkÚ;k There are about 60 described species of sea grasses worldwide, within 12 genera, and 4 fami- jksikaiSdh leqæh xor vuU; vkgsr] T;krhy lxGs ukgh rj dsoG ,d iksVtkr laiw.kZi.ks leqækP;k ik.;kr cqMwu ftoar jkgw lies. Sea grasses are unique amongst flowering plants, in that all but one genus can live entirely ‘kdrs- ,ugsyl ,dksjkWbZM~l] ,d Hkkjr&iWflfQd çtkrh] viokn vkgs] dkj.k dh R;kyk iqu%çtuuklkBh i`”BHkkxkoj ;s.ks immersed in seawater. Enhalus acoroides, an Indo-Pacific species, is the exception, as it must vko’;d vlrs( vU; lokZauk Qqys ;srkr vkf.k ik.;k[kkyhp ijkxflapu gksrs- leqæh okrkoj.kk’kh tqGrs ?ksrkuk çkeq[;kus emerge to the surface to reproduce; all others can flower and be pollinated under water. Adap- vkdkj jpuk vkf.k

Mangroves trap sediment from the land, reducing the chance of sea grasses and corals being smothered. Sediment banks accumulated by sea grasses may eventually form substrate that can be colonized by mangroves. All three communities trap and hold nutrients, preventing them from fdR;sd lk/kkj.k ekinaM leqæh xor ok

27 result from high water temperatures or overexposure to warm air; osmotic impacts result from *çdk’k la’ys”k.kklkBh vlysY;k çdk’kkP;k miyC/krsoj lokZf/kd leqæh xor T;k [kksyhoj vkkY;kps dGo.;kr ;srs] dkgh osGk uSlfxZd dkj.kkaeqGs mnk- mPp mtkZ can be natural such as cyclones and floods, or human influences such as dredging, agricultural oknGs fdaok Þok;k ?kkyo.;kph O;k/khß- vf/kd lk/kkj.ki.ks] ekuoh xfrfo/khaeqGsp uqdlku ?kMysys vlrs] mnk- lqiks”k.kkps runoff, industrial runoff or oil spills. ifj.kke fdaok Hkwfe iqu%la/kkj vkf.k Hkwfeokijkrhy cny-

Loss of sea grasses has been reported from most parts of the world, sometimes from natural leqæh xorkaP;k dqj.kkaojhy ekuofufeZr çHkko ;k fdukjiV~VhP;k i;kZoj.kkpk fo/oal fdaok voØfer dj.ks pkywp vkgs- rlsp causes, e.g., high energy storms or “wasting disease”. More commonly, loss has resulted from R;kaP;k uSlfxZd L=ksrkaph vkod ?kVor vkgsr- leqæh xor çtkrhaP;k fofo/krk vkf.k forj.kkps nLr,sothdj.k dj.ks egRokps human activities, e.g., as a consequence of eutrophication or land reclamation and changes in vkgs] ts.ksd:u dks.kR;k {ks=kal vckf/kr Bso.;klkBh Ñrh vko’;d vkgsr ;kps fu/kkZj.k dj.ks ‘kD; gksbZy- ;Fkk;ksX; ekfgrhoj land use. vk/kkjHkwr jkgwu iq

28 The global distribution and abundance of sea grasses have changed over evolutionary time in leqæh xorkps tkxfrd forj.k vkf.k le`/nh ;kr leqæ Lrjh; cnykaP;k rqyusr] fdukjiV~Vhaps HkkSfrd ifjorZu vkf.k oSf’od response to sea level changes, physical modification of coastlines and global climate change. gokeku cny ;kal çR;qRrj Eg.kwu mRØkarhP;k dky[kaMkr cny ?kMysyk vkgs- xkG vkf.k iks”kds okgwu tk.ks] HkkSfrd vMFkGs] Multiple stresses, including sediment and nutrient runoff, physical disturbances, invasive species, vkØed çtkrh] O;k/kh] O;kikjheklsekjhPkh ijaijk] tythou] vfr pj.k] ‘ksokGhcgj vkf.k tkxfrd m”ek ;klg cgqfo/k rk.k diseases, commercial fishing practices, aquaculture, overgrazing, algal blooms and global warm- leqæh xorkpk dkgh oxZ ehVj rs ‘ksdMks oxZ fdyksehVj Úgkl djr vkgsr- ing, cause sea grass declines at scales ranging from a few square metres to hundreds of square kilometres. 6.5.5.3 leqæh’ksokG i;kZoj.k%

6.5.5.3 Seaweed ecosystem: leqæh ‘ksokG gs i`FohP;k lkxjkr okLrO; dj.kkjs euksgj vkf.k oSfo/;iw.kZ tho/kkjh lewg vlrkr- rs [kkMh{ks=kr [kMdkauk fpdVysys] leqæ fdukÚ;kl iljysys] ik.;k[kkyhy fo’kky vj.;kr] rlsp lkxjkP;k i`”BHkkxkoj rjaxrkuk vk

The thick masses of seaweeds provide an environment for a distinctive and specialized group of marine animals and plants, many of which are not found elsewhere. The beds of the different seaweeds provides feeding, breeding grounds and shelter for many micro and macro organisms including fishes and thus have a significant role in food chains.

29 Sargassum is a genus of brown (class Phaeophyceae) macroalgae (seaweed) in the order Fu- lkjxWle djMÓk ¼oxZ Qk;ksQk;fl,½ ‘ksokGkpk ¼leqæh’ksokG½ Qw&dsYlP;k Øekuqlkj oa’k vkgs rs ,fYtu vkodhps leqæh cales. It is one of the algin yielding seaweeds, growing abundantly in Indian waters. (Kaliaperumal ‘ksokG vkgs ts Hkkjrh; lkxjhtykr le`/nrsus okksvk oxkZr eksMrkr- 6]000 gwu vf/kd Kkr çtkrhauh cuysys] v¡Fkk>ksvUle/;s leqæh ia[ks] leqæh iWfUlt vkf.k jRuT;ksfr ;kgh lekfo”V vlrkr- nxMkrhy çokGs Coral reefs are among the largest and most diverse ecosystems. They are held together by ¼LdsysjWDVhfu;Ul½ v¡Fkk>ksvUlph lokZr fo’kky LFkkfir djrkr] vkf.k csVkP;k laLFkkiuslkBh vkf.k jpuk dj.;klkBh calcium carbonate structures secreted by polyps. Corals comes under the class Anthozoa of the tckcnkj vlrkr- vf/kdre HkkxklkBh] LdysjkDVhfu;Ul mifuos’kd tho/kkjh vkgsr ts ‘ksdMks gtkjks ,dlkj[;k ikWfYkIluh phylum Cnidaria. Comprising over 6,000 known species, anthozoans also includes sea fans, sea c/n vlrkr- pansies and anemones. Stony corals (scleractinians) make up the largest order of anthozoans, and are the group primarily responsible for laying the foundations of, and building up, reef

30 structures. For the most part, scleractinians are colonial organisms composed of hundreds to csV&cka/k.kkjh çokGs gh R;kaP;k HkkSxksfyd forj.kkiqjrhp e;kZfnr dsysyh vlrkr- ;kps dkj.k Eg.kts vYxy&Duh&Msfj;u thousands of identical polyps. flack;ksVhd e’khujhyk foiqy ek=sr csVs c/n dj.;klkBh vko’;d ykbeLVksuP;k mRiknuklkBh ,d v#an vkf.k okrkoj.kh; fLFkrhaP;k fo’oklkgZ c¡Mph vko’;drk vlrs- mPp laxfBr csVkaph mRiRrh rsFksp gksrs tsFks rkieku foLrkfjr dky[kaMkr Reef-building corals are restricted in their geographic distribution. This is because the algal-cni- 18 fMxzh ls- gwu [kkyh tkr ukgh- tikue/;s] tsFks leqæh rkieku fu;feri.ks 14 fMxzh ls- i;Zar [kkyh tkrs rsFks v/kZ~;k darian symbiotic machinery needs a narrow and consistent band of environmental conditions to çokGkP;k çtkrh mxrkr]vkf.k vankts 25 VDds gksrs tsFks rs 11 fMxzh ls- Ik;Zar [kkykors- fdR;sdkaph ;Fkk;ksX; ok< ik.;kps produce the copious quantities of limestone necessary for reef formation. The formation of highly rkieku 23 fMxzh ls- rs 29 fMxzh ls- P;k njE;ku vlrkuk gksrs] i.k dkgh osGsP;k e;kZfnr dkyko/khr 40 fMxzh ls- brds consolidated reefs only occurs where the temperature does not fall below 18°C for extended pe- mPp rkiekugh lgu d# ‘kdrkr- vf/kdka’kkauk [kwip [kkjV ¼{kkj;qDr½ ik.kh ykxrs ¼32&42 Hkkx çfr gtkj ¼PPT½- riods of time. In Japan, where this has been studied in detail, and approximately half of all coral mPp çdk’k HksndrslkBh ik.kh fu[kG LoPN vlk;yk gos- çokGkP;k rhoz çdk’kkph xjt cgqrsd çokyh&mHkkj.kh çtkrh species occur where the sea temperature regularly falls to 14°C and approximately 25% occur 70 where it falls to 11 °C. Many grow optimally in water temperatures between 23 °C and 29 °C, but ;wQksfVd ¼çdk’k Hksnu½ {ks=k’kh e;kZfnr Eg.ktsp lqekjs ehVlZi;aZr dk vlrkr];kyk Li”V djrkr- vf/kdrj çokGkar] some can tolerate temperatures as high as 40 °C for limited periods of time. Most require very vU; fDuMsfj;Ulçek.ksp] >wDlkUFksys ukokps lgthoh’ksokG varHkZwr vlrs- tj ;k vYxy is’kh ikWfyIl}kjs fu”dkflr dsY;k salty (saline) water (32-42 parts per thousand (PPT)). The water must be clear to permit high xsY;k] rj olkgr çnh?kZ ‘kjhjoSKkfud rk.kk/khu xsY;kl ?kMw ‘kdrs] iqatdk dnkfpr FkksMÓk osGkus e`r gksÅ ‘kdrks- lgthoh light penetration. The corals’ requirement of intense light also explains why most reef-building >wDlkUFksysikWfyiyk vkiyk jaxgh Ánku djrs- tj >wDlkUFksys fu”dkflr dsys xsY;kl] olkgr laiw.kZi.ks lQsn gksrs] T;kl species are restricted to the euphotic (light penetration) zone, approximately 70 metres. Most lk/kkj.ki.ks ÞÁokG fojatuß EgVys tkrs- corals, like other cnidarians, contain symbiotic algae called zooxanthellae. If these algal cells are expelled by the polyps, which can occur if the colony undergoes prolonged physiological stress, ÁokG csVs cu.ks lq# gksrkr tsOgk eqDri.ks rjax.kkjs ÁokG ykOgkZ ¼Iysuwys½ Lor%yk csVkP;k fdaok [kaMkP;k cqMysY;k dMka’kh the host may die shortly afterwards. The symbiotic zooxanthellae also confers their colour to the fpdVwu ?ksrkr- tltls ÁokGkaph ok< gksrs vkf.k rs Álkfjr gksÅ ykxrkr] csVs ;k rhu çeq[k xq.koSf’k”Vî kyj] dqai.k fdaok çokG}hi- >kyj:ih csVs] th loZlkekU; vkgsr] rhfdukÚ;klyx dMk cuor vkf.k commonly described as “coral bleaching”. csVkl foG[kk ?kkyr fdukÚ;kiklwu FksV leqækP;k fn’ksusc/n gksrkr- dqai.k Lo:ih csVsgh fdukÚ;kP;k lhek curkr] ijarq ,dk eksBÓk varjkoj- rs R;kaP;k’kh layXu HkwHkkxk’kh tyk’k;kus foHkDr >kysys vlrkr th m?kM] cgqrka’k osGkal [kksy ik.;kph Coral reefs begin to form when free-swimming coral larvae (planulae) attach themselves to the vlrs- tj ,dk Tokykeq[kh csVkHkksorh >kyjLo#ih csV curs] ts iw.kZi.ks leqækP;k ikrGhgwu [kkyh cqMysys vlsy vkf.k submerged edges of islands or continents. As the corals grow and expand, the reefs take on çokG m/oZ fn’ksus ok<.ks lq# Bsor vlY;kl] ,d çokG}hiph fufeZrh gksrs- çokG}his gh lk/kkj.kr% xksykdkj fdaok vaMkdkj one of three major characteristic structures—fringing, barrier or atoll. Fringing reefs, which are vlrkr] T;kP;k e/;Hkkxh tyk’k; vlrs- csVkP;k eapkps Hkkx ,d fdaok vf/kd }his Eg.kwu m?kM gksÅ ‘kdrkr] vkf.k csVkus the most common, project seaward directly from the shore, forming borders along the shoreline e/;HkkxhP;k tyk’k;kP;k lqxe {ks=kr rksMwu f’k# ‘kdrkr- and surrounding islands. Barrier reefs also border shorelines, but at a greater distance. They are separated from their adjacent landmass by a lagoon of open, often deep, water. If a fringing reef ÁokG csVkaP;k ifjlaLFksph mPp mRikndrspk ifj.kke eq[;rsus R;kaP;k okgR;k ik.;kus] dk;Z{ke tSfod iquZÁfØ;k] vkf.k forms around a volcanic island that subsides completely below sea level while the coral continues iks”kdkaph mPp /kkjdrk gh vkgsr- ÁokG ikWfyIlP;k Luk;waee/;sp lgpkjh ‘ksokG] >wDlsUFksys vlrkr] th ikWfyIlP;k VkdkÅ to grow upward, an atoll forms. Atolls are usually circular or oval, with a central lagoon. Parts of the reef platform may emerge as one or more islands, and breaks in the reef provide access to mRiknkaoj R;kaps foltZu gks.;kvk/kh çfØ;k djrkr the central lagoon.

The high productivity of coral reef ecosystems results principally from their flowing water, efficient biological recycling, and high retention of nutrients. The coral polyps have symbiotic algae, zoo- xanthellae, within their tissues, which process the polyps waste products before they are excret

31 ed, thus retaining such vital nutrients as phosphates. Zooxanthellae utilise nitrates, phosphates v’kkjhrhus ;kçdkjph eksD;kph iks”kds QkWLQsV~l Eg.kwu /kkj.k d#u Bsorkr- >wDlsUFksys ikWfYIle/;s mRikfnr uk;VªsV~l] and carbon dioxide produced in the polyps and, through photosynthesis, generate oxygen and QkWLQsV~l vkf.k dkcZu Mk;vkWDlkbZMpk okij djrs rlsp] çdk’klaLys”k.kkus] ikWfyIl oki: ‘kdrkr vls vkWfDltu vkf.k organic compounds that the coral polyps can use. Living corals exist as a veneer over a porous tSfod la;qxs fuekZ.k djrs- ftfor çokGs iksjl ykbeLVksuoj eqykek pksUl vkf.k and broken corals and molluscs) by encrusting organisms (algae, bryozoans and sponges). Liat½-

The great number of holes and crevices in a reef provide abundant shelters for fishes and inver- csVkaojhy fNækaph vkf.k Hksxkaph eqcyd la[;k ek’kkauk vkf.k vi`”Boa’kh;kauk eqcyd vkljk iqjorkr rlsp rs ek’kkaP;k tebrates and are important fish nurseries. In addition, highly specialised creatures have become laxksiuklkBhgh egRokps vkgsr- ;k [ksjht] mPpi.ks fo’ks”krkçkIr tho R;kaP;k ftforklkBh csVkP;k okrkoj.kkoj vkfJr cuys dependent for their survival on the reef environment. This environment provides a solid substrate vkgsr- gs okrkoj.k fdR;sd uhp&thfor tho/kkjhalkBh ,d tcjnLr vk/kkjLrj iqjors ¼f’kaiY;k] Liatsl] VÓwfudsV~l] leqæh for many bottom-living organisms (clams, sponges, tunicates, sea fans, anemones and algae) on ia[ks] jRUkT;ksfr vkf.k ‘ksokG½ T;koj LFkkoj gksÅu ok< gksrs- fdR;sd vU; ÁtkrhalkBh] ÁokGh csV R;kaP;k thou pØkalkBh which to settle and grow. For many other species, a coral reef is a critical habitat during a par- uktqd fdaok eksD;kP;k ikrGhl ,d egRoiw.kZ oLrhLFkku vkgs- csVkps fofo/k Hkkx Hkj.kiks”k.kklkBh] oa’k o`/nhlkBh] ckyx`gkaP;k ticularly vulnerable or critical stage of their life-cycles. The different parts of the reef are used for vkf.k vklÚ;kP;k Lo#ikr okijys tkrkr- feeding, for spawning, as nursery grounds and for shelter. ykVka;qDr fdukÚ;klyx vlysY;k >kyj Lo#ih csVkaps ,d egRokps dk;Z Eg.kts fdukÚ;kaps vi{kj.k VkG.ks vkf.k An important function of fringing reefs along the wave-swept shores is preventing coastal erosion oknGkiklwuP;k ukl/kwlhl jks[k.ks gks;- gs fo’ks”kr% v’kk {ks=kalkBh egRokps vkgs tsFks l[ky fdukjiV~Vh eSnkus vlrkr] tsFks and storm damage. This is particularly important for regions with low-lying coastal plains, where >kyj vkf.k dqai.k Lo#ih csVs fdukjiV~Vhph m”.k dfVca/kh; oknGs vkf.k [kkMhP;k ykVkaiklwu j{kk djrkr- >kyjLo#ih csVs fringing and barrier reefs protect the coast from the ravages of tropical storms and tidal waves. Eg.kts Lor%p nq#Lrh d# ‘kd.kkjh csVs vkgsr th ‘ksdMks ÁokG}hikaP;k vkf.k fdR;sd vU; fuEu dVhca/kh; }hikaP;k fujarj Fringing reefs are self-repairing breakwaters which permit the continued existence of hundreds mifLFkrhl ijokuxh nsrs] rlsp gtkjks eSy [kaMh; fdukjiV~Vhps j{k.k djrkr- leLr }hi iqatds R;kaP;k vfLrRoklkBh xr of atolls and numerous other low tropical islands, as well as protect thousands of miles of conti- ‘krdkrhy csV cka/k.kh ÁfØ;sP;k vkf.k leqæ Lrjh; csVkaph laj{kd HkwfedsP;k midkjk/khu vlrkr- gh }his vMo.kkÚ;k nental coastline. Entire island archipelagos owe their existence to the reef building process of past }hikalkBh] rlsp dfVca/kh; ns’kkaP;k fdukjiV~VîkalkBh]vkf.k euksjatu {ks=kaP;k vfLrRoklkBh] lqj{kslkBh vkf.k lkaLd`frd millennia and the protective role of sea-level reefs. These islands are valuable to the communi- eqY;kaP;k n`”Vhus eqY;oku vlrkr- v’kk egRoçkIr oLrhLFkkukar mPp eRL;O;olk; ijrkO;kalkBh =klkiklwu laj{k.k gs gh ties inhabiting islands and coasts of tropical nations and recreation areas for their subsistence, vko’;d vkgs- security and cultural value. Protection from disturbance in such critical habitats is also essential for maintaining higher fisheries returns. vf/kdrj ifjfLFkrhdh leqnk;kph HkkSfrd cka/k.kh gh jksis vkf.k eq[;r% çokGkauh R;kus c/n dsysY;k çokG csVkauh >kysyh vlrs- ;k *lkpkLo#ih çtkrhaP;k* le`/nrsr cnyko Eg.kt leLr leqnk;kP;k xfrcks/kdrslkBh egÙokps vlrkr] T;kr lg;ksxh The physical structure of most ecological communities is formed by plants and in coral reefs it *njE;kuP;k çtkrh* tls dh HkVdrh tukojsgh vlrkr- ’kkarhHkax] th nksUgh tyh; vkf.k Hkwlaca/kh ifjfLFkrhdhaP;k LFkkiukarhy is formed mainly by corals. Variations in the abundance of these ‘structural species’ are critical ,d Qkjp lgt vk

Coral reefs are among the most valuable ecosystems on Earth, providing people with goods and çokG csVkaps iru services that include food, storm protection, and recreational opportunities. Despite their impor- tance, coral reef ecosystems are in decline from a myriad of man-made and natural threats. çokG csVs ‘kkarhHkaxkP;k n`”Vhus Qkjp laosnu’khy vlrkr ex rs uSlfxZd vlksr ok ekuofufeZr- uSlfxZd HkkSfrd fdaok tSfod ‘kkarhHkaxkeqGs ej.k iko.;kpk nj ,d usgehph çfØ;k vkgs th çokG csVs rlsp fdR;sd vU; lajpukae/khy fofo/krkaP;k Degradation of coral reefs ns[kjs[khlkBh ,d egÙokph çfØ;k vkgs- rFkkfi] xsY;k dkgh n’kdkar] çokG csVkaps çHkkokaP;k foLr`r ekfydkaeqGs oSf’od ekikoj iru dsys tkr vkgs] vkf.k R;kaP;k vfLrRokl oSf’od m”ek vkf.k leqæ ikrGhps cny] oknGs] ØkÅu vkWQ FkkWuZl Coral reefs are very sensitive to disturbances whether they are natural or anthropogenic. Mortality LVkjfQ’kP;k ¼COTS½ lagkjkeqGs vkf.k mnjiknh oa’kps æqisYyk] O;k/kh] vkS|ksfxd çnw”k.k] csV L=ksrkapk vfr xSjokij] fo/oald due to natural physical and biological disturbances is a routine process that is vital to the main- eklsekjhP;k lo;h] i;ZVu] vkf.k xkG lkp.ks ;kaP;kdMwu tks[keh laHkorkr- tenance of diversity in coral reefs and many other systems. However, over the last few decades, coral reefs are being degraded on a global scale by a wide range of impacts, and their very ;kpk ifj.kke Eg.kwu] csVkaP;k vkjksX;kpk Úgkl gks.;kckcrps fooj.k jkstph xks”V cuysyh vkgs] rlsp fdR;sd csVkauh vyhdMs existence is threatened by various causes such as global warming and sea level changes, storms, çokG vkPNknus o le`/nrsr y{k.kh; ?kV vkf.k R;kpcjkscj ‘ksokG;qDr vkPNknu gks.;kr vuq”kafxd ok< vuqHkoyk vkgs- predation by the Crown-of-Thorns Starfish (COTS) and the gastropod genus Drupella, diseases, rFkkfi] çokG leqnk;kauk cny.;kph dkj.ks vkf.k fuit fooknkLin mjrks] fo’ks”k d#u rs uSlfxZd fdaok ekuofufeZr vlksr] industrial pollution, overexploitation of reef resources, destructive fishing practices, tourism, and vkf.k sedimentation.

As a result, descriptions about declining reef health are commonplace, and many reefs have recently experienced a drastic reduction in coral cover and richness, and a concomitant increase in algal cover. However, the causes and consequences of changing coral communities remain contentious, particularly whether they are of natural or anthropogenic origin, and whether the

32 persistence of scleractinian corals through geological time and historic disturbances should allevi- HkwoSKkfud osGk vkf.k ,sfrgkfld vMFkGkaP;k ek/;ekus LDysjWDVhfu;u çokGkaph n`

33 6.5.5.5 Rocky shores 6.5.5.5 [kMdkG fdukjs

A rocky shore consists of rocky ledges with tide pools, boulders and pebbles. A rocky shore [kMdkG rV [kMd Hkjrh vksgksVh dqaM] xksy nxM vkf.k xkjxksVÓkauh vlysY;k dMkauh c/n >kysyk vlrks- [kMdkG biodiversity hotspots area which has a hard rocky substratum which form diverse habitats in the rV tSofofo/krk d.k[kj [kMdkG ik;k vlysY;k {ks=kl BGdrsus n’kZors Tkh pjs] fHkarh vkf.k xqgkaP;k Lo#ikus oSfo/;iw.kZ form of crevices, wall and caves which support diverse and abundant fish population. Commu- oLrhLFkkus cuorkr] T;kus ek’kkaP;k oSfo/;rsl vkf.k le`/nhl vk/kkj feGrks- etcwr jksis vkf.k tukojkaps leqnk; vkf.k izR;sd nity of hardy plants and animals and each species is specially adapted for coping with the harsh iztkrh ;sFkhy dBksj Hkksorkyh gokekuk’kh tqGrs ?ks.;kl vuq#i curkr- [kMdkG fdukÚ;kph ifjfLFkrhdh LFkkfir dj.;klkBh environment around it. The plants and animals interact with each other and with their habitat to jksis vkf.k tukojs ,dnqlÚ;k’kh vkf.k R;kaP;k oLrhLFkkuk’kh vkarjfØ;k djrkr- form the rocky shore ecosystem. varjkosyh; oLrhLFkkukaP;k foLr`r J`a[kyk vkgsr] T;kiSdh izR;sd HkjrhvksgksVhP;k izHkkokuqlkj osxosxGÓk {ks=kar foHkkxysY;k There are a wide range of intertidal habitats, each of which is divided into separate zones based vlrkr- m/kk.kkph Hkjrh nj nksu vkBoMÓkauh ikSf.kZek vkf.k vekokL;sl ;srs- fdukÚ;kpk vH;kl dj.;kpk loksZRre osG Eg.kts on the influence of the tide. Spring tides occur every two weeks at times of the full and new ;k HkjrhaP;k njE;kupk vlrks dkj.k rs vk.k[kh iq

Seashore life occurs in zones on the shore, according to how tolerant different species are of leqnzfdukjh thou fofo/k iztkrh gok vkf.k lw;Zizdk’k ;kauk fdrir lgu’khy vkgsr ;kP;k vuqlkj fdukÚ;kP;k {ks=kr exposure to air and sunlight. Above the level of the highest tides is the splash zone, strongly ?kMrs- mPpre HkjrhP;k ikrGhP;k oj mlGh izHkkx vlrks] tks izcyi.ks feBkP;k QokÚ;kauh izHkkfor vlrks- fdukÚ;kpk affected by salt spray. The upper shore is not covered by every high tide, usually only those of ojpk Hkkx izR;sd Hkjrhl O;kiyk tkr ukgh] dsoG m/kk.kkP;k Hkjrhlp rls gksrs- vxnh FkksMîkp iztkrh rqyukRedjhR;k spring tides. Very few species can tolerate the relatively dry conditions of the upper shore. Most ojP;k fdukjhHkkxkP;k ‘kq”d fLFkrhal lgu d# ‘kdrkr- leqnzfdukÚ;kps vf/kdrj izk.kh vkf.k jksis e/; fdukÚ;kl okLrO; seashore animals and plants live in the middle shore, the main area of the shore which is cov- djrkr] fdukÚ;kpk eq[; Hkkx tks izR;sd Hkjrhl O;kiyk vkf.k vuko`r dsyk tkrks- l[ky fdukjk dsoG m/kk.;kP;k HkjrhP;k ered and uncovered by every tide. The lower shore is only exposed during the low tides of spring vksgksVhP;k osGslp m?kM gksrks] o ;sFksp fdR;sd uktqd iztkrh vkwiysaDVksu ¼ek;ØksLdksfid oU;thou½] Qk;VksIysaDVksuoj ¼leqnzkrhy ek;ØksLdksfid ouLirh thou½ Lor%ps other plants growing on rocks. Carnivores, such as larger molluscs and crabs, hunt and scav- Hkj.kiks”k.k djrkr- varjkosyh; tholq/nk R;kaP;k iqu%iztukuklkBh leqnzkoj fuHkZj vlrkr- ;k iSdh cÚ;kp thokauk ftoar enge for food. Others, for example zooplankton (microscopic animal life), feed on phytoplankton jgk.;klkBh R;kaph vaMh fdaok ykokZ leqnzkr lksM.ks vko’;d vlrs- (microscopic plant life in the sea). Intertidal organisms are also dependant on the sea for their reproduction. Many of these organisms must shed their eggs or larvae into the sea to survive 6.5.5.6 unheq[ks@[kkMîk 6.5.5.6 Estuaries unheq[k fdaok [kkMh ik.;kpk vlk cuysyk Hkkx vlrks tsFks u|kaps vkf.k vks<Ókaps rkts ik.kh lkxjkyk feGrs] leqnzkP;k [kkjV An estuary is a body of water formed where freshwater from rivers and streams flows into the ik.;kr felGrs- unheq[ks vkf.k R;kaP;k lHkksorkypk Hkkx Eg.kts tfeuho#u leqnzkr] rlsp rkT;k ik.;krwu [kkjVik.;kr ocean, mixing with the seawater. Estuaries and the lands surrounding them are places of transi- laØfer gks.;kph fBdk.ks vlrkr- Hkjrhauh izHkkfor vlyh rjh ns[khy] unheq[ks@[kkMÓk leqnzkP;k ykVkaP;k iw.kZ tksjkiklwu] tion from land to sea, and from freshwater to saltwater. Although influenced by the tides, estuaries gosiklwu vkf.k oknGkaiklwu fHkRrhdk] jks/kd csVs fdaok tfeuhps y?kqHkkx] fp[ky] fdaok R;kP;k Hkksorkyh vlysY;k okGweqGs are protected from the full force of ocean waves, winds, and storms by the reefs, barrier islands, lajf{kr jkgrkr- laiw.kZ {kkj;qDrrk 0 rs 35 ppt P;k J`a[kysr vlwu unheq[kkP;k MksD;kiklwu ¼unhdMps Vksd½ rs rksaMki;Zar or fingers of land, mud, or sand that surround them. The complete salinity range from 0 to 35 ppt ¼leqnzkdMps Vksd½ ikfgys tkÅ ‘kdrs- HkkjrkP;k fdukjiV~Vhyk ykxwu fofHkUu ekikph vkf.k vkdkjkph v’kh toGikl 100 is seen from the head (river end) to the mouth (sea end) of an estuary. About 100 such channels eq[ks vkgsr- izR;sd unheq[k R;kps rkts ik.kh unhP;k [kksÚ;krwu ;s.kkÚ;k lkaMik.kh eq[kkrwu izkIr djrs- unheq[kkaps fdukjs ekuoh of varying sizes and shapes occur along the coast of India. Each estuary receives its freshwater vf/koklklkBh ilarhps fBdk.k curs] ts unheq[kkapk okij eklsekjh vkf.k O;kikjh gsrwalkBh djrkr] ijarq gYyhP;k fnolkar from drainage channels of a river basin. The banks of estuarine channels form a favoured loca- ukxjh vkf.k vkS|ksfxd VkdkÅauk Qsd.;kl ns[khy okijrkr- tion for human settlements, which use the estuaries for fishing and commerce, but nowadays also for dumping civic and industrial waste.

34 Estuaries are usually biologically highly productive zones. They also act as a filter for some dis- unheq[ks@[kkMÓk lk/kkj.kr% tSfodn`”VÓk mPp mRiknd izHkkx vlrkr- rs unhP;k ik.;kr foj?kGysY;k dkgh ?kVdkalkBh solved constituents in river water; these precipitate in the zone where river water meets seawater. xkG.khps dkelq/nk djrs( ;keqGs izHkkxkr vo{ksi.k gksrs tsFks unhps ik.kh lkxjkP;k ik.;k’kh feGrs- vf/kd egRokps Eg.kts More important is the trapping of suspended mud and sand carried by rivers which leads to u|ka}kjs ogkr vk.kysY;k fuyafcr xkGkl vkf.k okGwl vMdo.ks T;keqGs unheq[kkHkksorh f=Hkqt izns’kkph LFkkiuk gksrs- delta formations around estuaries. Major estuaries occur in the Bay of Bengal. Many estuaries unheq[ks izkeq[;kus caxkyP;k milkxjkr vkqvkjh unheq[ks- campus of the National Institute of Oceanography at Dona Paula, Goa. 6.5.5.7 fdukjiV~VhdMhy nynyh Hkkx 6.5.5.7 Coastal Wetlands nyny Eg.kts vls {ks= tsFks lqdh tehu ik.;k’kh feGrs fdaok lar`Ir dsyh tkrs rlsp ;kr ik.;koj voyacwu vlysY;k Wetlands are areas where dry land meets or is saturated by water and are characterised by the jksikaP;k iztkrh vkf.k izk.kh ;kaPkh mifLFkrh ;kps xq.kfo’ks”k vlrs- typØkpk ,d vfoHkkT; Hkkx Eg.kwu] nynyh Hkkx gs presence of water-dependent species of plants and animals. As an integral part of the water cycle, wetlands are amongst the most productive ecosystems on earth and are of great economic i`Fohojhy lokZr mRiknd ifjfLFkrhdhiSdh ,d vkgs] rlsp ekuorslkBh vkfFkZd vkf.k lkaLd`frdjhR;k egRokps vkgsr- and cultural importance to mankind. Þnynyß gh laKk Eg.kts rqyukRedjhR;k uoh ‘kCnfufeZrh ¼LekVZ] 1997½ vkgs th oSf’k”VÓiw.kZ oLrhLFkkukaP;k foLr`r J`a[kysl The term “wetland” is a relatively new coinage (Smart, 1997) that covers a broad range of distinc- O;kirs rlsp tythou@Hkwlaca/kh Js.khc/n jpukar ;Fkk;ksX; clr ukgh- nynys lk/kkj.ki.ks vksY;k vkf.k cgqrka’kh lqD;k tive habitat types which do not fit neatly into aquatic/terrestrial classification systems. Wetlands okrkoj.kknjE;kuP;k laØe.k izHkkxkl O;kirks vkf.k R;kr nks?kkapsgh xq.kfo’ks”k mifLFkr vlrkr- ,df=ri.ks] R;kaph J`a[kyk commonly occupy a transitional zone between wet and generally dry environments and share dk;eLo#ih fdaok rkRdkfyd nyny rs mFkG ik.kh vkf.k Hkw&ty dMk ¼:csd ,V vy] 1999½ v’kh vlrs- characteristics of both. Collectively, they range from permanently or intermittently wet land to shallow water and land-water margins (Rubec et al, 1999). R;kauk #kyh- A common frame of reference is now provided by the Convention on Wetlands of International Importance Especially as Waterfowl Habitat, concluded in Ramsar, Iran on 2 February 1971. vkarjjk”Vªh;i.ks fLodkj dsyh xsysyh nynyh izns’kkph O;k[;k vls lkaxrs dh rs nyny] fp[ky;qDr] fpdVekrh fdaok ik.kh;qDr vls izns’k vkgsr ts uSlfxZd fdaok d`f=e] dk;eps ok yk{kf.kd] LFkk;h fdok okgrs ik.kh;qDr] rkts] [kkjV The internationally agreed definition describes wetlands very broadly as areas of marsh, fen, fdaokehB] T;kr leqnzh ik.;kps {ks=gh lekfo”V vkgs T;kph [kksyh vksgksVhP;k osGsl lgk ehVjgwu tkLr tk.kkj ukgh- 4 peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres.4

35 This represents the first attempt by the international community to develop a coordinating con- vkarjjk”Vªh; leqnk;kus ,dk fofufnZ”V ifjfLFkrhdh leqgklkBh leUo;d ladYiuk fodflr dj.;klkBh dsysY;k loZizFke cept for a specific group of ecosystems and provides a useful starting point for wetland identifica- iz;klkps gs izfrfuf/kRo djrs- rlsp nyny izns’k vfHkKkuklkBh ,d mi;qDr vkjaHk fcanw vkf.k O;oLFkkiu iqjors- rFkkfi] tion and management. However, the definition is not free of difficulty: some have considered that ifjHkk”kk dBh.krkeqDr ukgh% dkghauh vls fopkjkr ?ksrys vkgs dh R;keqGs nynyh Hkkxkps fooj.k o okij vkf.k R;kaiklwuP;k it makes the description of wetlands and their uses and threats more complex (OECD, 1996). tks[keh vf/kd fdpdV cuys vkgs- (OECD, 1996).

6.5.6 Functioning of critical habitats 6.5.6 egRoiw.kZ oLR;kaps izdk;Z

Critical processes at the ecosystem level influence plant productivity, soil fertility, water quality, i;kZoj.kh; ikrGhP;k eksD;kP;k izfØ;k mRikndrk] ekrhph mit{kerk] ik.;kph xq.koRrk] okrkoj.kh; jlk;u’kkL=] vkf.k atmospheric chemistry, and many other local and global environmental conditions that ultimately fdR;sd vU; LFkkuh; vkf.k oSf’od i;kZoj.kh; ifjfLFkrhauk izHkkfor djrkr] T;k v[ksjhl ekuoh dY;k.kkl izHkkfor djrkr- affect human welfare. These ecosystem processes are controlled by both the diversity and ;k i;kZoj.kh; izfØ;k jksikP;k] izk.;kP;k vkf.k lektkP;k vkrp jgk.kkÚ;k lw{etho iztkrhaP;k fofo/krk vkf.k vksG[k identity of the plant, animal, and microbial species living within a community. Human modifica- ;k nksgka}kjs fu;af=r dsY;k tkrkr- ifjfLFkrhdhe/;s tx.kkÚ;k leqnk;kaps rlsp i`Fohph ,df=r tSofofo/krk ;kaps ekuoh tions to the living community in an ecosystem as well as to the collective biodiversity of the earth #iifjorZu Eg.kwup ifjlaLFkh; dk;kZauk vkf.k thou leFkZu lsokauk cnyw ‘kdrks T;k ekuoh leqnk;kaP;k HkY;klkBh vR;ar can therefore alter ecological functions and life support services that are vital to the well-being of egÙokP;k vkgsr- eksBÓk izek.kkojhy cny vk/khp ?kMysys vkgsr] fo’ks”kr% tSofofo/krsps LFkkuh; vkf.k oSf’od uqdlku- human societies. Substantial changes have already occurred, especially local and global losses izkFkfed dkj.k Eg.kts tks ,ds dkGh mPp fofo/krk uSlfxZd i;kZoj.k vls R;kl rqyUkkRedjhR;k iztkrh&nqcZy O;oLFkkfir of biodiversity. The primary cause has been widespread human transformation of once highly i;kZoj.kke/;s cny.kkjk ekuoh dk;kikyV- gYyhP;k vH;klkauh vls n’kZoys vkgs dh tSofofo/krkar ;s.kkjh ?kV i;kZoj.kh; diverse natural ecosystems into relatively species-poor managed ecosystems. Recent studies sug- izfØ;kaP;k ifjek.k vkf.k LFkkf;Ro ;k nks?kkauk deh d: ‘kdrs] fo’ks”k d:u tsOgk tSofofo/krslfdR;sd O;oLFkkfir gest that such reductions in biodiversity can alter both the magnitude and the stability of ecosys- lajpukaP;kuewusnkj fuEu ikrGhal ?kVoys tkrs- tem processes, especially when biodiversity is reduced to the low levels typical of many managed systems. miyC/k iqjkO;kauh tSofofo/krk vkf.k i;kZoj.kh; miØekalkBh vMp.k fuekZ.k dj.kkÚ;k iqkysys functioning: vfn~orh; uqdlku gks;] vxnh tuqdkaiklwu iztkrh rs laiw.kZ ifjfLFkrhdhai;Zar- • Human impacts on global biodiversity have been dramatic, resulting in unprecedented losses • tSofofo/krsaps LFkkuh; vfLodkj Eg.kts oSf’od vfLodkjkis{kk vf/kd ukVÓiw.kZ vkgsr] vkf.k LFkkuh; izfØ;kaojhy fdR;sd in global biodiversity at all levels, from genes and species to entire ecosystems. thokaps ykHkdkjh ifj.kke iztkrh oSf’odjhR;k yqIr gks.;kvk/khp xekoys xsys- • Local declines in biodiversity are even more dramatic than global declines, and the beneficial • fdR;sd i;kZoj.kh; izfØ;k tSofofo/kkaP;k vfLodkj.kkP;k n`”Vhus laosnu’khy vlrkr- effects of many organisms on local processes are lost long before the species become globally extinct. • i;kZoj.kkrhy iztkrhaP;k vksG[khe/;s vkf.k le`/nrk frrdhp egRoiw.kZ vlw ‘kdrs ftrdh dh i;kZoj.kh; izfØ;kauk izHkkfor dj.;kr tSofofo/ksrhy cny- • Many ecosystem processes are sensitive to declines in biodiversity. • Changes in the identity and abundance of species in an ecosystem can be as important as ifjfLFkrhdhps dk;Z jksis] izk.kh] vkf.k thotarw ;kaP;k ,df=r thou dk;sZ n’kZorkr ¼iks”k.k] ok<] ogu] VkdkÅapk R;kx] b-½ changes in biodiversity in influencing ecosystem processes. vkf.k ;k xfrfo/khaps R;kaP;k i;kZoj.kkojkP;k HkkSfrd vkf.k jklk;fud fLFkrhaoj vl.kkjs ifj.kkegh- ¼uksan ?;k dh dk;kZpk vFkZ dk;sZ nk[ko.ks vkf.k thotarw ifjfLFkrhdh&Lrjh; izfØ;kae/;s gsrqiqjLlj Hkwfedk fuHkkorkr vls lqpor ukgh½- The functioning of an ecosystem reflects the collective life activities (feeding, growing, moving, excreting waste, etc.) of plants, animals, and microbes and the effects these activities have on the physical and chemical conditions of their environment. (Note that functioning means showing ac

36 tivity and does not imply that organisms perform purposeful roles in ecosystem-level processes.) dk;Zjr ifjfLFkrhdh Eg.kts R;kP;k izdkjkP;k tSfod vkf.k jklk;fud xfrfo/kh xq.kfo’ks”kkauk n’kZo.kkjh gks;- A functioning ecosystem is one that exhibits biological and chemical activities characteristic of its type. leqnzh ifjfLFkrhdhe/;snxMekrh vkf.k ‘ksdMks izdkjps tho/kkjh tls dh thok.kw] Qk;VksIy¡DVu] >wIy¡DVu] ekls] lLru vkf.k i{kh lekfo”V vlrkr- gs loZ ?kVd ,dk fdpdV [kk| osc’kh fodkldkjh vkarjfØ;ka}kjs tqMysY;k vlrkr- A marine ecosystem contains detritus and hundreds of kinds of organisms including bac- i;kZoj.kh; izfØ;kaP;k oSfo/;iw.kZ O;wgjpuk ikj ikMrkrT;k ftforkal lkexzh vkf.k lsok iqjorkr- eksBÓk izek.kkrhy teria, phytoplankton, zooplankton, fishes, mammals, and birds. All these components are kysys ifj.kke] tls ,[kknk miØe tks fofufnZ”V iztkrhal vkf.k vkdkj&oxkZal occur, and how reversible these changes are. In this respect, improved understanding of y{; djrks- ecosystem dynamics is critical to predict and manage the consequences of environmental variability and human impacts, such as those induced by marine fisheries, an activity tar- izokG csVs vkf.k [kkjQqVh ifjfLFkrhdhaph dk;sZ lgthoh ukrslaca/kkus pkyrkr] T;kus m”.kdfVca/kh; vkf.k le’khrks”.k geting specific species and size-classes. dfVca/kh; fdukjiV~Vh i;kZoj.ks laof/kZr gksrkr- izokGh csVkaps vkjksX; vkf.k iYyk fdukjiV~Vh; [kkjQqVh oukaoj eksBÓk Coral reef and mangrove ecosystems function in a symbiotic relationship, which enhances izek.kkr voyacwu vkgsr] th fdukjjs[kkal fLFkj djrkr] iznw”kdkauk dkkY;kl] izokGh csVs izfrdwyi.ks izHkkfor gksrhy- izokGs eLR;O;olk;kaP;k ants, improve water quality, and provide nursery habitats that maintain fisheries. If fisheries cGk’kh lglacaf/kr vlrkrvkf.k o/kZu{ke eLR;O;olk;kaf’kok;] izokGh csVs rx /k: ‘kdr ukghr- are degraded due to the destruction or loss of mangrove habitats, then coral reefs will be adversely affected. Corals are correlated with the strength of fisheries and without viable m”.kdfVca/kh; leqnzh oLrhLFkkaukanjE;ku tksM fnY;kus] R;kaps ifjlaLFkh; vkf.k vkfFkZd egRo vkf.k R;kaP;k vkjksX;kl fisheries, coral reefs cannot survive. vlysY;k /kksD;kph tksM] R;kus gs let.ks egRokps vkgs dh leLr leqnzn`’;Hkjkr ifjfLFkrhdh izfØ;k vkiys dk;Z d’kk izdkjs djrkr- izfØ;kaph ,d mRre let ifjlaLFksyk vlysY;k uSlfxZd vkf.k ekuofufeZr v’kk nksUgh Given the connectivity among tropical marine habitats, their great ecological and economic vMFkGÓkaps ifjlaLFkh; vkf.k lkekftdrk ifj.kkekaps mUewyu djsy- ;kgh iq

37 Critical habitats can be defined as ‘habitats that are critical to the survival of the species or com- fo’ks”kÙokus] egÙoiw.kZ oLrhLFkkukar lekfo”V vlrkr% munity concerned and the actions needed to protect those habitats’ where survival means the • v’kh {ks=s tsFks iztkrh l/;k oa’ko`/nh] Hkj.kiks”k.k] foJke ?ksr vlY;kps rlsp laxksiu djr vlY;kps Kkr vlrs( long term security or persistence of the species, that is, its recovery to the point where it is no longer endangered or threatened with extinction. • v’kh {ks=s tsFks egÙoiw.kZ iztkrh dnkfpr l/;k ulrhy] tj iztkrhauk R;kaP;k /kksD;kr vl.;kP;k l/;kP;k fLFkrhrwu iwoZor djko;kps vlsy vkf.k i;kZoj.kh; cnykaph rek u ckGxrk nh?kZdkG fVdwu jkgk;ps vlsy( Specifically, critical habitat areas include: • LFkykarjkph {ks=s] tls dh ;stk dj.;klkBhps fdaok LFkykarfjrkalkBhps iV~Vs ts nh?kZdkyhu yksdla[;k O;ogk;ZrslkBh • Areas where the species is currently known to breed, feed, rest and raise young; egÙokpss vlrhy- • Areas where the species may not presently occur which are critical if the species is to recover from its presently endangered state and to persist in the long term despite environmental thouklkBh vkf.k /kksD;kr vlysY;k iztkrhaps ;’kLoh iqu#Riknu ;kalkBh vko’;d HkkSfrd vkf.k tSo’kkL=h; v’kk nksUgh change; oLrhLFkku xq.k/kekZaph ‘kkL=K uewusnkji.ks leh{kk djrhy- tsOgk gh HkkSxksfyd {ks=s tks[khexzLr fdaok /kksD;kr vlysY;k • Areas of migration, such as movement or migratory corridors which may be critical to long- iztkrhauk tru dj.;klkBh vfuok;Z Eg.kwu fopkjkr ?ksryh tkrkr rsOgk R;kaph O;k[;k *egÙoiw.kZ oLrhLFkkus* Eg.kwu dsyh tkrs term population viability. vkf.k fo’ks”k izca/kuklkBh rlsp lqj{kslkBh rjrwnh dsY;k tkrkr-

Scientists will typically assess both the physical and biological habitat features needed for the life egÙoiw.kZ oLrhLFkkus ,d vckf/kr jk[k.;kph foLr`r O;oLFkk vkgs Tkh fofo/k ekxkZauh ykxw dsysyh vkgs- HkwrdkGkr] Hkwlaca/kh and successful reproduction of the threatened species. It is when these geographic area(s) are vkf.k leqnzh i;kZoj.k v’kk nksUghalkBh fof’k”B izca/ku ‘kklus ykxw dj.;klkBh fu;ked cy Eg.kwu gh lxGÓkr ;’kLoh vlsy- considered essential for the conservation of a threatened or endangered species that it is defined as ‘critical habitat’ and provisions for special management and protection are made. izokG csVs oLrhLFkkus] leqnzh xorkP;k xk|k vkf.k [kkjQqVh /kkj.kk fdR;sd egRokP;k i;kZoj.kh; O;oLFkk lkexzh vkf.k lsok] tls dh fdukjiV~Vh j{k.k] xkG mRiknu] izkFkfed mRiknu] eRL;O;olk; vkf.k iztkrhaP;k mPp fofo/krsph ns[kjs[k v’kk Critical habitats are a broad conservation tool that has been implemented in diverse ways. In the lsoklq/nk iqjorkr- ;kgh iqkY;kl xkG izokGkaoj iMyk vlrk vkf.k xkG lkp.;kus ej.k iko.;kpkqnj dkj.khHkwr gksÅ ‘kdrs- oLrhLFkkukanjE;kuP;k ifjfLFkrhd O;oLFkk tqG.;kae/;s tho/kkjhaps LFkykarj O;fDrfodkl fdaok fnupj vk/kkjkus lekfo”V Coral reef habitats, sea grass beds and mangrove stands provide many important ecosystem vlrs- fdR;sd LuWij] xzaV vkf.k iWjksVekls iztkrh] mnkgj.kkFkZ] leqnzh xor xk|kaiklwu fdaok [kkjQqVh rs R;kaaP;k izkS< izokG goods and services such as coastal defence, sediment production, primary production, fisheries and the maintenance of high diversity of species. Furthermore, all three systems often occur in csV oLrhLFkku mi;ksxklkBh O;fDrfodkld ikGÓk vafxdkj.ks- vtSfod vkf.k ifjfLFkrhd O;oLFkk fyaDl okjaokji.ks eksD;kP;k close proximity, and many physical and ecological processes transcend individual habitats. For vkfFkZd L=ksrkal vk/kkj nsrkr] tls dh eqY;oku eRL;O;olk; iz{ks=- fdukjiV~Vh {ks= i;ZVukrwugh y{k.kh; eglwy fuekZ.k example, estuarine mangroves trap riverine sediments that might otherwise discharge onto reefs djrs ¼mnk- ekyo.k] egkjk”Vªkr Luksjdsfyax vkf.k Ldqck Mk;foax vkS|ksfxdhus :- 10 dksVhagwu vf/kd] rlsp vaneku vkf.k and cause mortality through sedimentation. Ecological linkages among habitats include the mi- y{k}hi csVkae/kwugh½] T;kiSdh cjsp mFkG leqnzh oLrhLFkkuakoj >ksr Bsowu vkgs- m”.kdfVca/kh; leqnzh oLrhLFkkukaps vkfFkZd gration of organisms on an ontogenetic or diurnal basis. Many snapper, grunt and parrotfish spe- vkf.k ifjfLFkrhd O;oLFkkiw.kZ R;kaP;k ifjfLFkrhd O;oLFkkae/khy egRo rkfRod cnykauh tks[keh vkgs] T;kr ,danj ‘ksokG cies, for example, undertake ontogenetic shifts in habitat use from seagrass beds or mangroves O;kIrh vkf.k izokGkP;k csVkaojhy O;kIrhr lgxkeh ?kV] ek’kkaP;k ,d=hdj.k tSoHkkjkr ?kV vkf.k iztkrh mUewyu lekfo”V to their adult coral reef habitats. Abiotic and ecological links frequently underpin key economic vkgs- leqnzh i;kZoj.kh; O;oLFksrs cnykl tkxfrd Lrjkoj ekuofufeZr ?kVdkal mRrjnk;hekuysys vkgs] T;kr iznw”k.k] resources such as the valuable fishery sector. The coastal zone also generates significant revenue fdukjiV~Vh fodkl] vfreklsekjh] ,y fuuks vkf.k iz;qDr jksxk.kw lekfo”V vkgsr- from tourism (e.g., over Rs.10 crore is earned through the snorkelling and scuba diving indus- try in Malvan, Maharashtra, as with the Andaman and Lakshadweep islands), much of which is 6.5.8 egÙoiw.kZ fdukjh vkf.k leqæh Átkrha’kh ifjfpr gks.ks focused on shallow marine habitats. The economic and ecological importance of tropical marine habitats is threatened by fundamental changes to their ecology, including increases in macroalgal lw=iw.kZ n’kZd iztkrhauk letqu ?ks.ks dqBY;kgh ifjlaLFksP;k fLFkrhl y?kq dky[kaMkr let.;kl enr djrs- tjh leqnzh cover and concomitant decreases in coral cover on reefs, reductions in the biomass of fish as- ifjfLFkrhdh fdaok R;kaph egÙoiw.kZ oLrhLFkkus fdpdVifjfLFkrhdh vkgsr( eqY;ekiu vkf.k lafu;a=.kklkBh lw=iw.kZ n’kZd semblages and species extinctions. Changes to marine ecosystems globally have been attributed iztkrhaph vksG[k iV.ks gs rqyusus lksis vkgs- to a suite of anthropogenic factors, including pollution, coastal development, overfishing, the El Nino and introduced pathogens.

6.5.8 Getting familiar with critical coastal and marine species

Understanding the key indicator species helps understand the status of any ecosystem in a short time. Though marine ecosystems or their critical habitats are complex ecosystems, it is relatively easy to identify the key indicator species for assessment and monitoring.

38 6.6. Conducting the assessment 6.6. eqY;kadukl vk;ksftr dj.ks

6.6.1 Basic steps 6.6.1 eqyHkwr pj.k

Conducting assessment of critical habitats and species included the following steps: egÙoiw.kZ oLrhLFkkus vkf.k iztkrhaP;k eqY;ekiukps vk;kstu djrkuk [kkyhy pj.ks varHkwZr vlrkr%

Step 1- Collecting data in field pj.k 1 & {ks=h; MsVk xksGk dj.ks Step 2 - Manage and compile the data pj.k 2 & MsVk izca/ku vkf.k ladyu dj.ks Step 3 -Analyse the data pj.k 3 & MsVk fo’ys”k.k dj.ks Step 4- Interpretation and peer-review of data pj.k 4 & MsVkps foospu vkf.k iwoZ leh{kk Step 5 -Communicating the results and adapting the management planning based on the pj.k 5 & fudkykal lapkj.k dj.ks vkf.k eqY;fud”kkP;k vk/kkjkoj O;OkLFkkiu fu;kstu vafxdkj.ks evaluation pj.k 6 & n’kZdkaps fu;fer okjaokjrsus fujarj lafu;a=.k dj.ks Step 6- continuously monitor the indicators at a regular frequency 6.6.2 [kkjQqVh oLR;kaps eqY;kadu 6.6.2 Assessment of Mangrove Habitats LDok>Z vkf.k brj ¼2004½ ;kauhiq

Physical characteristics may be sampled more frequently, at least initially, to build an understand- ing of how quickly things change at the study site.

39 6.6.2.3 Methods of sampling 6.6.2.3 uewukdj.kkP;k i/nrh

Each transects needs to be permanently marked so that it can be returned to on different occa- izR;sd vuqPNsnhr {ks=koj dk;eLo#ih [kq.kk dj.ks vko’;d vkgs ts.ksd:u R;kl fofo/k izlaxh vkf.k iqkMs½ fdaok i`”BHkkx oSf’k”VÓs] fofo/k izdkjkP;k xkGklg- where there are changes in plant communities (e.g., sea grasses, mangrove seedlings, saplings, pneumatophores and mangrove trees) or surface features, including different types of sediment. vkd`fr% (A) [kkjQqVh fp[ky;qDr tfeuhpk rqdMk@okGwlikV lhek vkf.k % (B) [kkjQqVh@f’kaiY;kapk fdukjk@ehBkxj@ fp[ky;qDr lhek ;kaP;k njE;ku ekiu iV~Vh ekaMwudk;eLo#ih [kq.kk- (L=ksr% LDok>Z ,V vy (2004)) Figure: Permanent markers with a temporary measuring tape laid between them across (A) a mangrove mudflat/sand flat boundary and (B) mangrove/shell bank/salt marsh/mudflat boundaries (Source: Schwarz et al (2004))

6.6.2.6 lhekyxr [kkjQqVh leqnk; xq.k/keZs

6.6.2.6 Mangrove community characteristics across boundaries gh i/nr rqEgkyk jksikaP;k] ygku jksiVÓkaP;k vkf.k >kMkaP;k lacaf/kr vkdMÓkarhy o”kkZanjE;kupk cny let.;kl l{kerk nsrs vkf.k ;kpeqGs osGsuqlkj taxy d’kk jhrhus fodflr gksrs ;kph mRre letgh feGrs- [kkjQqVh vkf.k Hkjrh {ks=kP;k njE;kuph This method enables you to follow changes in relative numbers of seedlings, saplings and trees leqnzkP;k fn’ksph lhek gh {ks=kph izeq[k lhek Eg.kwu fuoMyh tk.;kph ‘kD;rk vlrs- rFkkfi] tj vls dj.ks fuoMysY;k between years and so better understand how a forest develops with time. The seaward boundary lkbZV’kh lacaf/kr vlY;kl ;kp i/nrh nqlÚ;k lhekayxrgh okijY;k tkÅ ‘kdrkr- between the mangroves and tidal flats is likely to be selected as the main boundary of the area. However, the same methods can be used across other boundaries if doing this is relevant to the [kkjQqVh oukP;k lheso#u tk.kkjh ,d pkSdV vk[kyh tkoh- mnkgj.kklkBh vkd`fr 4 igk- pkSdVhpk vkdkj fuoMysY;k selected site. lkbZVP;k xq.k/kekZaoj fuHkZj vlsy ¼mnk- okGwP;k eSnkukoj fo[kqjysyh >qMqis vkf.k jksikauk O;ki.;klkBh 5 ehX 10 eh;Fkk;ksX; A plot that crosses a mangrove forest boundary should be marked. See Figure 4 for an example. gksrs] rj 5 ehX 1 ehfdaok 2 ehX 1 eh The plot size will depend on the characteristics of the selected site (e.g. 5 m × 10 m was appro- priate for sparse shrub and seedling cover on a sand flat, while 5 m × 1 m or 2 m × 1 m was

40 appropriate for dense areas of seedlings in very muddy habitats). It is important that one edge of ps eki [kwip fp[kykP;k oLrhLFkkukarhy jksikaP;k ?ku{ks=klkBh ;Fkk;ksX; gksrs½- pkSdVhph ,d dMk vuqPNsnhr {ks=klyx vl.ks the plot run along the transect and that an accurate record of the location of the plot relative to rlsp vuqPNsnhr {ks=k’kh lacaf/kr pkSdVhP;k fBdk.kkph vpwd uksan Hkfo”;krhy lanHkkZalkBh vckf/kr Bso.kss egRokps vlrs- ,d the transect be maintained for future reference. A sketch can help. Ensure that the plot overlaps js[kkfp= enr d: ‘kdrs- [kk=h djk dh pkSdV [kkjQqVh >kMkaP;k vkf.k vf/kdre eksdGÓk {ks=kP;k vfLrRokrhy lhesl the existing boundary of mangrove trees and a mostly clear area where mangroves might be ikj djsy] tsFks [kkjQqVhpk osGsuqlkjizlkj gks.;kps visf{kr vlrs- pkSdVhP;k vkrp] [kkjQqVhP;k xq.k/kekZa’kh lacaf/kr][kkyhy expected to expand into overtime. Within the plot, measurements should be taken of the following py?kVdkaps eki ?;kos% ¼a½eksBÓk >kMkaph ,dw.k la[;k] ¼b½ygku >kMkaph ,dw.k la[;k ¼c½jksikaph ,dw.k la[;k- variables, related to the characteristics of mangroves: (a) total number of trees, (b) total number of saplings and (c) total number of seedlings. jksikaph la[;k [kwi tkLr vlY;kdkj.kkusekst.ks ‘kD; ulY;kl] ,dk ygkuX;k mipkSdVhr lxGÓk oS;fDrdkaps eksteki dsys tkÅ ‘kdrs vkf.k vkdMÓkpk LokjL; vlysY;k {ks=ki;Zar xq.kkdkj dsyk tkok- useD;k dqBY;k i/nrh okijY;k xsY;k ;kph If the number of seedlings in the plot is too large to count, counting can be done of all individuals uksan Bso.ks egRokps vkgs- iqkMkaP;k lhesl ikj djr jksikr tkr vlY;kps exactly the same plots using the same methods. nk[koys vkgs vkf.k ,dk 5ehX 1 ehpkSdVhph LFkyjpuk (dkGk vk;r)- tj pkSdVhr jksikaph la[;k [kwi tkLr vlY;kdkj.kkus 1 X 1 Figure: Plan view of the boundary of a mangrove forest showing a transect line crossing a boundary of trees ekst.ks ‘kD; ulY;kl] rhu eh eh mipkSdVh ekaMY;k tkÅ ‘kdrkr vkf.k R;k izR;sdkrhy jksikaph la[;k ekstyh tkbZy- into seedlings and the positioning of a 5 m × 1 m plot (black rectangle). If the number of seedlings in the (LDok>Z ,V vy (2004) dMwu vaxhd`r) plot is too large to count, three 1 m × 1 m subplots could be laid and the numbers of seedlings in each of these counted. (Adopted from Schwarz et al (2004)) egRokps [kkjQqVh>kM [kkjQqVh isj.kh Hkw[kaM vuqPNsnhr {ks=

[kkjQqVh lafu;a=.k MsVk i=d iqkyj#ih [kkjQqVhaP;k rlsp uO;k Maharashtra, Orissa, Karnataka, Kerala and Puducherry (Figure 5). As mangrove forests are tide ykxoMh {ks=kkaP;k fu#i.kklkBh] xqxy vFkZ MsVk lfoZlsle/kwu miyC/k vlysyk fDodcMZ MsVklq/nk okijyk xsyk- inundated, care was taken to utilize data sets of coastal regions relating to low tides. For delineat- ing fringe mangroves along narrow creeks and new plantation areas, QuickBird data available from Google Earth services were also utilized.

41 Figure 5. Methodology for mapping mangrove communities (Source: SAC (2012)) vkd`fr 5- [kkjQqVh leqnk;kaP;k izfrfp=.kklkBhph dk;Zi/nrh (L=ksr% SAC (2012))

mixzg MsVk (IRS P6 LISS-II)

çfrek nks”kfujlu DN eqY;kaps o.kZiVkar ifjorZu çfrek o`)h iVh; okx.kwd fo’ys”k.k ¼swir vi;Zosf{kr oxhZdj.k lgh fuekZ.ku c¡Mojhy DN eqY;kaoj [kkl /;ku½

iwoZ&{ks=h; [kkjQqVh {ks=hdj.k udk’kk eSnkuh i;Zosf{kr oxhZdj.k okLrfodrk lanHkhZ; laiknu [kkjQqVh {ks=hdj.k udk’kk

vpwdrk vkf.k {ks=h; vankt

IRS P6 LISS-III data are considered to be the primary data source for digital data analysis. Digital IRS P6 LISS-III MsVk fMftVy fo’ys”k.kklkBh izkFkfed MsVk L=ksr ekuys tkrkr- fMftVy eqY;kllehdj.ks vkf.k esVkMsVkr values are converted to spectral radiance values using equations and calibration coefficients obtained from the sensor calibration details available in the metadata. miyC/k vlysY;k lsalj dWfyczs’ku fooj.kkae/kwudWfyczs’ku dks,Qhf’k;aV~l oki:u LisDVªy jsMh;Ul eqY;kr ifjofrZr dsys tkrs-

Lrad = {[DN / max grey] × [Lmax - Lmin ]} + Lmin Lrad = {[DN / max grey] × [Lmax - Lmin ]} + Lmin

where DN = digital number of each pixel and max grey = 255 for LISS-III. tsFks DN = ÁR;sd fiDlsypk MhthVy Øekad vkf.k eWDl xzs= LISS-III lkBh 255.

As the information available regarding community zonation was scanty, geo-referenced spectral leqnk; {ks=hdj.kkckcrph miyC/k vlysyh ekfgrh vi;kZIr vlY;kus] dke lq: dj.;klkBh Hkw&lanfHkZr LisDVªy jsMh;Ul radiance images were subjected to unsupervised classification using the commonly used Iterative izfrek T;k loZlk/kkj.ki.ks okijY;k tk.kkÚ;k pqdhph ekU;rk vlysY;k bYVjsfVOglsYQ vkWxZuk;ftax MsVk vWukfyfll Self-Organizing Data Analysis (ISODATA) classifier to start the work. The ISODATA method uses (ISODATA) oxZdkyk oki:u vi;Zosf{kr Js.khc/nrsP;k v/khu Bsoys xsys- ISODATA i/nr izR;sd fiDlsylkBh iqatdk the minimum spectral distance to assign a cluster for each candidate pixel. Depending upon the fu/kkZfjr dj.;kl dehr deh LisDVªy varj okijrs- n`”; xq.k/kekZaoj voyacwu jgkr] 0-99 P;k vfHklj.k ifjlhesus LosfPNr scene characteristics, arbitrary clusters are specified with a convergence threshold of 0.99. The iqatds fufnZ”V dsys tkrkr- v’kk jhrhus izkIr >kysys iqatds mRre n`”;rkjrE; lk/k.;klkBh jaxkus lkadsfrd dsys xsys] vkf.k clusters thus obtained were colour coded for better visual discrimination, and pre-field classifica- iwoZ&QhYM Js.khc/nrk udk’ks r;kj dsys xsys- {ks=h; fujh{k.kkae/kwu] tfeuhph maph] {kkj;qDrrsP;k ikrGÓk vkf.k okjaokjP;k tion maps were prepared. From the field observations, the elevation of land, level of salinity and Hkjrhpk dkyko/kh gs iztkrhaP;k jpukauk izHkkfor dj.kkjs iwoZfu;ksftr ?kVd vlY;kps dGys-fMftVy MsVkrwu fodflr duration of tidal inundation were found to be the predominant factors influencing the species pqdhph jax la;kstuizeq[k leqnk;kal fopkjkr ?ks.;ktksX;k izek.kki;aZr ikj[k d: ‘kdrs- iztkrh lajpusrhy ekQdrQkorh composition. The false colour composite developed from the digital data is able to discern the vksG[k.;klkBh] ISODATA oxZdkrwu fodflr Js.khd`r mRiknm?kM lR;kiuklkBh okijyh tkrkr- m?kM lR;kps eqn~ns major communities to a considerable extent. To identify the subtle differences in species com- v’kk rÚgsus fuoMys tkrkr dh fMftVyi.ks izs{k.kh; leqnk;kaps iqjs’kk izek.kkr izfrfu/khRo djrk ;sbZy- HkkSxksfyd dksvkWMhZusV position, classified outputs developed from the ISODATA classifier are used in ground truthing. ekfgrh] iztkrh lajpuk vkf.k vf/kD;] HkjrhP;k okjaokjrspk izHkko vkf.k izR;sd fuoMsysY;k lanHkZ fcanwp fMftVy n`”;rklq/nk Ground truth points are selected in such a way to sufficiently represent all the digitally discern- ible communities. Geographical coordinate information, species composition and dominance, tek dsY;k tkrkr- m?kMekfgrhP;k vk/kkjs] izR;sd leqnk;klkBh iqjs’kk izf’k{k.k lapkapk okij d:u i;Zosf{kr Js.khdj.k dsys influence of tidal inundation and digital view of each selected reference point are also collected. tkrs- ;k rÚgsu feGoysys [kkjQqVh leqnk; oxkZaps uktqdi.ks m?kM ekfgrh vkf.k rjcstkaP;k Kkuk’kh eqY;kadu dsys tkrs- IRS Based on the ground truth information, supervised classification is performed using a sufficient LISS-III pk y?kqrjaxh bUÝkjsM c¡M] 23-5eh P;kvodk’k&laca/kh i`FkDdj.kkus] vU; ouLifrd O;kaIrhaiklwu [kkjQqVhaph fHkUurk number of training sets for each community. The mangrove community classes thus obtained is n’kZo.;klkBh izHkkohi.ks okijyk xsyk vkgs- Js.khdj.kkph vpwdrk o/kkj.;klkBh tsFksgh vko’;d vlsy rsFks fo”k;lanfHkZr evaluated critically against the ground information and expert knowledge. The shortwave infrared ladyu dsys tkbZy- iq

42 6.6.2.8 Mangrove Monitoring sheet 6.6.2.8 [kkjQqVh lafu;a=.k if=dk

(10 x 10 m Plot, 5 plots in a line with 100 m interval) ¼10 x 10 eh pkSdV] ,dk js”ksr izR;sdh 100 ehP;k varjkus ,dw.k 5 pkSdVh½

Name of Observer: ……………… fujh{kdkps uko: ……………… Date: …………… rkjh[k: …………… Time: osG: Tide: Low/High Type: Natural/ Plantation ik.khHkjrh% vksgksVh@Hkjrh izdkj% uSlfxZd@o`{kkjksi.k Weather: gokeku: GPS Location: GPS Bhdk.k: Grid No.: ………………………………. Plot No.: ………………… fxzM Ø.: ………………………………. pkSdV Ø.: …………………

Sl.No. Spe- Tree/ GBH Alive/ Penol- Height No. of Canopy Com- Salinity vuq-Ø- iztkrh >kM @ GBH ftfor@ naM'kkL= maph isj.khpk Nrkps tfeuhph {kkj;qDrrk cies Shrub (cm) Dead ogy seed Cover pac- >qMwi (cm) e`r fLFkrh vkdMk vkPNknu eG.kh Tree Status lings tion of >kM ground (cm) (cm)

Phenology Status: (Inflorescence/ Flowering/development of fruit/ ripened fruit) naM’kkL= fLFkrh% ¼iq”ilaHkkj@Qqys ;s.ks@QGkapk fodkl@fidysyh QGs½

______

Total number of saplings/seedlings inside the plot pkSdVhrhy ,dw.k >qMwikaph@jksikaph la[;k

______

Compaction - Sediment availability check using penetrometer (50 m long 0.5 cm dia iron rod, laf{kfIrdj.k &isusVªksehVj oki:u xkG miyC/krk rikl.kh ¼50 ehykac 0-5 lsehO;klkpk yks[kaMh[kkac] 1eh mapho#u Vkdk] drop from 1 m height, 5 readings in each plot: izR;sd pkSdVhr 5 ekius%

______

Height - Tree height: maph&>kMkph maph%

Salinity – Salinity of water found in a pit inside or near to plot {kkj;qDrrk &[kM~Mîkrhy fdaok Iy‚VP;ktoG feGkysY;k ik.;kph {kkj;qDrrk

43 6.6.2.9 Monitoring of gastropods and crabs in mangroves 6.6.2.9 [kkjQqVhar xWLVªksikWM~l vkf.k [ksdMÓkaps lafu;a=.k

(Each monitoring should come on separate page) ¼izR;sd lafu;a=.k osxGÓk ikukoj ;kos½

(2 m radius circular plot inside the Mangrove plot, each individual in a separate row) ¼[kkjQqVh Hkw[kaMkP;k vkr2 eh f=T;spk xksykdkj Hkw[kaM] izR;sd oS;fDrd ,dk osxGÓk jkaxsr½

Name of Observer: ……………… fujh{kdkps uko: ……………… Date: …………… rkjh[k: …………… Time: osG: Tide: Low/High Type: Natural/ Plantation ik.khHkjrh% vksgksVh@Hkjrh izdkj% uSlfxZd@o`{kkjksi.k Weather: gokeku: GPS Location: GPS Bhdk.k: Grid No.: ………………………………. Plot No.: ………………… fxzM Ø.: ………………………………. pkSdV Ø.: …………………

Sl.No. Gastropods/ Species Size (length/ Weight (gm) Remarks vuq- Ø xWLVªksikWM~l@[ksdMs Ikztkrh vkdkj ¼ykach@O;kl@#anh½ otu (xzkEl) 'ksjs crabs diameter/width) (cm) (lseh)

44

6.6.3 Estuarine Ecosystems 6.6.3 ,’pjkbZu bdksflLVhEl (unheq[k@[kkMhifjfLFkrhdh)

An estuary can be defined as a partially enclosed body of water that is ,’pjhph O;k[;k Eg.kts ik.;kps va’kr% layXu vax ts leqnzkP;k fn’ksl m?kMs vkgs ¼dk;eps open to the sea (permanently or periodically) and within which there are fdaok dkgh dkyko/khlkBh½ vkf.k T;kP;k njE;ku leqnzh ik.;kr tfeuhP;k ukY;krwu ;s.kkÚ;k variations in salinity due to dilution of seawater with freshwater from land xksMÓk ik.;kP;k felG.;kus {kkj;qDrrsr cny ?kMrkr- drainage. ,’pjhtukdkyekiuiV~Vhoj HkwHkkxkps y?kq&dkykps oSf’k”VÓ ekuys tkrs] rjh R;k usgehp Although estuaries are considered short-term features of the landscape mPp mRikndrk {ks=s vlrkr] T;k tehu vkf.k leqnzknjE;kuP;k lhesoj egRokph Hkwfedk on a geological timescale, they are often highly productive areas that play ikj ikMrkr- vkiY;k fdpdV oLrhLFkkukaP;k

(2) Broad-scale habitat mapping includes the development of robust GIS-based methodology for mapping the spatial distribution of intertidal estuarine habitats. (3) Fine-scale environmental monitoring includes development of methodology to measure the ¼3½ lqjs[k&eki vlysY;k okrkoj.kh; lafu;a=.kkr vodk’kh; cny vkf.k loZlk/kkj.krsus ekiu dsysY;k n’kZd lapkrhy spatial variations and inter-relationships of a suite of commonly measured indicators. vkarj&laca/krk ekiuklkBh dk;Zi/nrhapk fodkl lkehy vkgs-

6.6.4 Beach Ecosystems 6.6.4 leqnzfdukÚ;kP;k ifjfLFkrhdh

Tremendous population and developmental pressures have been building up in coastal areas for ekxhy pkj ‘krdkar HkjelkV yksdla[;k vkf.k fodklkps ncko fdukjiV~Vhrhy Hkkxkaoj cur xsys- ‘kgjhdj.k vkf.k the last four decades. The urbanization and the rapid growth of coastal cities have been dominant fdukjiV~Vhr ‘kgjkaph osxkus gks.kkjh ok< dkgh ‘krdkaiklwu izHkkfor vl.kkÚ;k yksdla[;k #

100 1 0 2 5 Over the last 100 years, the global sea level rose by 1.0–2.5 mm per year. Present estimates of ekxhy o”kkZais{kk tkLr dkGkr] fo’oHkjkr leqnzkph ikrGh Áfro”kZ - & - ehehus ok

Beach assessment dklokaP;k ?kjkalkBh okijY;k tk.kkÚ;k fdukÚ;kaps fu;feri.ks lafu;a=.k dsys tkos] ts leqnzh dklokal tru dj.;kP;k Beaches that are used by the turtles nesting need to be monitored regularly, which is crucial in n`”Vhus egÙokps vkgs- fdukjs vkf.k tyk’k; gs fujarj xrhe; vlrkr] okjs] ykVk] Hkjrh] lacaf/kr leqnz ikrGh vkf.k ekuoh the conservation of marine turtles. Beaches and dunes are in constant motion, continually chang- xfrfo/khaP;k vuqlkj lyxi.ks vkdkj vkf.k tkxk cnyrkr- lokZr y{k.kh; cny oknGkauarj vkf.k _rwaizek.ks ?kMrkr- ing shape and shifting position in response to winds, waves, tides, the relative sea level and hu- mUgkGÓknjE;ku] fdukjs lk/kkj.kr% fgokGÓkr vlrkr R;kis{kk maphoj vkf.k okyqdke; vlrkr- fgokGÓknjE;ku] *gjoysyh* man activities. The most significant changes occur seasonally and after storms. During summer, okGw fdukÚ;kiklwu uthdP;k fdukjh {ks=kr tkÅu rsFks okGwca/kkjs cuors- vkf/kd rhoz oknGkP;k xfrfo/kheqGs ykVkaP;k beaches are generally higher and sandier than they are in winter. During the winter, the ‘missing’ cnyR;k vkdkjkus vls ?kMrs- _rw&rs&_rw :ijs[ksph rqyuk dsY;koj rlsp y{k.kh; oknGkP;k vk/kh o uarj ?ksrysY;k sand moves from the beach to near-shore areas to form sandbars. This happens as a result of :ijs[kk Li”Vjhrhus fdukjjs”ksl?kM.kkÚ;k egRokP;k cnykal rlsp fdrh Rojsus fdukjiV~Vhps tfeuhLo#i cnyrs gs nk[kowu changing wave shape due to more intense storm activity. Comparing season-to-season profiles nsrkr- and profiles taken before and after a significant storm clearly illustrates the important changes taking place along the shoreline and how quickly coastal landforms change. vkd`fr- mUgkGÓkrhy vkf.k fgokGÓkrhy fdukÚ;kaP;k uewusnkj:ijs[kk (WHOI 2000)

Figure. Typical summer and winter beach profiles (WHOI 2000)

47 Two-dimensional on-shore models are ideal for management applications as they are simpler and O;oLFkkiu ykxwdj.;klkBh f}ferh; vkWu&’kksvj uewus ;ksX; vlrkr] dkj.k rs f=&ferh; uewU;kaP;k fdaok nh?kZ fdukjh have fewer inputs compared with three-dimensional models or models that include long shore vkarjfØ;k vl.kkÚ;k uewU;kais{kk vf/kd lqyHk vkf.k deh buiqV~lph vko’;drk vl.kkjs vlrkr- O;k[;suqlkj] LFkk;h interactions. By definition, stable dynamic beaches do not experience a significant net long shore pSrU;iw.kZ fdukÚ;kauk y{k.kh; fuOoG ykac ogukphvuqHkwrh gksr ukgh vkf.k vlsgh rs Lor%yk f}ferh; vkWu&vkWQ ‘kksvj uewuk transport and as such lend themselves to a two-dimensional on-offshore model approach. The i/nrhaps cuorkr- fparspk fo”k; Eg.kts mPp ik.;kP;k ikrGÓkaeqGs leqnzkarxZr xkGkps ogu gks.;krhylaHkkO; ok<- fofo/k impact of concern is the potential increase in offshore sediment transport due to higher water ik.;kP;k ikrGh ifjn`”;kaP;k ifj.kkekapss fu/kkZj.k dj.;klkBh l/;k miyC/k vl.kkjs uewus ft;ksekWfQZd lksY;q’kUl}kjs ¼2009½ levels. Currently available models for determining impacts of different water level scenarios have iqjoys xsys vkgsr- gs uewus y?kq&dkyhu fdukjjs[kk mRØkarhpk vankt cka/k.;klkBh okijys tkrkr] tls dh oS;fDrd been provided by Geomorphic Solutions (2009). These models are used for estimating short-term oknGkaP;k izlaxh gks.kkjs cny] T;keqGs rs *lokZr okbZV ifjn`”;* n`”VhdksuklkBh vkn’kZ curkr- uewus fdpdVi.kk vkf.k shoreline evolution, such as changes during individual storm events, making them ideal for a n`”Vhdksukauk ikgrk osxosxGs vlrkr( rFkkfi] R;kauk fdukÚ;ktoGP;k xkGkP;k ogukP;k HkkSfrd’kkL=kP;k l/;kP;k letkeqGs ‘worst case scenario’ approach. The models vary in complexity and approach; however, they are e;kZfnr dsys xsysys vkgs- limited by the current understanding of the physics of near-shore sediment transport. iq

48

6.6.5 Assessment methods for sea turtles 6.6.5 leqnzh dklokalkBh eqY;ekiu i/nrh

Five species of sea turtle including the Olive Ridely (Lepidochelys olivacea), Green Sea Turtle Hkkjrh; tyk’k;karvkWfyOg jhMyh ¼ysfiMkspsfyl vkWfyOgklh½] xzhu lh dklo ¼psyksfu;k ek;nl½] gkWDlfcy (Chelonia mydas), Hawksbill (Eretmochelys imbricata), Leatherback (Dermochelys coriacea) ¼,jsVekspsfyl bafczdkVk½] ysnjcWd ¼MekZspsfyl dksjh,lh½] vkf.k ykWxjgsM dklo ¼dWjsVk dWjsVk½ ;kauk /k#uleqnzh and Loggerhead turtle (Caretta caretta) are reported to occur in Indian waters. dklokaP;k ikp iztkrhvk

6.6.5.1 Conservation concerns 6.6.5.1 tru dj.;klaca/kh leL;k

All the species except the Loggerhead nest along the Indian coast line. All the five species ykWxjgsMpk viokn lksMrk leLr iztkrh Hkkjrh; fdukjiV~Vh js”kkanjE;ku ?kjs cuorkr- loZ ikp iztkrhauk oU;thou are protected under the Wildlife Protection Act 1972 and are listed in Appendix I of Conven- laj{k.k vf/kfu;e 1972 P;k v/khu laj{k.kizkIr vkgs vkf.k oU; tho vkf.k ouLirhaP;k /kksD;kr vlysY;k iztkrh tion of International Trade in Endangered Species of Wild Fauna and Flora (CITES, 2008). vkarjjk”Vªh; O;kikj vf/kos’kukP;k (CITES, 2008) layXud I Ek/;s lwphc/n vkgsr- oU; i’kqaP;k LFkykarj;ksX; They are a priority for conservation under the Convention on the Conservation of Migratory iztkrhal lkaHkkG.ks ;kojhy vf/kos’kukP;k varxZr ¼lh,e,l½ ;kyk tru dj.;kl izk/kkU;rk vkgs( rFkkfi] Species of Wild Animals (CMS); however, fisheries bycatches, hunting, habitat destruction, and other environmental factors have severely reduced the marine turtle populations (WWF eRL;O;olk;lkiGs] f’kdkj] oLrhLFkku ukl/kwl] vkf.k vU; i;kZoj.kh; ?kVdkauh leqnzh dklokaph tula[;k rhozi.ks 2003). ?kVoyh vkgs ¼WWF 2003½-

Globally, conservation efforts are trying to secure stable populations by raising awareness, oSf’odi.ks] tru dj.;kPks iz;kl LFkk;h yksdla[;sl tkx#drk iljowu] vkarjjk”Vªh; djkj vkf.k furhae/;s lq/kkj djr] influencing international treaties and policies, reducing bycatch and actively protecting nest- lkiGsi/nrhl deh djr rlsp lfØ;i.ks ?kjVs cuo.;ktksX;k leqnzfdukÚ;kaps j{k.k djrlqjf{kr dj.;kps iz;Ru djr ing beaches. It is vital for turtle conservation to work with local communities and develop vkgsr- dklokauk tru dj.;klkBh LFkkuh; leqnk;kalg dke dj.ks] rlsp ekal] vaMh fdaok O;kikjhgsrwalkBh dklokaP;k an understanding of the risks of poaching turtles for meat, eggs or trade. Non-consumptive f’kdkjheqGs mn~Hko.kkÚ;k tks[kehackcr let fodflr dj.ks egRokps vkgs- xSj&miHkksxiw.kZ okij tls dh tSoi;ZVu uses such as ecotourism and employment in turtle conservation can help local communities vkf.k dklo truhdj.kkr fu;qDrh LFkkuh; leqnk;kale enr iqjosy o R;kp osGsl truhdj.kklgh nqtksjk feGsy and promote conservation at the same time (WWF 2003). (WWF 2003)-

Sea turtle monitoring programmes are an important component as they eventually provide leqnzh dklo lafu;a=.k dk;ZØe oLrhLFkkus] oSfo/;rk] forj.k vkf.k vU; uSlfxZd] rlsp ekuofufeZr ncko ;kackcr information on habitats, diversity, distribution and other natural and anthropogenic pres- ekfgrh iqjor vlY;kus egRokps ?kVd vkgsr- rFkkfi] ej.k iko.;kP;kq njkr ?kV leqnzh dklokaP;k R;kaP;k J`a[kysrhy sures. However, a reduction in the mortality will increase the current survival rate of marine l/;kP;k ftoar jgk.;kP;k njkl ok

6.6.5.2 Aims of turtle monitoring programmes: 6.6.5.2 leqnzh dklo lafu;a=.k dk;ZØekaph /;s;s%

The aim of sea turtle monitoring programmes is to determine increases or decreases in sea leqnzh dklo lafu;a=.k dk;ZØekps /;s;?kjVs iztkrhaP;k leqnzh dklokaP;k tula[;sr gks.kkÚ;k ok

Beach patrolling fdukÚ;kl xLr

Patrol groups should never be larger than four to six people. Larger groups are harder to control xLr xV pkj rs lgk yksdkais{kk eksBs ulkosr- dklokoj dke djr vlrkuk eksBs xVfu;a=.k dj.;kl dBh.k vlrkr] when working with a turtle, and there is a much higher risk of disturbing the animal. Make sure vkf.k izk.;kph ‘kkarhHkax gks.;kpk cjkp eksBk /kksdk laHkorks- dkloklaca/kkr dke djrkuk can cksVkaps cwV ?kky.;klkj[;k the group is aware of the etiquette when working with a turtle along with the health and safety vkjksX; vkf.k lqjf{krrk fu;kedkalg t#jh f’k”Vkpkjkackcrgh xV voxr vkgs ;kph [kk=h djk- fdukÚ;kojhy osx vi?kkr regulations, such as wearing closed toe shoes. The pace on the beach is slow to avoid accidents. VkG.;klkBh gGw vlrks- gs egRokps vkgs dh iq

The use of light during the patrol has to be minimized as too much light will deter turtles from xLrhP;k njE;ku izdk’kkpk okij dehr deh dsyk tkok dkj.k dh vfr izdk’kkus dklos ?kjVs cuo.;kiklwu ukmesn gksrhy- nesting. The use of video-equipment and cameras is strongly discouraged as the flash of the fOgfM;ks&midj.kkapk vkf.k dWesjkapk okij mPprsusijko`Rr dsyk tkok dkj.k dh dWesjkpk ¶yW’k fdaok fOgfM;ks dWesjkojhy camera or the white light on the video-camera may disturb the turtle and could scare her back to lQsn izdk’k dklokpk ‘kkarhHkax d# ‘kdrks vkf.k ?kkc#u leqnzkr ijr tk.;kl Hkkx ikMw ‘kdrs- the sea. dklokP;k toG tk.ks Approaching a turtle leqnzh dklos laosnu’khy izk.kh vlrkr- ?kjVÓklkBhps fBdk.k fuoMrkuk rs lgt ?kkcjys tkÅ ‘kdrkr- ?kjVÓklkBhps Sea turtles are sensitive animals. When choosing a nesting site they can easily get scared. Delay- fBdk.k fuoM.;kr fnjaxkbZ >kY;kusdkloklkBh e`R;wlg Hk;adj ifj.kke dkj.khHkwr gksÅ ‘kdrkr- R;kaph n`”Vh vkf.k Jo.k’kDrh ing the nesting process may lead to dangerous consequences for the turtle including death. Their [kwip izkphuLo:ih vlrs i.k rh fdukÚ;kdMs vlrkuk daius lgti.ks vuqHkow ‘kdrkr] T;klkBh xLr xVkaps ygku vl.ks sight and hearing are very primitive but they can easily detect vibrations while on the beach, egRokps curs- ;kgh iq

51 turtle to lay it is advised to kneel down behind her. During this period keep activity to a minimum, ?kjVÓkps fBdk.k as the priority is for her to lay her eggs successfully. Measuring and tagging should be done after the turtle has laid. leqnzh dklo iztkrh fdukÚ;kP;k fofHkUu ikrGÓkal ?kjVh cuorkr- fBdk.k uksan.;kl] {ks= fpUgd rlsp iz{ks= fooj.k okij.;kpk lYyk fnyk tkrks- ukasn dsysyh fBdk.ks Eg.kts tsFksgh dklos R;kaph vaMh nsrkr rh vlrkr] uk dh tsFks rh Location of nest fdukÚ;kl f’kjrs rs fBdk.k-

The sea turtle species nest at different levels of the beach. To record the location, it is advised to iz{ks= fooj.ks [kkyhyizek.ks n’kZoysyh vkgsr% use the sector markers as well as a zone description. The recorded locations are wherever the vksgksVh (L) turtle lays her eggs, not where she enters the beach. fdukÚ;kojvksgksVh iz{ks=koj oloysyh ?kjVh Zone descriptions are shown below: Hkjrh (H) Low Tide (L) fdukÚ;koj Hkjrh iz{ks=koj oloysyh ?kjVh Nest placed on the low tide zone on the beach >kMs>qMis (V) High Tide (H) fdukÚ;kojhy >kMk>qMikar fdaok

Nest placed in vegetation or dunes on the beach

Illustration of nest location recording

?kjVs 1

?kjVs 2

{ks= fpUgdkalg vki.k ,drj fudVre mRrjh fpUgdkdMhy varj ekiw ‘kdrk fdaok] vki.k fdukÚ;koj tfeuhoj nwj foLrkjysY;k tkxsoj dke djr vlY;kl] nksu fudVre {ks= fpUgdkadMhy varj ekik T;kus vkiY;kyk iz{ks=krhy ?kjVÓkaPkh With sector markers you can either record distance to nearest northern marker or, if you are work- vxnh rarksrar uksan iqjorhy- tj miyC/k vlY;kl] ?kjV;kaph uksan dj.;kl GPS pk okij dsyk tkÅ ‘kdrks ijarq vpwdrk ing on a beach extending far inland, record the distance to the two nearest sector markers which vkf.k eqY;ekiu dsysY;k ra=kph fo’oklkgZrk uksan.ks vko’;d vkgs- provides you with a more precise recording of the nest’s location within the zones. If available, GPS can be used for nest recordings but the accuracy must be noted and the reliability of the ?kjVÓkph ekfgrh technique evaluated. MsVk i=dkoj NEST P;k [kkyh fjyksdsVsM ¼R½ fdaok bu flVww ¼IS½ v’kh uksan djkoh- bu flVww Eg.kts ,drj rqEgh Nest information dklokaP;k ?kjVÓkl dsysY;k Nn~eos”kkeqGs vaMh ‘kks/kw ‘kdr ukgh vkgkr fdaok ?kjVs gWpjhP;k lehi fLFkr vkgs o ;keqGs iqjsls laj{k.k izkIr vkgs rlsp LFkku cnykph xjt ukgh- uarjP;k ikrGhl ?kjVÓkl dk<.;klkBh izk/kkU;rsus bu flVww ?kjVÓkph Relocated (R) or in situ (IS) need to be recorded under NEST on the data sheet. In situ means you either are not able to find the eggs due to the turtle camouflaging the nest or the nest is fLFkrh eki.;kph xjt vlrs- tsOgk dklos ?kjVs cuor ukghr] FC ¼False Crawl½ Eg.kwu uksan dsyh tkrs- located close to the hatchery and is thus provided with sufficient protection and is not in need of ?kjVs cuo.;kph izfØ;k relocation. Preferably the position of the in situ nest needs to be measured in order to excavate the nest at a later stage. When the turtle does not nest, FC (False Crawl) is noted. leqnzh dklokP;k izR;sd iztkrhph ?kjVs cuo.;kph izfØ;k lkr miØekae/;s foHkkxyh tkÅ ‘kdrs- xLr xVkl dklo Nesting process vk

The nesting process of every species of sea turtle can be divided into seven activities. The activity 1. fdukjhdj.k ¼B½ of the turtle needs to be recorded when the patrol team discovers the turtle. tsOgk dklo ?kjVs cuo.;kl tkxk ‘kks/k.;klkBh leqnzkckgsj ;srs-

1. Beaching (B) When the turtle comes out of the sea looking for a place to nest.

52 2. Making bed (MB) 2. fcNkuk cuo.ks (MB) Digging a body pit. Using both front and hind flippers to dig herself in before creating her nest ‘kjhj [kksc.kh [k.k.ks- ?kjVÓkph iksdGh fuekZ.k dj.;kvk/kh iq

3. Digging nest (D) 3. ?kjVs [k.k.ks (D) Digging the nest carefully with hind flippers. Nest depths and widths differ again between differ- Ekkxhy ¶yhilZuh dkGthiwoZd ?kjVs [k.k.ks- ?kjVÓkph [kksyh vkf.k #anh iqUgk iztkrhauqlkj fHkUu vlrkr- ent species. 4. vaMh ns.ks (L) 4. Laying eggs (L) ldl vkf.k oa/; vaMh ns.ks- vaMÓkaph la[;k iztkrhauqlkj fHkUu vlrs] T;kr ysnjcWd ljkljh 70&80 ldl vkf.k 20&30 Laying fertile and infertile eggs. The number of eggs varies between species, with the Leather- oa/; vaMh nsrs vkf.k vkWfyOg jhMyh 80&100 P;k njE;ku ldl vaMh nsr ,dgh oa/; vaMs nsr ukgh- back laying an average of 70-80 fertile eggs and 20-30 infertile eggs and the Olive Ridley laying between 80-100 fertile eggs and no infertile eggs. 5. >kd.ks (CU) 5. Covering up (CU) dklo] vaMh ?kky.;kps laioY;kuarj ekxhy ¶yhilZ oki:u vaMÓkaoj okGw nkc.ks lq# djrs- ;k gkypkyhps vuqdj.k tkxk After the turtle has finished laying she will use her hind flippers to start pressing down sand on cnyysY;k ?kjVÓklkBh R;kr vaMh BsoY;koj djk;yk gos- ;k gkypkyheqGs okGw xPp gksbZy vkf.k R;keqGsikÅl ?kjVÓkr the eggs. This activity needs to be imitated in a relocated nest after putting the eggs in. The activ- f’kj.ks VGsy- ity will compact the sand and therefore prevent rain entering the nest. 6. Nnekoj.k cufo.ks (C) 6. Camouflaging (C) iqksr Bsorks] ijarq tj dsoG vaMh ekst.ks gs y{; vlY;kl This section focuses on egg collection for the purpose of relocation to a hatchery, but the precau- vaMÓkauk gkrkGrkuk ?;k;P;k [kcjnkÚ;k ;k frrD;kp lacaf/kr vlrkr- vaMÓkauk nqlÚ;k fBdk.kh gyo.ks f’kdkjhP;k n`”Vhus tions during egg handling are just as relevant if the aim is to simply count the eggs. Egg relocation rlsp yksi iko.;kP;k mPp tks[kehP;k {ks=kalkBh tru dj.;klaca/khph ,d eqY;oku mik;;kstuk B: ‘kdrs] iajrq frpk okij can be a valuable conservation tool in areas of high poaching or erosion but should always be used as a last option after exhausting other conservation methods. Inevitably there are risks as- leLr tru dj.;kP;k i/nrh oki:u >kY;koj lokZr ‘ksoVpk fodYi Eg.kwu dsyk tkok- vifjgk;Zi.ks vaMÓkauk R;kaP;k sociated with moving eggs from their natural conditions. uSlfxZd ifjfLFkrhaiklwu nqlÚ;k fBdk.kh gyo.;kr tks[keh layXu vlrkr-

By bag cWxs}kj Collecting eggs by bag has several advantages; the eggs are being handled less, which decreases cWxsr vaMh tek dj.;kps dkgh vf/kykHk vkgsr( vaMh gkrkr deh ?ksryh tkrkr] T;keqGs ijLij&nw”k.kkpk /kksdk deh gksrks the risk of cross-contamination and it keeps the turtle’s fluids with the eggs, maintaining a more vkf.k R;kus dklokaps nzO; vaMÓkalkscr jgkrkr] T;kus ,d vf/kd uSlfxZd izfØ;k fujarj jkgrs th gWfpaxP;k ;’kkl izHkkfor natural process which could influence the hatching success. The moment oviposition begins is d: ‘kdrs- vaMfu{ksi.k dqBY;k {k.kh lq# gksbZy ;kpk Bko ykx.ks dBh.k vlrs- Eg.kwup] [kk=h djk dh rqepk la?k r;kj often hard to judge. Therefore, make sure your team is prepared. While the turtle is digging her vlsy- dklo frps ?kjVs [kksnr vlrkuk] vaMh ekst.kkjk@tek dj.kkjk gkreksts ?kkywu LFkku&cny cWxkalg dklokP;k nest, the egg counter/collector sits ready behind the turtle with the re-location bags (non-chemi- vxnh ekxhy cktql clsy ¼xSj&jklk;fud] vkf.k QkV.ks VkG.;klkBh nksu ,d= ,dkr ,d ?kkywu½- ?kjVÓkph [kksyh cal, doubled up to prevent breaking of bag) and wearing gloves. Nest depth should be recorded ekaM.kh dj.;kP;k izfØ;sP;k lq#okrhlp uksanyh tkoh- dklo ,dy ladsr nsrs dh rs Vkd.kkjp vkgs( rh frpk ,d fdaok at the start of the laying process. The turtle gives a single sign as she is about to lay; she moves nksUgh ekxhy f¶yilZgGwokji.ks ?kjVÓkl >kd.;kl gyors- ;k {k.kkyk IykfLVd cWx vkr [kkyh ljdok;yk gOkh ¼’ksiVhyk one or both of her hind flippers to gently cover the nest. At this moment the plastic bag needs to vkf.k voLdjkl Li’kZ u gksÅ nsrk½- voLdjkrwu vaMh cWxsr gyoyh tkohr ;klkBh gkrkpk okij dsyk tkÅ ‘kdrks- tj be slid in below (not touching tail and cloaca). A hand can be used to lead the eggs from the clo- ,[kkns vaMs cWxsckgsj iMY;kl] R;kauk dklo Vkdr vlrkuk dkGthiwoZd ckgsj dkkY;koj cWxsl ckgsj vks

53 Some turtle species lay infertile eggs (smaller and yolkless) together with the fertile ones. It is im- dklokaP;k dkgh iztkrh ldl vaMÓkalkscrp oa/; vaMh ?kkyrkr ¼vkdkjkus ygku vkf.k cydjfgr½- ;k oa/; vaMÓkaukgh xksGk portant to collect theses infertile eggs as well as they have an important role in the survival of the dj.ks egRokps vkgs- rlsp ok;w vnykcnyhl tkxk iqjowu ldl vaMÓkaP;k ftfor jk[k.;kr] rlsp ekalHk{khaiklwu jf{kr fertile eggs in providing space for gas exchange and protection against predators. Bso.;kl R;kaph egRokph Hkwfedk vkgs-

By hand gkrk}kjs When a turtle is found during or after laying her eggs, the eggs can be collected by hand. Using tsOgk vaMh ns.;knjE;ku fdaok ns.;ki’pkr ,[kkns dklo vk

6.6.5.6 Tagging sea turtles 6.6.5.6 leqnzh dklokauk VWx dj.ks Tagging should be done only when the egg laying is complete. A metal tagging scheme is a vaMh ?kky.ks iw.kZ >kY;kojp Vwfxax dsys tkos- /kkrw Vwfxax ;kstuk egkxMÓk ek;Øks&fpihax ra=kaP;k fdaok mixzg mRltZdkaP;k relatively cheap option compared with expensive micro-chipping techniques or the use of satellite rqyusrLoLr i;kZ; vkgs] rlsp ekud VWXl fofHkUu iqjoBkdkjkadMwu feGoys tkÅ ‘kdrkr- VWXl nksu osxosxGÓk vkdkjkps transmitters, and standard tags can be obtained from various suppliers. There are two different vlrkr( fo’kky VWx dsoG ysnjcWDllkBh cuoysyk vlrks] R;kaP;k vkdkjkeqGs] tsFks nqljk] ygku VWx ygku iztkrhalkBh sized tags; the large tag is designed for the Leatherbacks only, due to their size, while the sec- vlrkr tls dh gkWDlfcYk] vkWfyOg jhMyh] xzhu dklo vkf.k ykWxjgsM- dklokyk MkO;k vkf.k mtO;k f¶yilZoj VWx dsys ond, smaller tag is for the smaller species including the Hawksbill, Olive Ridley, Green Turtle and tkos] VWxP;k lokZr ygku vkdMÓkl MkO;k f¶yijiklwu lq#okr d:u- VWx yko.;kvk/kh] f¶yijpk Hkkx vYdksgksy fdaok Loggerhead. The turtle should be tagged on the left and the right flipper, starting with the lowest csukMk;uus LoPN djkok- xLrhlkBh fu?k.;kvk/kh VWXluk vYdksgksyus LoPN dsys tkos- VWx f¶yijoj brD;k nwjoj ykokok number tag on the left flipper. Before putting in a tag, clean the area of the flipper with alcohol or ts.ksd:u rks lqVwu iMw u;s] ijarq gkypky vkf.k okkY;koj ekstekis ?ksryh tkrkr] ts.ksd:u vaMh ?kkyrkuk dlyhgh vk.khck.kh mn~Hkow u;s- ekiu iV~Vhl oki:u ¼jksy&Vsi ekikl ilarh u nsrk½] dklokph ykach o #anh ekiyh tkrs- ekiukvk/kh] vpwd uksan feGork ;koh 6.6.5.7 Measuring the carapace ;klkBh dklokP;k ikBhojhy dopkrwu okGw lkQ dsyh tkrs- ekis nksunk ?ksryh tkrkr- tj 5 lsaVhehVlZgwu vf/kdpk Qjd vlY;kl] frljs eki ?ksrys tkÅ ‘kdrs- As with tagging, measurements take place after egg laying to avoid causing any distress during laying. Using a tape measure (preferably not a role-tape measure), the length and width of the #anh gh lnSo dopkP;k lokZr #an Hkkxkiklwu ekiyh tkrs- ykachps eki i`”BoekZP;k dsaækdMwulyxtsFks i`”BoeZpkeMh’kh turtle are measured. Before measuring, the sand is cleaned off the turtle’s carapace to get an dklokP;k MksD;kekxs feGrs rsFkwu lq# gksr i`”BoekZP;k [kkpsi;Zar ?ksrys tkrs- ysnjcWDloj dke djr vlrkuk vki.k iqPNh; accurate reading. Measurements are taken twice. If there is a difference of more than 5 centime- izkstsD’kuP;k Vksdki;Zar ekik;yk gos- tres, a third measurement can be taken. #anhl WCC ¼foM~Fk doZM dkjkisl½ P;k vkf.k ykachl LCC ¼ysaFk doZM dkjkisl½ P;k varxZr Hkjkos- gs /;kukr Bsok dh vkWfyOg fjMyhps WCC gs lk/kkj.kr% LCC gwu #an vlrs- The width is always measured from the widest part of the carapace. The length measurement is taken along the centre of the carapace starting where the carapace meets the skin behind the 6.6.5.8 dklokaP;k btkaph uksan dj.ks turtles head all the way to the notch of the carapace. When dealing with Leatherbacks you must measure to the end of the caudal projection. btsojhy MsVk vkiY;kyk leqnzh dklo lkxjkr lkeksjs tkr vlysY;k tks[kehackcr ekfgrh iqjorks- MsVk i=dkr desaV~l ¼’ksjk½ LraHkkP;k v/khu n’kZoysys vkdMs Eg.kts dklokph ckájs[kk vkgsrts dklokP;k Hkkxka’kh lacaf/kr vlrkr- The width is filled in under WCC (Width Curved Carapace) and length under LCC (Length Curved Carapace). Keep in mind that the WCC of the Olive Ridley is normally wider than the LCC.

6.6.5.8 Recording turtle injuries

Injury data provide us with information on the threats sea turtles face in the ocean. On the data sheet under comments is an outline of a turtle with numbers that correspond to parts of the turtle.

54 For example, if an injury is identified on the front right flipper the researcher will try and detect a mnkgj.kkFkZ] tj btk iq

Injury #2 (shark attack). btk #2 ¼’kkdZpk gYyk½-

Turtle structure to reference injuries btkapk lanHkZ ns.;klkBh dklokpk

Old tag holes (OTH) / old tag notches (OTN) tqU;k VWXlph fNnzs (OTH)@ tqU;k VWXlP;k Hksxk (OTN)

Frequently, you will come across turtles with holes in their flippers or scarred flippers due to lost okjaokj] vki.k f¶yilZoj fNnzs vlysY;kfdaok VWXt gjoY;keqGs oz.khd`r f¶yilZ vlysY;k dklokal lkeksjs tky- v’kh fNnzs tags. Such holes and scars are known as rips. An OTH is a puncture left behind after a tag has vkf.k oz.k fjIl Eg.kwu tk.kys tkrkr- OTH Eg.kts ekxs jkghysyh VkspY;kph fu’kk.kh vlrs th VWx lqVwu xsY;koj jkgrs] opened up, and an OTN is a notch. rlsp OTN Eg.kts [kkp vlrs-

Comments ‘ksj

Any other distinctive features of the turtle will be recorded under comments, such as injuries, dklokpsdks.krsgh vU; fof’k”V xq.k/keZ’ksÚ;kP;k varxZr uksanys tkrhy] tls dh btk] fQczksiWihyksekl fdaok eklsekjhps xG fibropapillomas or fishing hooks (Couchman et. al., 2009). ¼dkÅpeWu vkf.k brj-] 2009½

6.6.5.9 Data recording sheet 6.6.5.9 MsVk uksan i=d

Turtle assessment and monitoring data sheet dklo eqY;ekiu vkf.k lafu;a=.k MsVk i=d

Parameters Recorders ekinaMs uksandrsZ Recorder 1 name Recorder 2 name Recorder 3 name uksandrkZ 1 uko uksandrkZ 2 uko uksandrkZ 3 uko Time 21.30 1.30 2.45 osG 21.30 1.30 2.45 Date 13/01/2002 13/01/2002 13/01/2002 rkjh[k 13/01/2002 13/01/2002 13/01/2002 Distance to Sector 50 m to sector 3 51 m to sector 1 80 m to sector 9 {ks=h; fpUgdkl varj {ks= 3 yk 50 eh {ks= 1 yk 51 eh {ks= 9 yk 80 eh marker 68 m to sector 4 47 m to sector 2 85 m to sector 10 {ks= 4 yk 68 eh {ks= 2 yk 47 eh {ks= 10 yk 85 eh Zone H B H {ks= H B H Species Leatherback Green Olive Ridley iztkrh ysnjcWd xzhu vkWfyOg fjMyh Left Tag VA3404 796753 VA3408 Mkok VWx VA3404 796753 VA3408 Right Tag VA3407 796754 VA3409 mtok VWx VA3407 796754 VA3409 Carapace Length 156 162 70 i`"BoekZph ykach 156 162 70 Carapace Width 111 115 75 i`"BoekZph #anh 111 115 75 Activity MB R B miØe MB R B Nest R IS FC ?kjVs R IS FC Nest Depth 76 68 - ?kjVÓkph [kksyh 76 68 - Old Tag Hole # 3 - - tquk VWx fNnz # 3 - - Old Tag Notch - - - tquk VWx [kkp - - - Eggs 83 76 vaMh 83 76 Infertile eggs 21 18 oa/; vaMh 21 18 Comments Injury #2 'ksjs btk #2 (shark) Half missing #4 ¼'kkdZ½ v/ksZ xgkG #4

55 6.6.6 Assessment methods for coastal birds 6.6.6 fdukjiV~Vh; i{;kaP;k eqY;ekiu i/nrh

6.6.6.1 Assessment and monitoring methods for 6.6.6.1 fdukjiV~Vh; i{;kaP;k eqY;ekiu vkf.k coastal birds lafu;a=.k i/nrh

A coherent monitoring system of birds along the fdukjiV~Vhyxr vlysY;k i{;kaph ,d lqlaxr lafu;a=.k coastal area is important, in order to detect bird jpuki{;kaP;k tula[;srhy cny] R;kaP;k dkj.kkaukletwu ?ks.ks vkf.k population changes, understand their causes and Hkfo”;krhy cnykapk vuqeku yko.;klkBh egRokph vlrs- i{kh izsj.kk predict future changes. The measurement of regional ‘kDrhaP;k ifj{ks=h; tula[;sPksekiu ftrds ‘kD; frrds l[kksy vlkos] population of bird dynamics should be as thorough rlsp ;kekxhy y{; i;kZoj.kh; cnykaeqGs izHkkfor ‘kdr vlysY;k as possible, and the aim should be to identify the tula[;k izfØ;kauk tk.k.ks gs vlkos- i{;kaph x.kuk lk/kkj.kr% population processes that are affected by environmen- tksMÓkaps vkdMs ekstwu rlsp iztuu tula[;sph ?kursP;k tal changes. Birds are usually monitored by counting lafu;a=.kk}kjs dsyh tkrs- ¼vks*dkWUuj 1985½- pair numbers and densities of breeding populations (O’Connor 1985). rFkkfi] tula[;k vkdkj vkf.k ?kurk ;kaojhy MsVk tula[;k #

Gujarat Council on Science and Technology (GUJCOST) sponsored foKku o ra=Kku ;kaoj xqtjkr ifj”kn ¼GUJCOST½

ASIAN WATERBIRD CENSUS (AWC) 2015 PORBANDAR vkf’k;kbZ leqnzhi{kh x.kuk (AWC) 2015 iksjcanj Objectives and Rational: mfn~n”VÓs vkf.k rF;%

• The number of birds visiting any wetland is very important. It indicates the health of a • dqBY;kgh ik.kFkGh tkxsl tk.kkÚ;k i{;kaph la[;k gh [kwi egRokph vlrs- R;kus R;k tkxsps vkjksX; fnlwu wetland and highlights seasonal change in the bird count. ;srs] rlsp i{;kaP;k ekst.khrhy eksleh cny m?kM gksrks- • International recognisation of any wetland requires bird count. • ik.kFkGh tkxkaP;k vkarjjk”Vªh; ekU;rsl i{kh x.kusph xjt vlrs- • To be listed as Wetlands of International Importance or “Ramsar site”, a wetland • vkarjjk”Vªh; egRokP;k ik.kFkGh tkxk fdaok Þjkelj lkbZVß Eg.kwu ;/n gks.;klkBh] ik.kFkGh tkxsl must meet one or more internationally accepted criteria in relation to their zoology, R;kaP;k izk.kh’kkL=kP;k] ouLirh’kkL=] ifjfLFkrhdh] gk;MªkWykWth fdaok fyeuksykWth vkf.k tyi{;kalkBh egRo botany, ecology, hydrology or limnology and importance to waterbirds. vl.;kP;k n`”Vhus ,d fdaok vf/kd vkarjkjk”Vªh;jhR;k Lohd`r fud”kka’kh esG jk[k.ks vko’;d vkgs- Census is required to report data on certain criteria. fof’k”B fud”kkaojhy MsVk dGo.;klkBh x.kuk vko’;d vkgs-

METHODOLOGY OF AWC (PORBANDAR): AWC ¼iksjcanj½ ph dk;Zi/nrh 17 birdwatchers from Jamnagar and Porbandar have participated in AWC. These birdwatchers were grouped in four different teams and were allotted four separate routes tkeuxj rs iksjcanjiklwuP;k 17 i{khfujh{kdkauh AWC e/;s lgHkkx?ksryk- R;kauk pkj osxosxGÓk la?kkae/;s and covered 21 sites. AWC was conducted by birdwatchers on above mentioned sites leqfgr dsys xsys- rlsp pkj osxosxGs ekxZØe ns.;kr vkys o 21 lkbZV~luk O;kiys- oj uewn lkbZV~l vkf.k and routes on 1st February- 2015. 2nd February-2015 is known as World Wetland Day. ekxZØekaoj i{khfujh{kdka}kjs 01 Qsczqokjh 2015 jksth AWC ikj ikMyh xsyh-2 Qsczqokjh 2015 gk fnol fo’o Mr. Dhaval Vargiya, Science Co-ordinator and Mr. Viek Bhatt, Science Communicator, ik.kFkGh fnol Eg.kwu vksG[kyk tkrks- Jh /koy ofxZ;k] foKku leUo;d vkf.k Jh foosd HkV~V] foKku Shree Sahajanand Swami District Community Science Centre, visited Shree Madressa laoknlk/kd] Jh lgtkuan Lokeh ftYgk leqnk; foKku dsanz] ;kauh Jh enjslk eqykaP;k ‘kkGsyk HksV fnyh vkf.k Boys School and explained importance of wetland and threats to wetland with PowerPoint fo’o ik.kFkGh fnol Eg.ktsp 2 Qsczqokjh 2015 yk ikojikWbZaV izLrqrhdj.kk}kjk ik.kFkGh tkxkaps egRo vkf.k presentation on world wetland day i.e. 2nd February-2015. Team on a particular route R;kyk vl.kkÚ;k tks[keh letkoY;k- ,dk fof’k”B ekxZØekojhy la?kkl R;kaP;k i{khfujh{k.k gq”kkjhuqlkj vkf.k was selected on the basis of the talent and expertise of birdwatchers. Due care was taken rjcsti.kkuqlkjfuoM.;kr vkys- izR;sd la?kkl dehr deh ,d QksVksxzkQj] ,d rTK vkf.k nksu lgk;d feGrhy that each team receives at least one photographer, one expert and one or two assistants. ;kphdkGth ?ks.;kr vkyh- fnolkP;k njE;ku] i{kh ,dk ik.kFkGhgwu nqlÚ;kl LFkykarfjr gksrkr- ;keqGs v’kk During a day, birds migrate from one wetland to another. So there are chances that a i{;kapk ,dp Fkok nksunk ekstyk tk.;kph ‘kD;rk vlrs] T;keqGs xSj&fo’oklkgZ MsVk fuekZ.k gksÅ ‘kdrks- flock of a bird may be counted twice which generates non-reliable data. So, to avoid such Eg.kwup] v’kk leL;kauk VkG.;klkBh] lxGÓk lkbZV~luk ,dkp fno’kh o ,d=i.ks vH;klys xsys- problems, all the sites were studies on a single day and all together.

[Source: Vargiya D. V. et al. 2015. Asian Waterbird Census (AWC) 2015 Porbandar, Shree Sahajanand Swami ¼L=ksr% ofxZ;k D.V. ,V vy- 2015- vkf’k;kbZ tyi{kh x.kuk AWC 2015] Jh lgtkuan Lokeh ftYgk leqnk; foKku District Community Science Centre, Gujarat, India. Available from http://www.mokarsagar.org/get_download. dsanz] xqtjkr] Hkkjr- http://www.mokarsagar.org/get_download.php?aid=3 iklwu miyC/k½ php?aid=3 ]

57 6.6.6.3 Bird count using variable radius point count method 6.6.6.3 cnyrs f=T;k fcanw i/nr oki:u i{kh ekst.kh

Date: Time: Place: Location: fnukad: osG: tkxk: Bhdk.k:

Climate: Transect Name: Starting time: End time: okrkoj.k: vuqPNsnhr {ks=kps uko: vkjaHkkpk osG: varkpk osG:

Length of Transect: Altitude: Habitat: Natural / plantation vuqPNsnhr {ks=kph ykach: maph: oLrhLFkku: uSlfxZd@o`{kkjksi.k

Plot No. Species Numbers Per. Dist Activity Remarks IykWV Ø- Ikztkrh vkdMs izfr ftYgk xfrfo/kh ‘ksjk

6.6.6.4 Bird count using boat along estuarine canals 6.6.6.4 ,’pjhu dkyO;kaP;k js”ksyxr ukooki:u i{kh ekst.kh

Date: Time: Place: Location: fnukad: osG: tkxk: Bhdk.k:

Weather: Canal Name: Starting time: End time: gokeku: dkyO;kps uko: vkjaHkkpk osG: varkpk osG:

Starting GPS: End GPS: vkjaHkkpk GPS: varkpk GPS:

Plot No. Species Numbers Per. Dist Activity Remarks IykWV Ø- Ikztkrh vkdMs izfr ftYgk xfrfo/kh ‘ksjk

58

6.6.7 Preparing for underwater assessment: 6.6.7 ik.;k[kkyhy eqY;ekiuklkBh r;kjh Scuba diving dj.ks% Ldqck Mk;fOgax

Since the anthropogenic impact (climate change, ekuofufeZr çHkkokaeqGs ¼okrkoj.k cny] xkG lkp.ks] vfr xSjokij] sedimentation, over exploitation, tourism, over and de- i;ZVu] vfr vkf.k fo/oald eklsekjh lo;h b-½] ‘kkL=Kkauk structive fishing practices etc.), scientists have felt the ifjfLFkrhdh izfØ;kauk vodk’kh; vkf.k rdyknw ekinaMkaoj ekiu necessity to measure ecological processes on spatial djk;ph xjt Hkklyh- oSf’od vkf.k ifjfLFkrhdh izfØ;kaoj y{k and temporal scales. While the focus on global and dsafær dj.ks [kjks[kjp egÙokpss vlrkuk] Ldqckek/;ekus izkIr MsVkps ecosystem processes is indeed imperative, controlled field experiments and carefully designed surveys and fo’ys”k.klq/nk lekfo”V u dsyk xsY;klfu;af=r QhYM iz;ksxkapk vkf.k monitoring programmes could be completely misin- dkGthiwoZd jfpr losZ{k.ks vkf.k lafu;=a.k dk;ZØekapk iw.kZi.ks pqdhpk terpreted if analysis of data obtained via scuba is not vFkZ ykxw ‘kdrks- also incorporated. Ldqckus tSoxksykpk fo’kky Hkkx O;ki.kkj~;kik.;k[kkyhy oLrhLFkkukauk Scuba created a scientific revolution by providing FksV lqxerk nsr ,d ‘kkL=h; mRØkarh ?kMoyh- direct access to underwater habitats composing a fdR;sd egRokP;k fofufnZ”V vfxzerk vlrkukgh] vkepk fo’okl vkgs large part of the biosphere. While there have been dh LdqckP;k ykHkkaykleqnzh tula[;k] leqnk;] vkf.k many important specific advances, we believe that i;kZoj.kh;;kalkBh vf/kd izk/kkU; ns.;kr vFkZ vkgs]T;kus oS;fDrd the overarching benefit of scuba for marine popula- tho/kkjhaP;k FksV fujh{k.kkar rlsp bfPNr cnyko dj.;kr o R;kaP;k tion, community, and ecosystem ecology has been to vorhHkorhP;k ifjfLFkrhalkBhleFkZu iqjoys tkrs- facilitate the direct observation and manipulations of individual organisms and their surrounding conditions. LdqckP;k vk/kh]Hkjrh&vksgksVh {ks=kP;k vkrhy tho/kkjhapk vH;kl ‘kkar ik.;kr fuj[kwu ikgwu vkf.k eklsekjh] Mªsftax fdaok Iy¡DVu tkGÓka}kjs Prior to scuba, subtidal organisms were studied xksGk dsysY;k uewU;kaPks fo’ys”k.k d:u dsys tkr vls- LdqckP;k ‘kks/ primarily by peering into the water on calm and by kkus ‘kkL=Kkauk tho/kkjhaP;k analysing specimens collected by fishing, dredging, or plankton nets. The invention of scuba enabled sci- okx.kwdhl vkf.k ifjfLFkrhdhl R;kaP;k uSlfxZd oLrhLFkkukr entists to observe the behavior and ecology of organ- fujh{k.k dj.;kl] lkpkl eki.ks] vkarjfØ;kapk vH;kl dj.ks] vkf.k isms in their natural habitats, quantify patterns, study ifjfLFkrhdh izfØ;kackcr x`fgrdkaph pkp.kh dj.;klkBh iz;ksx interactions, and conduct experiments to test hypoth- vk;kstu dj.;kl l{kerk fnyh vkgs- Ldqck ok

6.6.7.1 The diving certification gh gLriqfLrdk]Ldqck Mk;fOgaxe/;s] izk/kkU;rsus PADI ¼Mk;fOgax izf’k{kdkaph O;kolkf;d la?kVuk½ fdaok rRle vkf.k ik=rk vlysY;k This handbook strongly recommend proper certifica- vkf.k vuqHkoh Ldqck Mk;fOgax izf’k{kd ;kaP;kdMwu;Fkk;ksX; izek.khdj. tion in scuba diving preferably PADI (Professional kkph tksjnkj f’kQkjl djrs- Association of Diving Instructor) or equivalent and by qualified and experienced Scuba Diving instructor. • Open Water Diver Certification is a full entry level certification earned by successfully com- • vksiu okWVj Mk;Ogj izek.khdj.k ,d laiw.kZ HkrhZ Lrjkps izek.khdj.k vlwu laiw.kZ vksiu okWVj Mk;Ogj vH;kl ;’kLohjhR;k pleting the entire Open Water Diver Course. The PADI Open Water Diver certification qualifies iw.kZ dsY;koj feGoys tkÅ ‘kdrs- PADI vksiu okWVj Mk;Ogj izek.khdj.k vkiY;kyk ;klkBh ik= cuosy% ;k vH;klkr you to: Dive independently while applying the knowledge and skills you learn in this course, feGoysY;k Kkukl vkf.k dkS’kY;kauk mi;ksxkr vk.kr vkiY;k izf’k{k.kkP;k vkf.k vuqHkokaP;k lhekaP;k vkrp Lora=i.ks within the limits of your training and experience cqMh ekj.;kl] • Procure air fills, scuba equipment and other services • gok Hkj.;k] Ldqck midj.ks vkf.k vU; lsok feGo.ks] • Plan and conduct and log open water no stop (no decompression) dives when equipped • O;ofLFkri.ks lTt vlrkuk vksiu okWVj fouk Fkkack¼uks Mhdaizs’ku½ cqMÓkaps fu;kstu vkf.k vk;kstu oykWx dj.ks vkf.k properly and accompanied by a buddy in conditions with which you have training and/or v’kk ifjfLFkrhae/;s ,d lkscrhlkscr vlrkuk T;keqGs rqEgkyk izf’k{k.k vkf.k@fdaok vuqHko feGsy experience • ,dk Mk;fOgax dk;ZØekr fo’ks”krk MkbZOg~tlg vkiys Mk;fOgax izf’k{k.k pkyw Bso.ks- • Continue your diving training with a speciality dives in a diving programme.

6.6.7.2 Course prerequisites: 6.6.7.2 vH;kl iwoZ vko’;drk To become qualified scuba diver, you need to be comfortable in water and have basic swimming skills, so your instructor will have you do some swimming and floating - nothing extreme (200 me- ;ksX;rkizkIr Ldqck Mk;Ogj cu.;klkBh] vki.k ik.;kr lqyHk vl.ks vko’;d vkgs] rlsp iksg.;kP;k izkFkfed dkS’kY;s ters and ten minute float or 300 meters mask , fin and snorkel swim and float), just to determine vlk;yk gohr] Ekx vkiys izf’k{kd vkiY;kl FkksMs iksg.ks o rjax.ks d:u ?ksrhy &Qkjls mPpdksVhps ulsy] ¼200 ehVlZ you have basic swimming abilities. You don’t need to be an athlete, but you should be in good vkf.k ngk fefuVs rjax.ks fdaok 300 ehVlZ ekLd] fQu vkf.k LuksdsZy fLoe vkf.k rjax.ks½] dsoG rqeP;k izkFkfed iksg.;kP;k overall health, particularly your respiratory and circulatory systems. Mentally, you need a mature {kerkaps fu/kkZj.k dj.ks gsrw vlsy- vki.k dljriVw vl.ks vko’;d ukgh] i.k rqeps ,danj LokLF; mRre vlkos] fo’ks”kr% attitude, good judgement and the self-discipline to follow the guidelines and principles required ‘olu vkf.k vfHklj.k jpuk- ekufldjhR;k] vkiyh o`Rrh ifjiDo Lo#ih vlkoh] mRre lwKrk vkf.k lqjf{kr Mk;fOgaxlkBh for safe diving. vko’;d ekxZnf’kZdk vkf.k rRokaps ikyu dj.;klkBh Lo&f’kLrc/nrak vlkos- Before any confined water dives or water skills, your instructor will have you complete a medi- e;kZfnrik.kh cqMh fdaok ik.;krhy dkS’kY;kavk/kh] vkiys izf’k{kd vkiY;kyk ,d oS|dh; fo/kku iqjs djk;yk lkaxrhy- cal statement. The information you on it will remain confidential. Because the statement identi- fies medical conditions that may be affected by diving, for your safety and health it’s important R;kojhy vkiyh ekfgrh xksiuh; jkghy- fo/kku Mk;fOgaxeqGs izHkkfor gksÅ ‘kd.kkÚ;k vkiY;k oS|dh; fLFkrhal nk[kor vlY;k that you complete it completely and accurately. If any of the conditions listed apply to you, as a dkj.kkus] vki.k R;kl iw.kZi.ks vkf.k vpwdrsus Hkj.ks vko’;d vkgs- tj lwphc/n fLFkrhiSdh dks.krhgh fLFkrh vkiY;koj prudent precaution, your instructor will ask you to consult a physician before participating in any ykxw gksr vlY;kl] nwjn’khZ [kcjnkjh Eg.kwu] vkiys izf’k{kd dks.kR;kgh ik.;krhymiØekr lgHkkxh gks.;kvk/kh vkiY;kyk water activities. fQthf’k;upk lYyk ?ks.;kl lkaxrhy-

6.6.7.3 Open Water Diver course structure 6.6.7.3 vksiu okWVj Mk;Ogj dkslZpk

Open Water Diver course consists of three segments: Confined water dives, knowledge devel- vksiu okWVj Mk;Ogj dkslZ rhu Hkkxkauh cuysyk vlrks% e;kZfnr ik.kh cqMh] Kku fodkl vkf.k [kqys ik.kh cqMh- ;kiSdh izR;sd opment and open water dives. Each plays an important role in learning to dive in meeting the cqMh ekj.ks f’kd.;kr vkiY;kyk ,d Mk;Ogj Eg.kwu ik= cu.;klkBhdkefxjhph mfn~n”VÓs xkB.;kr egRokph Hkwfedk fuHkkorks- performance objectives you need to qualify as a diver. izf’k{k.kkph lq#okr e;kZfnr Lo#ih ik.;kr ¼izk/kkU;rsus tyrj.k rykokr½ dsyh tkrs] T;kP;k njE;ku vki.k cqMhph rRos The training begin in the confined water (preferably in swimming pool), during which you ap- vaeykr vk.kk;ph vlrkr] rlsp cqMh i/nrh vkf.k dkS’kY;kal f’kdk;yk o ljko djk;yk gos- vki.k gs vkiY;k izf’k{kdkP;k ply dive principles, and learn and practice dive procedures and skills. You will do this in either a ekxZn’kZukP;k o i;Zos{k.kkP;k v/khu ,drj tyrj.k rykokr djky] fdaok rRle fLFkrh vl.kkÚ;k tyk’k;kr djky- ikp swimming pool, or a body of water with pool like conditions, under your instructor’s guidance and e;kZfnr ik.kh cqMh vlrkr T;k ikp Kku fodkl foHkkxka’kh vuq#i vlrkr- supervision. There are five confined water dives that correspond with five knowledge development sections. Kku fodkl loZ Mk;OglZuk Mk;fOgax lqjf{krrslkBh vko’;d rRos vkf.k izkFkfed ekfgrhal LFkkfir djrs- R;kl ikp Hkkxkar foHkkxys tkrs] ts vki.k izkFkfedrsus vkiY;k Lor%P;k osGsr o lqfo/ksuqlkj fu;eiqfLrdk vkf.k PADI vksiu okWVj Mk;Ogj Knowledge development establishes the principles and basic information all divers need to have fOgMh;ks oki:u iw.kZ djk;yk gos- izR;sd HkkxklkBh] vkiY;k fof’k”B xjtk] LokjL;s vkf.k LFkkuh; MkbOg i;kZoj.k ;klkBh diving safety. It’s divided into five segments that you will complete primarily on your own time at your convenience using the manual and the PADI Open Water Diver video. For each segment, vki.k dk; f’kdr vkgkr ;kl vaey djr vkiys izf’k{kd lkexzhoj leh{kk vkf.k lfoLrkji.ks ekfgrh iqjorhy- ,d y?kq your instructor reviews and elaborates on the material, applying what you are learning to your iz’ueatq”kk vki.k R;k foHkkxkrwu dk; ekfgrh vftZr dsyh vkgs ;kph iq”Vh djsy- specific needs, interests and the local dive environment. A short quiz confirms that you have picked up the information you need from that section. vksiu okWVj MªkbZOgtHkjrh ikrGhps Mk;Ogj Eg.kwu vkiys izf’k{k.k vkiY;k Kkukl o cqMh ekj.;kP;k dkS’kY;kayk MkbOg i;kZoj.kkr vkiY;k izf’k{kdkP;k i;Zos{k.k vkf.k ekxZn’kZuk[kkyh vaeykr vk.kr] rlsp iq

61 You will be learning in a sequence that establishes skills and knowledge from the simple to the vki.k ,dk vuqØekus f’kdky T;keqGs lksI;kiklwurs fDy”VLo:ih dkS’kY;s vkf.k Kku LFkkfir gksbZy] T;kr vki.k vk/kh dk; complex, with later skills and knowledge building on what you learn first. For this reason it’s im- f’kdyk vkgkr ;koj vk/kkfjr i’pkrph dkS’kY;s vkf.k Kku ;kaPkh ekfgrh feGsy- ;k dkj.kklkBh iq

6.6.7.4 Equipment required for scuba diving: 6.6.7.4 Ldqck Mk;fOgaxlkBh ykx.kkjh midj.ks:

Scuba diving is highly technical but easy to use instrument oriented Ldqck Mk;fOgax mPp ra=kps ijarq okijkl lksI;k midj.kkauh iw.kZ dj.;ktksxs vlrs-

Mask: Light behaves differently in water than in air and your eyes focus accordingly to how light eq[koVk ¼ekLd½% izdk’k gosP;k rqyusr ik.;kr fHkUu izdkjs O;ogkj djrks vkf.k vkiys MksGs izdk’k gosr d’kk rÚgsus lkeksjk behaves in air. That’s why water makes everything blurry. The mask creates an air space so your ;srks R;kuqlkj dsanzhdj.k djr vlrkr- Eg.kwup ik.kh loZp xks”Vhauk vLi”V cuors- eq[koVk ,d gosph iksdGh fuekZ.k djrs eyes can focus. ts.ksd:u vkiys MksGs dsanzhdj.k d: ‘kdrhy-

Snorkel: Since scuba divers have a tank and regulator, you may wonder why a snorkel is a stan- gokuG% Ldqck Mk;OgjdMs ,d Vkdh vkf.k jsX;qysVj vlY;kdkj.kkus] vkiY;kyk vk’p;Z okVsy dh gokuGgs Ldqck isgjkokr dard piece scuba gear. Snorkel is important for a few reasons when scuba diving. First, it lets you ,d ekud fgLlk vkgs- Ldqck Mk;fOgaxlkBh gokuG dkgh dkj.kkalkBh egRokps vkgs- izFke] rs vkiY;kyk vkiYkk psgjk ik.;kr rest or swim with your face in the water, like when you are looking for something below, without vlrkuk foJke dj.;kl rlsp iksg.;kph lqyHkrk nsrkr] tls dh tsOgk vki.k [kkyh dkghrjh ‘kks/kr vlrk] Vkdhrhy gok wasting tank air. ok;k u ?kkyork-

Particulars ri’khy

Cylinder BCD Wet suit (3 mm) flysaMj BCD vksyk lwV ¼3 eheh ½

Gloves Regulator Weights gkreksts jsX;qysVj otus

Weight Belt Fins otukapk iV~Vk ikrh

62 Booties cqVht

Mask and Snorkel Underwater Knife Compass eq[koVk vkf.k gokuG Ikk.;k[kkyh okijk;pk lqjk fn’kkn’kZd

Dive computer Depth finder Underwater torch MkbZOg lax.kd xgurk ‘kks/kd ik.;k[kkyh okijk;ph fotsjh

Underwater still camera Portable Scuba diving compressor Lift Bag (100 kg, 200 kg, 500 ik.;k[kkyh okijk;pk dWesjk ogulqyHk Ldqck Mk;fOgax daizslj mpy cWx ¼100 dsth] 200 dsth] kg, 1000 kg) 500 dsth] 1000 dsth½

Inflatable boat (10 person capacity) Out Board Motor (OBM - 25 HP) gokokyhcksV ¼10 O;Drhaph {kerk½ vkÅV cksMZ eksVj ¼OBM - 25 HP½

5625000 5625000

63 6.6.8 Sea grass habitat assessment 6.6.8 leqæh xorkP;k oLrhLFkkukps eqY;kadu

The habitat complexity within sea grass meadows enhances the diversity and abun- leqnzh xorkaP;k dqj.kkarhy oLrhLFkkukaph fdpdVi.kkizk.;kaph fofo/krk vkf.k foiqyrk lq/kkjrks- csV lrykojhy dance of animals. Sea grasses on reef flats and near estuaries are also nutrient sinks, vkf.k ,’pjhuP;k toGhy leqnzh xorslq/nk leqnzh i;kZoj.kklkBh iks”kdiw.kZ] j{kkiw.kZ fdaok iks”kd vkf.k buffering or filtering nutrient and chemical inputs to the marine environment. jklk;fud buiqV~l xkG.kkjh vlrkr-

6.6.8.1 Why assess and monitor sea grasses? 6.6.8.1 leqnzh xorkaps eqY;ekiu vkf.k lafu;a=.k d’kklkBh\

Environment monitoring programmes provide coastal management agencies with infor- i;kZoj.kh; lafu;a=.k dk;ZØe fdukjiV~Vh; O;oLFkkiu laLFkkauk ekfgrh iqjorkr vkf.k vf/kd vkRefo’oklkus mation and assist them to make decisions with greater confidence. Sea grasses are of- fu.kZ; ?ks.;kl lgk¸; iqjorkr- leqnzh xor gs cÚ;kpnk ik.kh çokgkP;k fn’ksP;k Vksdkl vlrkr] T;keqGs ten at the downstream end of watershed, receiving runoff from a range of agricultural, R;ke/;s d`”kh] ‘kgjh vkf.k vkS|ksfxd Hkweh ;kaP;k okijkuarjP;k xks”V vMdrkr- R;kaph ifjfLFkrhdh eqY;s vkf.k urban and industrial land-uses. Their ecological values and location in areas likely to rVkalkBh fodkl visf{kr vlysY;k {ks=krhy fBdk.k ;kauh] leqnzh xorkyk] i;kZoj.kh; vkjksX; vkf.k fdukjiV~Vh be developed for harbors and ports have made sea grasses a useful monitoring target for assessing environmental health and impacts on coastal systems. {ks=kaojhy iz?kkr ;kaP;k eqY;ekiuklkBh ,d mi;qDr lafu;a=.k y{; cuoys vkgs-

The ideal “bio-indicator” must show measurable and timely responses to environmen- vkn’kZ ÞtSo&n’kZdß ;kus vfuok;Zi.ks ekiuh; vkf.k i;kZoj.kh; ifj.kkekauk ;ksX; osGsr izR;qRrjs |ko;kl goh- tal impacts. Sea grass habitats provide sessile plants - individuals, populations and leqnzh xorh oLrhLFkkus LFkkuc) jksis iqjorkr & oS;fDrd] tula[;k vkf.k leqnk; & T;kaps lgti.ks ekiu communities – which can all be easily measured. Sea grass plants generally remain djrk ;srs- leqnzh xor jksis lk/kkj.kr% ,dkp tkxh jkgrkr ts.ksd:u vfLrRokrhy ekuofufeZr ifj.kkekps in place so that the prevailing anthropogenic impacts can be monitored. Improved lafu;a=.k gksÅ ‘kdsy- fofo/k leqnzh xor ok< xq.k/keZ vkf.k izdk’k o iks”kds ;kalkj[;k ekinaMkae/khy laca/kkaps knowledge of the relationships between various sea grass growth characteristics and lq/kkfjr Kku fdukjiV~VhP;k leqnzh xor jpukaoj i;kZoj.kh; iz?kkrkaps lafu;a=.k dj.;klkBh [kwi mi;qDr environmental parameters such as light and nutrients provide very useful tools for lk/kusiqjorkr- monitoring environmental impacts on coastal sea grass systems. fdukjiV~Vh {ks= izca/kdkauk fdukjiV~Vh leqnzh leqnk;kr ouLirh vkf.k izk.kh ;kaP;k fofo/krsl] fdukjiV~Vh Coastal zone managers increasingly recognize the importance of sea grasses in coastal eRL;O;olk; mRikndrsl] vkf.k xkGkl LFkkoj dj.;kl vkf.k fdukjiV~Vh ik.;kP;k xq.koRrsl fujarj marine communities for supporting diverse flora and fauna, in supporting coastal fish- jk[k.;kr vkf.k ikjn’kZdrslleFkZu ns.;klkBhph leqnzh xorkph egRokph tk.k gks.ks ok

Some changes will also occur naturally and on a regular seasonal basis. Environment dkgh cny gs uSlfxZdi.ks vkf.k fu;fer eksleh vk/kkjkojlq/nk ?kMrhy- i;kZoj.kh; lafu;a=.k dk;ZØekauk ;k monitoring programmes require knowledge of these patterns of natural change. They uSlfxZd cnykaP;k ueqU;kaps Kku vko’;d vlrs- R;kauk [kpkZl&lktsls MsVk ,d=hdj.k] ;Fkk;ksX; ekinaMs also require cost-effective data collection, selection of appropriate parameters and vkf.k ekis ;kaph fuoM] rlsp cnykaph ekis thizca/kdh; d`rhph xjt vkgs dk ;kps fu/kkZj.k dj.;klkBh scales, and measures of change which are statistically appropriate for determining if lkaf[;dhLo#ikus ;Fkk;ksX; vlrhy- management action is required. iqjfoysY;k fdukjiV~Vh {ks=kr leqnzh xorkP;k forj.kkps izfrfp=.k vlk vk/kkjd iqjow ‘kdrks] T;k}kjk leqnzh Mapping the extent of sea grass distribution in a given area of coastline can provide xorkrhy oLrhLFkkukarhy uqdlku fdaok ykHk ekiys tkÅ ‘kdrkr- vls udk’ks tfeuhP;k losZ{k.kkarwu GPS a basis from which loss or gains in sea grass habitat is quantified. Such maps can be fdok vU; gokbZ Nk;kfp=.k okijkl] tsOgkgh xzkmaM VªwfFkax miyC/k vlrs rsOgk R;kP;k’kh la;kstuk}kjs cuoys created from ground surveys using GPS or from aerial photography combined with tkÅ ‘kdrkr- nksu fdaok vf/kd fnolkaP;k udk’kkaph rqyuk dsY;kl leqnzh xor forj.kkrhy cnykal Rofjr ground truthing when available. Comparison of maps from two or more dates can nLr,sothr d:u LFkkuh; çHkkokph lwpuk iqjow ‘kdrks- quickly document the change in sea grass distribution and provide notice of a local impact. Choosing the most efficient and appropriate parameter(s) to monitor is equally important. Sea lafu;a=.kklkBh lokZr dk;Z{ke vkf.k ;Fkk;ksx; ekinaM ¼Ms½ fuoM.ks gs ns[khy frrdsp egRokps vkgs- leqnzh xorkP;k iztkrhaph grass species composition and its abundance, e.g., biomass (above-ground and below-ground), lajpuk vkf.k foiqyrk] mnk- tSoHkkj ¼tfeuhP;k oj vkf.k tfeuhP;k [kkyh½] ,dw.k {ks=] fdaok tehu O;kikph VDdsokjh] gs total area, or percent ground cover, can be measured quickly, and these have been the most Rofjr ekstys tkÅ ‘kdrs] vkf.k gh vxnh lk/kkj.ki.ks fuoMysyh ekinaMs vkgsr- leqnzh xor ok< ekinaMs ¼mnk- jksikaP;k commonly chosen parameters. Sea grass growth parameters (e.g., plant growth rates, plant tissue ok

Monitoring programmes aim to detect change. Environment monitoring programmes yko.;kl lajfpr vlrkr] fdukjiV~Vh O;oLFkkiu laLFkkauk vf/kd vkRefo’oklkus fu.kZ; ?ks.;kl l{kerk nsrkr- which are designed to detect realistic levels of change, enable coastal management okLrfod lafu;a=.k i/nrhaps [kkyh foLrkjiwoZd o.kZu dsysys vkgs- agencies to make decisions with greater confidence. Below the actual monitoring meth- 6.6.8.3 mixzg izfrek vkf.k varjkG Nk;kfp=.k oki:u oLrhLFkkukaps izfrfp=.k ods are described in detail. n`< Lo#ikps O;oLFkkiu vkf.k leqnzh xor ifjfLFkrhdh tru dj.;klacaf/kr MsVkps n`”; :ikarj.k dj.;klkBh] jpukc/n 6.6.8.3 Mapping the habitat using satellite imagery and aerial photography izfrfp=.k vkf.k fujarj lafu;a=.k fofo/k varjkGkaoj vko’;d vkgsr ¼oWc&fuV~> ,V vy 2008½- leqnzh xorkP;k forj. kkr rdyknw vkf.k vodk’klaca/kh cny vtqugh ikj ikMys xsys ukghr] [kkl d:u nwjLFk csVs- l/;kP;k fLFkrhr] mixzg] In order to visualize data relating to sustainable management and conservation of sea grass eco- vkf.k thvk;,l ra=kph nqDdy leqnzh xor O;kIrhrhy cny ¼oWc&fuV~>vkf.k brj 2008( uksch 2010½ letqu ?ks.;klkBh systems, systematic mapping and continuous monitoring are needed at different intervals (Wab- nitz et al 2008). Studies on temporal and spatial changes in the distribution of sea grasses have lokZsRre ;kstukaiSdh ,d ekuyh tkrs- gk fdQk;rh vkf.k fo’oluh; vkgs- still not been conducted, particularly around remote islands. Currently, satellite imagery, coupled gYyhp] gokbZ QksVks vkf.k IRS-P6 LISS-III lsalj bestjh oki:u jkes’oje csVkaP;k vifjiDorsl vkf.k fdukjiV~Vh L=ksrkal with GIS techniques, is considered to be one of the best tools for understanding changes in sea grass coverage (Wabnitz et al 2008; Nobi 2010). It is cost-effective and reliable. letqu ?ks.;klkBh vH;kl dsys xsys- n`”; ekU;rk ra=kapk okij dj.;kr vkyk] vkf.k mixzg MsVkal tSolkadsfrd dj.;krvkys- gs MsVk iqUgk fQYMe/;s eSnkuh fu;a=.k fcanw ¼gkrkr /kjk;ps GPS½ xksGk dj.;kl okijyk xsyk- mixzg izfrekauk gs eSnkuh Recently, studies were conducted using aerial photos and IRS-P6 LISS-III sensor imagery to gain fu;a=.k fcanw oki:u tSo&lq/kkfjr dj.;kr vkys- izfresps xq.k/keZ] Vksu] iksr] vkd`rhca/k o lacaf/krrk] ;kaoj vk/kkfjr fofo/k an understanding of the geomorphology and coastal resources of the Rameswaram group of fdukjiV~Vh; vifjiDo Js.kh vkf.k L=ksr ;kaph vksG[k iVo.;kr vkyh vkf.k izfrfp=.k dsys xsys ¼uksch vkf.k brj 2010½- islands. Visual interpretation techniques were employed, and the satellite data were geocoded. These data were again used in the field for collecting ground control points (using handheld ¶yspj vkf.k brj ¼2009½ }kjs VsDlkl] USA e/;s gokbZ Nk;kfp=.k oki:u ekuoh vkf.k uSlfxZd ‘kkarhHkaxk’kh lacaf/kr GPS). The satellite imagery were geo-corrected using these ground control points. Based on the leqnzh xorkaP;k xk|kae/khy Hkwferh; cnykaps eqY;kadu vkf.k lafu;a=.k dj.;klkBh nqljk ,d vH;kl dsyk xsyk- image characteristics, tone, texture, pattern and association, various coastal geomorphic catego- mPp&i`FkDdj.k gokbZ jaxhr fQYe Nk;kfp=.k] jaxhr iksdGh VªkalQkWeZs’ku] fiDlsy Fkzs’kksYM uewus vkf.k thvk;,l ra= ;kauk ries and resources were identified and mapped (Nobi et al 2010). ,df=r d:u 1&eh eSnkuh

Another study was conducted by Fletcher et al (2009) in Texas, USA to evaluate and monitor the landscape changes in the sea grass beds related to human and natural disturbances using aerial photography. High-resolution aerial colour film photography, colour space transformation, pixel threshold models and GIS technology were integrated to detect, assess and monitor 1-m

65 ground feature changes and disturbed areas of shallow sea grass beds. The procedure entailed oSf’k”VÓkaukvkf.k mFkG leqnz xor xk|kauk’kks/k.;klkBh] eqY;ekiu vkf.k lafu;af=r dsys xsys-;k i/nrhyk MhthVy Lo#ih transforming digitized aerial colour film transparencies from the red, green and blue colour space gokbZ dyj fQYe ikjn’kZdrkal yky] fgjos vkf.k fuGs jaxkP;k iksdGÓkarwu rs rhozrk] jax NVk vkf.k lai`Drrk jax iksdGhr to the intensity, hue and saturation colour space; analysing the saturation and/or intensity of the ifjofrZr dj.;kl lkeksjs tkos ykxys( [kqY;k {ks=kayk vksG[k.;klkBh lai`Drrsps vkf.k@fdaok izfresph rhozrk ;kaps fo’ys”k.k imagery and their histograms to identify bare areas; and developing threshold models to separate dj.ks vkf.k R;kaP;kLraHkys[kkl okij.ks( rlsp vkjaHkh uewus fodflr dj.ks T;kus eksdGh {ks=s vkf.k ouLirhtU; {ks=s osxGh bare areas from vegetated area. djrk ;srhy-

Maps created using this semi-automated approach had classification accuracies ranging from v/kZ&Lo;apfyr i/nr oki:u cuoysY;k udk’kkar Js.khc/nrk vpwdrk 75 VDds rs 100 VDds ekfydsr clrkr- gYyhP;kp 75% to 100%. In a recent study, Nobi et al (2013) estimated the extent of restored sea grass ,dk vH;klkr] uksch vkf.k brj ¼2013½ us y{k}hiP;k fuoMd csVkar mixzg udk’ks] thvk;,l vkf.k eSnkuh fujh{k.k oki:u habitats at selected islands of Lakshadweep using satellite maps, GIS and field observations. Sea iwoZor >kysY;k leqnzh xor oLrhLFkkukapk vankt orZoyk- leqnzh xor udk’kkauk o”kZ 2000&2008 lkBh,dhd`r dsys xsys grass maps were integrated for the year 2000-2008 specific areas and buffer zones were gener- gksrs- iwoZor dsysY;k {ks=kps js[kkVu dj.;klkBh fof’k”B {ks=s vkf.k cQj {ks=s fuekZ.k dsyh xsyh- ated to delineate the restoration sites. leqnzh xorkP;k {kfrlkBh mi’keu izdYikaaP;k Lo#ikr fo’oHkjkrhy fofHkUu lkbZV fuoM uewU;kapk okij dj.;kps iz;Ru dsys Attempts have been made to use different site selection models around the world (Kopp et al 1994 2002 1994; Short et al 2002) as mitigation projects for sea grass losses. Of the possible factors that can xsys ¼dkWIi vkf.k brj ( ‘kkWVZ vkf.k brj ½- LFkykarfjr leqnzh xorkaP;k g;krhl FksV izHkkfor d: ‘kd.kkj~;k directly influence the survival of transplanted sea grasses, poor site selection has been identified ?kVdkaiSdh] nqcZy lkbZV fuoMhl izeq[k dkj.k Eg.kwu vksG[kys xsys vkgs ¼gWfjlu 1990( Qksulsdk 1992½- as the major cause (Harrison 1990; Fonseca 1992). ;kizdkjs] iwoZor fLFkrh dj.;klkBh v’kh {ks=s fuoM.ks pkaxys vkgs tsFks iwohZgh leqnzh xor gksrs] ts.ksd:u lkbZVP;k Thus, it is better to select areas where sea grasses were present in the past for restoration as fuoMhckcr okn] vf/kLFkkukaph xjt vkf.k vU; vf/kLFkkukaps vkØe.k VkGys tkÅ ‘kdsy ¼dWyeik¡x vkf.k QksusLdk 2001( conflicts over site selection, habitat requirements and invasion of other habitats will be avoided d¡icsy 2002( dWVfod vkf.k brj 2009½- (Calumpong & Fonseca 2001; Campbell 2002; Katwijk et al 2009). 6.6.8.4 lkbZVph fuoM 6.6.8.4 Selection of site lkbZVph fuoM gh R;k fBdk.kP;k leqnzh xor leqnk;kapk izfrfu/kh Eg.kwu dsyh tkrs- lq# dj.;kvk/kh Hkkxkrhy] {ks=krhy The site is selected to be representative of the sea grass communities in that location. It is useful fdaok ns’kkrhyleqnzh xor dqj.kkaps forj.k vkf.k fLFkrh ;kaojhy miyC/k ekfgrhps eqY;kadu dj.ks mi;qDr vlrs- vk/kkjjs[kh; to review any available information on the distribution and status of sea grass meadows in the ekfgrhP;k L=ksrkar leqnzh xor oLrhLFkkukaps gosrwu dk

A good monitoring site is • leqnzh xor dqj.k ts fBdk.kkizek.ks uequsnkj@izfrfu/kh vlrs • leqnzh xor dqj.k ts rqyusus ,dkp izdkjps vlrs • a sea grass meadow which is typical/ representative of the location • ,[kk|k tkxsrhy leqnzh xor dqj.k fBdk.k tsFks vki.k iqUgk tkÅ ‘kdrk vkf.k fu;fer varjkGkaoj iqUgk lafu;a=.k d: • a sea grass meadow that is relatively homogeneous ‘kdrk • a sea grass meadow in a place which you can come back to and monitor again at regular intervals • leqnzh xor dqj.k tsMªst pWuy] fdaok lkaMik.kh vfrjsdklkj[;k dqBY;kgh fo’kky lkgftd çHkkokiklwu cpkoklkBh dk

66 Also, for the monitoring of representative conditions in an area, it is important to avoid an immedi- rlsp] ,[kk|k Hkkxkr izfrfu/khd Lo#ikP;k ifjfLFkrhaP;k lafu;a=.kklkBh] ,[kknk toGpk fdaok çHkko L=ksrfcanw VkG.ks ate or point source of impact. The aim of the monitoring is to pick up any broad changes in a sea egRokps vkgs- lafu;a=.kkps mfn~n”VÓ Eg.kts ,[kk|k leqnzh xor leqnk;krhy dqBysgh eksBs cny mpy.kss vkgs] ts leqnzh xor grass community, not necessarily changes between stations within the sea grass community. leqnk;kae/khy LVs’kUlnjE;kups cny vl.ksp vko’;d ukgh-

6.6.8.4 Laying transect 6.6.8.4 vuqPNsnhr {ks=kl ekaM.ks

Transect establishment is important to ensure consistency of the monitoring programme, and is vuqPNsnhr {ks= LFkkiuk lafu;a=.k dk;ZØekP;k n`

Transect establishment should be achieved with minimum disturbance of the surrounding sea vuqPNsnhr {ks=kph LFkkiuk vorhHkorhP;k leqnzh xorkP;k dqj.kkaP;k dehr deh vMFkGÓkalg iw.kZ dsyh tkoh- grass meadow. vuqPNsnhr {ks=sLVs’kUl A, B vkf.k C ;k rhudk;eLo#ih LVs’ku fpUgdkalg[kq.kk dsys tkrhy- gs dk;eLo#ih fpUgd leqnzh The transect will be marked with three permanent station markers at stations A, B and C. These xor leqnk;karhy cnykaph rek u ckGxrk laiw.kZ lafu;a=.k dk;ZØekHkj Bsoys tkrhy- permanent station markers will be kept throughout the monitoring programme regardless of changes in the sea grass community. vuqPNsnhr {ks=kl nqlÚ;k fBdk.kh gyo.ks dk;eLo#ih fpUgd lqjf{kr vkgsr ;kph [kk=h djr] vkf.k lkbZVps ,d mRre js[kkfp= udk’kk vkf.k fooj.k cuowu]useds lgfunsZ’kd uDdh dj.;klkBh GPS pk vkn’kZ okij ;kauh lqyHk cuoys tkbZy- Relocating the transect will be made easier by ensuring that the permanent markers are secure, and preparing a good sketch map and description of the site, ideally using GPS to identify the ex- tsOgk vki.k udk’kk vkf.k fooj.k cuork] rj rks v’kk rÚgsus fygk dh R;k lkbZVyk vk/kh d/khgh u xsysyk O;Drhgh lgt act coordinates. When you prepare the map and description, write it in a way that someone who ‘kks/kw ‘kdsy- has 8never been to the site could still find it. 6.6.8.5 leqnz xor xk|kaps lafu;a=.k 6.6.8.5 Monitoring sea grass beds leqnz xor xk|k eRL;O;olk;kalkBh vfr’k; mRiknd vlrkr] dkj.k R;k pj.kkÚ;k ek’kkauk [kk| vkf.k vkljk iqjorkr vkf.k Sea grass beds are highly productive for fisheries by providing food and shelter for grazing fish ek’kkaps [kk| vlysY;k ‘ksokG vkf.k vi`”Boa’kh;kal ok<.;klkBhph tkxk vlrs- leqnzh xor ek’kkalkBh Hkj.kiks”k.kkps {ks= Eg.kwu and a place to grow for algae and invertebrates that the fish feed on. Sea grasses are nursery vkf.k O;kikjhf>axs vkf.k ek’kkalkBh ckyx`gkaph Hkwfedk fuHkkorkr- grounds for juveniles of commercial prawns and fishes. leqnzh xorkaP;k ek=sps lafu;a=.k eRL;O;olk;kalkBh egRokph ekfgrh iqjors] ijarq leqnzh xorkaP;k xk|k ;k uSlfxZdjhR;k Monitoring the amount of the sea grasses gives important information for fisheries but sea grass pyLo#ih vlrkr vkf.k dkghaps okf”kZd Mk;cWdps dkyko/kh vlrkr- ;kyk fopkjkr ?;k;yk gos vkf.k lafu;a=.k o”kkZP;k beds are naturally variable and some have annual periods of dieback. This should be considered fofHkUu osGkal ijr ijr dsys tkos- and monitoring should be repeated at different times of the year. ekaVk VksbZaxleqnzh xor xk|kar Dofprp ‘kD; vkgs dkj.k ;krn`”;rk [kwi deh vlrs- ;krrhu i/nrh okijY;k tkÅ ‘kdrkr% Manta towing is rarely possible in sea grass beds as the visibility is too low. Three methods can be used: A. ifgyh thfor lkexzhps fdaok tSoHkkjkps R;kaps uewus dk

67 6.6.8.6 Sea grass monitoring sheet 6.6.8.6 leqnzh xor lafu;a=.k i=d

Date: Time: Place: Location: fnukad: osG: tkxk: Bhdk.k:

Weather: Starting time: End time: gokeku: vkjaHkkpk osG: varkpk osG:

Transect Starting GPS: Transect End GPS: vuqPNsnhr {ks= vkjaHkkpk GPS: vuqPNsnhr {ks= varkpk GPS:

Quadrest Sediment % of sea grass species composition Comments DokMªsLV ¼vuqPNsnhr xkG lkp.ks leqnzh xor iztkrh lajpusph VDdsokjh 'ksjs ¼vU; (meter from (mud/ Sea % of sea Canopy- % % Epi- (presence transect sand/shell) of other {ks=kP;k eqGkiklwu ¼fp[ky@ leqnzh xor leqnzh xor vkoj.k&CysM 'ksokG ,ihO;kIrh izk.;kaPkh grass grass BLade Algae cover ehVj½ okGw@f'kaiY;k½ mifLFkrh@ origin) (Y/N) Coverage height? cover animals/ ¼gks@ukgh½ O;kIrhph maPkh\ maph O;kIrh VDdsokjh height distur- VDdsokjh VDdsokjh vMFkGk½ bance) 0 m 0 eh 5m 5eh 10m 10eh 15m 15eh 20m 20eh 25m 25eh 30m 30eh 35m 35eh 40m 40eh 45m 45eh 50m 50eh

68 6.6.9 Seaweeds 6.6.9 leqnzh ‘ksokGs

Seaweeds are a fascinating and diverse group of organisms living in the earth’s ocean. ‘They leqæh ‘ksokG gs i`FohP;k lkxjkr okLrO; dj.kkjs euksgj vkf.k oSfo/;iw.kZ tho/kkjh leqg vlrkr- rs [kkMh{ks=kr [kMdkauk can be found attached to rocks in the intertidal zones, washed up on the beaches, in giant fpdVysys] leqæ fdukÚ;kl iljysys] ik.;k[kkyhy fo’kky vj.;kr] rlsp lkxjkP;k i`”BHkkxkoj rjaxrkuk vk

Sargassum is the genus of numerous species of brown algae found throughout the world’s vf/kdrj yksd ts dsOgkrjh] ,drj egkjk”Vªkrhy fla/kqnwxZ fdaok jRukfxjh fdukjiV~Vhl fdaok xksO;klleqnzhfdukjh jisVhl tropical and temperate oceans. It is commonly found along the Indian coast wherever there xsys vlrkuk R;kauh lkjxWle iljysys fdukjs uDdhp ikfgys vl.kkj- fla/kqnwxkZr LuksdsZylZ fdaok Ldqck Mk;OglZlkBh gs are sheltered habitats. It is commonly known as seaweed. ,d loZlk/kkj.kn`”; vlrs- ;kps xq.kfo’ks”k Eg.kts csjh&ln`”; Most people who have ever visited, either Sindhudurg or Ratnagiri coast in Maharashtra or Goa or spent any time strolling the beaches have seen Sargassum washed ashore. It is a common sight for snorkelers or scuba divers in Sindhudurg. It is characterised by berry-like pneumatocysts (floats) and thick leaf-like blades that almost resemble a bunch of leafy grapes U;weWVksflLV~l ¼¶yksV~l½ vkf.k tkM ikukP;k&leku CysM~l ts [kksMkauk vlysY;k mPp izek.kkrhy QkVÓkalg toGikl ikus with its highly branched stems. It is attached to the hard substratum with the help of holdfasts. vlysY;k nzk{kkaP;k ?kMklkj[ks fnlrs- rs V.kd lCLVªWe’kh gksYMQkLVP;k lgk¸;kus tksMysys vlrs- lkjxWleojhy ¶yksV~l gs The floats onSargassum are filled mostly with oxygen with some nitrogen and carbon dioxide vf/kdrj vkWfDltuus] rj dkgh izek.kr uk;Vªkstu vkf.k dkcZuMk; vkWDlkbZMP;k mifLFkrhus vkf.k ;keqGsp jksikl rj.k ‘kfDr present and are what give the plant its buoyancy and this fragile plant stands tall in water forming feGrs vkf.k gs uktqd jksiVs ik.kh lkB.;kP;k vj.;k&Lo#ih

Assessment and monitoring eqY;kadu vkf.k lafu;a=.k Hkkjrh; tyk’k;karlkjxWleizdk’kkP;k Hksndrsoj voyacwu ik.kFkGh {ks=kiklwu 10 ehVlZP;k [kksyhi;Zar vk

70

6.6.10 Methods of assessing sea mammals 6.6.10 leqnzh lLruçk.;kaP;k eqY;kadu i/nrh

Common objectives of marine mammal monitoring programmes are to characterise species leqnzh lLruçk.;kaP;k lafu;a=.k dk;ZØekph loZlkekU; mfn~n”VÓs Eg.kts fufgr Hkkxkr iztkrh forj.k vkf.k ?kurk ;kaps distribution and density in a given area, monitor the status of the population, monitor the O;fDrfp=.k dj.ks] tula[;sP;k fLFkrhps] ekuoh xfrfo/kh fdaok tSo’kk=h; çHkkokaps lafu;a=.k] fdaok leqnzh lLrukalkBh impact of anthropogenic activities or biological events, or to examine the spatial and temporal egRokph {ks=kaps fu/kkZj.k dj.;klkBhvodk’kh; vkf.k rdyknw oLrhLFkkukaph rikl.kh dj.;klkBh] tls dh Hkj.kiks”k.k habitat use to identify important areas for marine mammals, such as for feeding or breeding fdaok iztuu {ks=s- grounds. Hkkjrh; tyk’k;kae/khy leqnzh lLrukae/;s lsVWfl,Ul ¼nsoekls] MkWfYQUl vkf.k iksiksZbt½ vkf.k Mwxk¡x Marine mammals in Indian waters includes Cetaceans (Whales, Dolphins and ;srkr- Porpoise) and Dugong. 6.6.10.1 leqnzh lLrukaP;k eqY;kadu vkf.k lafu;a=.kkP;k eqyHkwrrk 6.6.10.1 Basics of mammal assessment and monitoring leqnzh lLraukps fnl.ks rqyukRedrsus nqfeZG vlY;kus] R;kauk FkksMÓk osxGÓk izdkjph okx.kwd fnyh tkrs vkf.k jpukc/n As sightings of marine mammals are comparatively rare, they are treated a little differently and shall collect data through systematic line transect survey following distance sampling js”kh; vuqPNsnhr {ks= losZ{k.kkekxksekx varj uewukdj.k i/nrhauh MsVk xksGk dsyk tkrks] ts.ksd:u flVWfl,Ulph vpwd procedure to estimate the absolute abundances of cetaceans population from visual sighting foiqyrk n`”; lkbZV MsVkus vankftr djrk ;sbZy ¼tksgkulsu vkf.k brj] 2012( fgch vkf.k gWek¡M 1989½ ;kP;k Hkjhl] data (Johansen et. al., 2012; Hiby and Hammond 1989) in addition to that, Genetic, pho- flVWfl,Ulph vuqokaf’kd] Nk;kfp=.kd] Jo.kfo”k;d] vkf.k orZ.kwdfo”k;d ekfgrhgh tgktko:u xksGk dsyh tkÅ tographic, acoustic, and behavioral information of cetaceans can also be collected from the ‘kdrs- vessel. ;k i/nrhr 300 eh ¼fdaok 500 eh½ foLr`r vuqPNsnhr {ks= vlrs ts tgktkP;k dsoG ,dk cktwl fØ;sr Bsoys tkrs The method involves 300 m (or 500 m) wide strip transects operated only on one side the ¼vkd`fr½- js[kka’k n`”Vhus] vuqPNsnhr {ks=s fujh{k.k dkyko/kh EgVY;k tk.kkÚ;k mifoHkkxkae/;s foHkkxyh tkrkr ¼mnk- 2] ship (fig). Longitudinally, the transects are subdivided into so-called observation periods (e.g. 5 fdaok 10 fefuVkaps varjkG½ vkf.k ikfgys tk.ks ¼leqnzh lLru½ ;kauk ;k dkyko/khnjE;ku ,df=r dsys tkrs- leqnzh 2, 5 or 10 minute intervals) and the sightings (marine mammals) are grouped under these lLru dksBs ikfgys xsysr ;kph rek u ckGxrk ¼vuqPNsnhr {ks= iV~VhP;k vkr fdaok ckgsj½] R;kauh lnSo uksan dsyh tkrs- periods. No matter where marine mammals are sighted (inside or outside the transect strip), rFkkfi] lfØ; losZ{k.kknjE;ku tgktkP;k iq

meters to marine mammals are always recorded (Johansen et. al., 2012) 2 fefuVkapk fujh{k.k dkG vk’kqfp= {ks= vk’kqfp= {ks= ¼lq#okrhpk osG 1542us uDdh½ ikjifjPNsnukgwu ykac

varj xV 4 300 ehtgktkP;k ,dk cktwl varj xV 3 vuqPNsnhr iV~Vh

varj xV 2 varj xV 1 tgktkpk ekxZ ikjifjPNsnukgwu ykac UTC osG vuqPNsnhr lq#okr vuqPNsnhr Fkkc.ks

Schematic representation of the survey methodology. In the illustrated case observation losZ{k.k dk;Zi/nrhph ;kstukRed js[kho izLrqrh- lksnkgj.k izLrqrh dsysY;k ekeY;kr fujh{k.k dkyko/kh 2 fefuVs ykachps periods are 2 minutes long and snapshot counts are made every minute (two snapshots per vkgsr vkf.k Nk;kfp=s x.krh izR;sd fefuVkl dsyh xsyh ¼nksu Nk;kfp=s izfr fujh{k.k dkyko/kh½- observation period). losZ{k.k dk;Zi/nrhph ;kstukRed js[kho izLrqrh- lksnkgj.k izLrqrh dsysY;k ekeY;kr fujh{k.k dkyko/kh 2 fefuVs ykachps Schematic representation of the survey methodology. In the illustrated case observation vkgsr vkf.k Nk;kfp=s x.krh izR;sd fefuVkl dsyh xsyh ¼nksu Nk;kfp=s izfr fujh{k.k dkyko/kh½- periods are 2 minutes long and snapshot counts are made every minute (two snapshots per observation period). 6.6.10.2 losZ{k.k Hkkx?kVd

6.6.10.2 Survey components leqnzh lLrukaP;k losZ{k.kkps rhu Hkkx?kVd vlrkr% • vuqPNsnhr{ks=kaph la[;k A marine mammal survey has three components: • fujh{k.k dkyko/khaph la[;k • Number of transects • fujh{k.k dkyko/kh fofHkUu nqlÚ;k fBdk.kkae/;sghlaiUu dsyk tkÅ ‘kdrks • Number of observation periods • Observation period can hold a number of different sightings Types of transects dkV{ks=kaps izdkj

Two different transect types are used: one with a strip width of 300 metres (type A), and one with nksu fHkUu vuqPNsnhr{ks= izdkj okijys tkrkr% 300 ehVlZ #anh vlysyh ,d iV~Vh ¼izdkj A½] vkf.k nqljh 500 ehVlZ a strip width of 500 metres (type B). The use of type A as the default transect type is recom- #anh vlysyh iV~Vh ¼izdkj B½- izdkj A pk fMQkWYV vuqPNsnhr{ks= Eg.kwu okij dj.;kph f’kQkjl dsyh tkrs- izdkjB rsOgkp mended. Type B is only to be used if the following conditions are true: the observer is experi- okijkok tsOgk iqkY;kl] pkyw vuqPNsnhr{ks= Fkkacok vkf.k uok izdkj oki:u uos vuqPNsnhr{ks= lq# djk- uksan i=dkaoj type, then stop the current transect and start a new one using the new transect type. Don’t forget vuqPNsnhr{ks=kpk izdkj uksan.ks fol# udk] dkj.k dh O;kIr {ks=kpk vkdkj tk.k.;klkBh rks vR;ko’;d vlrks ¼iV~Vhph #anh½- to note the transect type on the recording sheets as it is essential in terms of knowing the size of the area covered (the strip width). n`”;tux.kuk

Visual census ,sfrgkfld vkf.k leqnzh lLrukaph tux.kuk dj.;kph vtqugh ekud i/nr Eg.kts n`”; losZ{k.k- gs foekukrwu] gksMÓkae/kwu] fdaok fdukj&LVs’kUlgwu] fdaok Dofpr ?kVukar irax] Qqxs fdaok fjeksV fu;af=r IysUl}kjs dsys tkrs- n`”; losZ{k.k lk/kkj.ki.ks The historical and still standard method for taking a census of marine mammals is visual survey- js”kh; vuqPNsnhr{ks=kaP;k lyx dsys tkrs ¼mnk- ekWxZu 1986] ikYdk vkf.k iksYykMZ 1999½- R;klaca/khph iq

73 6.6.11 Coral reef 6.6.11 izokG csV

Coral reefs are among the most diverse and productive commu- izokG csVs gh i`Fohojhy lokZr oSfo/;iw.kZ vkf.k mRiknd lkaiznk;kaiSdh ,d vkgs- nities on Earth. They are found in the warm, clear and shallow rh txHkjkrhy mcnkj] fujHkz vkf.k mFkG lkxjkae/;svk

characterize dominant species assemblages, substrate types and underlying geomorphology and create high-resolution habitat eqY;ekius ;koj ekfgrh iqjorkr maps. (1) casVkaps vkf.k lacaf/kr oLrhLFkkuakps vkjksX; cuo.kkjh vkf.k ns[kjs[k dj.kkjh izokG csVs vkf.k iztkrh ;kaph fLFkrh( The assessments provide information on (2) LFkkuh; vkf.k {ks=h; tks[keh] çHkko] vkf.k laHkkO; oknfookn j.kuhrh% vkf.k (1) the status of coral reefs and species that create and help maintain the health of the reefs and associated habitats; (3) ekxhy vMFkGîkaiklwu iwoZor gks.;kps uewus- izokG csVs mixzg izfrek] oLrhLFkkus udk’ks vkf.k vU; HkkSfrd vkf.k leqnz’kkL=fo”k;d thvk;,l MsVk ikrGÓkaekQZr (2) local and regional threats, causes, impacts, and potential miti- ft;ksxzkQhd bUQkseZs’ku flLVe ¼thvk;,l½ MsVkcsle/ks ladfyr dsyh tkrkr] gation strategies; and T;kus ,d Hkwl–’k eki O;oLFkk fuekZ.k gksrs th leqnzh vodk’kh; fu;kstuklkBh (3) patterns of recovery from past disturbances. Coral reef data mi;qDr vlrs- are compiled into a geographic information system (GIS) da- tabase with satellite imagery, habitat maps and other physical and oceanographic GIS data layers, producing a landscape- scale tool useful for marine spatial planning. 6.6.11.2: Rapid assessment protocol: 6.6.11.2: tyn eqY;akdu f’k”Vkpkj%

The rapid assessment protocol can be adopted from Global Coral Reef Expedition protocol and tyn eqY;kadu f’k”Vkpkj] vfrjhDr ekinaMkalg Xykscy dksjy jhQ ,DlfiMh’ku çksVksd‚y vkf.kizokG csVs çksVksd‚yps IUCN the IUCN Resilience Assessment of Coral Reefs protocol, with additional parameters. Quantitative yofpdrk eqY;kadu ;katdMwu vafxdkjys tkÅ ‘kdrs- ifj.kkeokpd MsVk ;kaoj feGoyk tkÅ ‘kdrks data can be obtained on the • izokG leqnk;

75 be located on the images using GIS technology; however, remote techniques should always be izdkj thvk;,l ra=Kkuk}kjs izfrekaoj ‘kks/kyh tkÅ ‘kdrkr( rFkkfi] fjeksV ra=Kku lnSo fQYM losZ{k.k ra=Kkuklg la;ksxkus used in combination with field survey techniques to ‘ground truth’ the data. MsVkP;k *Hkwfe&lR;rslkBh* okijys tkos-

The most cost-effective satellite sensors for habitat mapping are Landsat TM for areas greater oLrhLFkkus izfrfp=.k dj.;klkBh lokZr fdQk;r’khj mixzg lsallZ Eg.kts dqBY;kgh fn’ksl 60 fdehis{kk eksBÓk than 60 km in any direction and SPOT XS for areas less than 60 km in any direction. Colour aerial {ks=kalkBhy¡MlWV TM rlsp dqBY;kgh fn’ksl 60 fdehis{kk ygku {ks=kalkBh SPOT X gs vkgs- jaxhr gokbZ Nk;kfp=.k photography can resolve slightly more detailed ecological information on reef habitats but, for csVakojhy oLrhLFkkukaph FkksMh vf/kd ri’khyokj ifjlaLFkh; ekfgrh nk[kow ‘kdrs- ijarq] loZlk/kkj.k gsrwP;k izfrfp=.kklkBh] general purpose mapping, satellite imagery is more effective because it has slightly more accu- mixzg izfrek lokZr [kpkZl&lktsls vkgs dkj.k dh R;kr FkksMh vf/kd vpwdrk vlrs] LoLr iMrs vkf.k deh deZpkjh osG racy, is cheaper and uses less staff time. Low altitude, infra-red aerial photography can be used to okijrs- deh mapho:u dsysyh] bUÝk&jsM Nk;kfp=.k mFkG ¼<1 eh [kksy½ csVkP;k i`”BHkkxkoj ftfor&izokGkaP;k O;kIrhpk estimate live-coral cover over shallow (<1 m deep) reef flats, however, this is only appropriate for vankt yko.;klkBh okijys tkÅ ‘kdrs] rFkkfi] deh mapheqGsizR;sd Nk;kfp=kr e;kZfnr Hkkx O;kiyk tkr vlY;kus gs dsoG small areas as the low altitude restricts the area covered in each photograph. ygku {ks=kalkBh ;Fkk;ksX; vlrs- The most accurate, but expensive, means of making detailed reef habitat maps is using airborne multi-spectral instruments such as CASI (Compact Airborne Spectrographic Imager). In the Ca- csVkaojhy oLrhLFkkukapk ri’khyokj udk’kk cuo.;klkBh gosr vlysyh cgq&vodk’kh; ;a=stls dh CASI ¼dk¡iWDV ,;jcksuZ ribbean, CASI was used to map assemblages of benthic species and substrata with an accuracy LisDVªkxzkQhd bestj½ lokZr vpwd] i.k egkx i;kZ; vkgsr- dWjsfc;u csVkae/;s] CASI pk okijfuryLFk iztkrhaP;k tekokps of >80%. vkf.k ikykikpksGÓkps >80% vpwdrsusizfrfp=.k dj.;klkBh dsyk xsyk-

The next major step after mapping is site selection for monitoring. We describe two broad-scale izfrpf=.kkuarj iq

Which mapping and site selection method should you choose? vki.k dqBY;k izfrfp=.k vkf.k lkbZV fuoM i/nrhph fuoM djkoh\

Broad scale Choose this method for mapping, site selection and to cover a large area quickly. foLr`r eki izfrfp=.k] lkbZV fuoMhlkBh rlsp foLr`r {ks=kl >ViV O;ki.;klkBh gh i/nr fuoMk- Random swim Useful to determine site suitability but limited to the areas surveyed; large areas ;kn`fPNd rj.k lkbZV ;Fkk;ksX;rk fu/kkZj.kklkBh mi;qDr] i.k dsoG losZ{k.k dsysY;k {ks=kiqjrh e;kZfnr( csVkaph fo'kky of reef are not covered; greater depths can be examined if scuba used. {ks=s O;kiyh tkr ukghr( Ldqckpk okij dsY;kl vf/kd [kksyhaps ijh{k.k djrk ;sbZy- Manta tow or video Useful to determine site suitability; can cover large areas quickly; limited to shal- ekaVk Vks ¼ogu½ fdaok fOgMh;ks lkbZV ;Fkk;ksX;rk fu/kkZj.kklkBh mi;qDr] foLr`r {ks=s >ViV O;kirk ;srkr(gokuGpk okij dsY;kl towed diver low depths if done on snorkel; scuba can be used for deep reefs. Vks ¼ogu½OM Mk;Ogj mFkG [kksyhal e;kZfnr( [kksy fHkRrhdkalkBh Ldqckpk okij dsyk tkÅ 'kdrks- Manta tow ekaVkVks (ogu) Programmes that use this method: ;k i/nrhl okijr vlysys dk;ZØe% • Australian Institute of Marine Science Long-term Monitoring Program (AIMS LTMP); • vkWLVªsfy;u bfULVhVÓwV vkWQ ejhu lk;Ul nh?kZ&dkyhu lafu;a=.k dk;ZØe ¼AIMS LTMP½( • GCRMN. • GCRMN. Description of method i/nrhps fooj.k This involves towing a snorkeller behind a boat at a constant speed with regular stops to record data (e.g. every 2 minutes). This is the best method to obtain a general description of large reef ;kr gokuGyk gksMhP;k ekxs ,dkp osxkus vks

76 Information obtained ekfgrh feG.ks

ekaVk Vks losZ{k.k MsVk i=d uewuk fBdk.k% Rkkjh[k% fujh{k.kdrkZ; osG% vU; xq.k/kesZ vks

eqBh

MsVk if=dk

ekaVk cksMZ

ekaVk Vks ra=

For site selection, the diver can only determine where there is continuous reef, and can provide lkbZV fuoMhlkBh] Mk;Ogj dsoG dksBs lyx fHkRrhdk vkgs ;kps fu/kkZj.k d: ‘kdrks] vkf.k V.kd izokG O;kIrhpk vankt iqjow an estimate of hard coral cover (collected as a % hard coral cover); see figure below. ‘kdrks ¼V.kd izokG O;kIrhph VDdsokjh Eg.kwu xksGk dj.ks½( [kkyhy vkd`fr igk-

Manta tows can be used to monitor changes in coral cover, determine abundance of impacts, ekaVk Vks ¼ogu½ izokG O;kIrhe/khy cnykaps lafu;a=.k dj.;klkBh] çHkkokaP;k foiqyrsps fu/kkZj.k tls dh fojatu vkf.k O;k/kh] such as bleaching and disease, count giant clams or COTS. Observers must be trained to esti- tk;aV DyWEl x.kuk fdaok COTS ;kalkBh okijys tkÅ ‘kdrs- fujh{k.kdrsZ ;k foiqyrk Js.khaP;k fu/kkZj.kklkBh izf’kf{kr dsys mate these abundance categories to ensure that estimations are consistent among observers. tk.ks vko’;d vkgs] ts.ksd:u fujh{k.kdR;kZanjE;ku fu/kkZj.krk v[kaM vkgs ;kph [kk=h gksbZy-

Manta tows can also provide broad scale information on benthic communities especially specific ekaVk Vks ¼ogu½ furyLFk leqnk;kaoj foLr`r ekikojhy ekfgrh iqjow ‘kdrkr] fo’ks”kr% fof’k”B ifj.kke] tls dh fojatu fdaok impacts, such as bleaching or destructive fishing practices; and key macro-invertebrates, such as fo/oald eklsekjh lo;h( vkf.k egRokP;k eWØks&vi`”Boa’kh;] tls dh COTS] Mk;Msek fdaok tk;aV DyWEl- COTS, Diadema or giant clams. lk/kkj.ki.ks 50&60 Vks ¼ogu½ COTS foiqyrsrhy 20 VDds cny ‘kks/k.;klkBh iqjs’kh mtkZ iqjow ‘kdrkr- ekaVk Vks ¼ogu½ Usually 50-60 tows provide sufficient power to detect a 20% change in COTS abundance. Manta foiqyrsl deh ys[k.;kps laHko vlw ‘kdrs] i.k Ldqck losZ{k.kkpk okij d:u vkf/kd vpwd fudky dk<.;klkBh MsVk tow tend to underestimate abundance, but data can easily be calibrated using scuba surveys xq.koRrsph lgt iMrkG.kh gksÅ ‘kdrs- furyLFk leqnk;kaoj foLr`r MsVk feGo.;klkBh vki.k [kkyhy ekinaMkaps eqY;ekiu to produce more accurate results. Scuba benthic monitoring and manta tow techniques should d: ‘kdrk% ideally be combined. To obtain broad data on benthic communities you can assess the following parameters: • V.kd vkf.k e`nw izokG VDdsokjh(

• Percent hard and soft coral; • e`r izokG] nxMekrh vkf.k okGw VDdsokjh( • Percent dead coral, rubble and sand;

77 O;kIrh VDdsokjhpk vankt yko.ks Equipment required vko’;d midj.ks • 17 eh ykachph o 10 ehehtkMhph vks<.;klkBhpk nksj( • 17 m long, 10 mm diameter towing rope; • gksMhP;k ekxs vMdo.;klkBh nksjkpk ljatke( • Rope harness to attach to the rear of the boat; • tksMysyk ljatke vkf.k layXu isfUlylg ekaVk cksMZ( • Manta board with fitted harness and attached pencil; • losZ{k.k dj.;kP;k csVkpk gokbZ udk’kk( • Aerial map of the reef to be surveyed; • rjaxn`”; [kw.k fpUgd ¼tj csV losZ{k.k ,dkp nekr dsys ukgh rj vki.k dqBs Fkkacykr ;kph [kw.k dj.;klkBh½( • Marker buoy (to mark where you stopped if the reef survey is not done at one time); • izR;sd losZ{k.k osGekiuklkBh tyjks/kd ?kMÓkG- tj R;kr dkÅaVMkÅu lqfo/kk vlY;kl mi;qDr Bjsy- • Waterproof watch for timing each survey. It is useful if this has a countdown function. fQYM O;Drh Field personnel • 1 gksMh pkyd@i`”BHkkx fujh{k.kdrkZ tks gksMhl ,dleku osxkl Bso.;kl izf’kf{kr vlsy( • 1 boat driver/surface watch who is trained to maintain the boat at a constant speed; • 2 izf’kf{kr fujh{k.kdrsZ ¼vkilkr cnyw ‘kdr vl.kkjs cksV pkyd vkf.k fujh{k.kdrsZ½ • 2 trained observers (boat drivers and observers can be interchangeable). iz;ksx’kkGk O;Drh Lab personnel • MsVk uksan] fo’ys”k.k] fu”d”kZ.k vkf.k dGo.ks- • Data entry, analysis, interpretation and reporting. loZlk/kkj.k dk;Zi)rh General procedures • laiw.kZ csV losZ{k.kkl izR;sdh 2 fefuVkaP;k dkGkr foHkkxk- izR;sd Vks ¼ogu½ P;k varkl] gksMhl Fkkacok] Eg.kts • Divide the whole reef survey into 2 minute surveys. At the end of each tow, stop the boat to fujh{k.kdrkZ ekaVk cksMZojhy MsVk ‘khVoj MsVk uksan d: ‘kdsy- gksMh pkyd gokbZ Nk;kfp=koj Vks ¼ogu½ Øekadkph [kw.k allow the observer to record the data on the data sheet on the manta board. The boat driver djsy rlsp gksMhps useds fBdk.k n’kZosy- i/nr iqUgk dsyh tkbZy tsOgk fujh{k.kdrkZ *xks ¼tk½* vlk ladsr nsbZy tksoj marks the tow number and position of the boat on the aerial photograph. The process is laiw.kZ csV ijhlj fdaok nh?kZ ykach losZf{kr gksr ukgh( repeated when the observer signals ‘go’ until the whole reef perimeter or a long length is • Vks ¼ogu½ ekxZ csVkP;k vxzk’kh lekarj( ts.ksd:u vf/kdrj mrkj n`”; vlkosr Eg.kwu 5&10 eh [kksyhoj vlrks( surveyed; • The tow path is parallel to the reef crest over a 5-10 m depth so that most of the slope is vis- ible;

78 • The tow speed is a constant 3-5 km per hour (1.5 knots). Factors such as currents and sea • Vks ¼ogu½ dj.;kph xrh ,dleku rk’kh 3&5 fdeh ¼1-5 knots½ brdk vlkok- izokg vkf.k leqnz fLFkrhlkj[;k conditions may require a change in tow speed; ?kVdkauqlkj Vks xfre/;s cny dj.;kph xjt Hkklw ‘kdrs( • The observer scans a width of 10-12 m depending upon the visibility, reef gradient, distance • fujh{kd l–’;rk] çokyh mrkj] rGkiklwu varj vkf.k forj.k vkf.k thokaph ?kurk ;kaP;kvuqlkj 10&12 ehVlZP;k ,dk from the bottom and the distribution and density of the organisms being counted; #anhps LdWu djrks- • The survey direction is determined by factors such as the wind, currents and the angle of the • losZ{k.k fn’ksps fu/kkZj.k okjk] ik.kh izokg vkf.k lw;kZpk dksu gs ?kVd djrkr- losZ{k.k fn’kk ekudhd`r vlkoh ts.ksd:u sun. The survey direction should be standardized to avoid the need to correct data for re- iqu%losZ{k.kklkBh MsVk lq/kkj dj.;kph xjt VkGyh tkbZy- surveys. vf/kykHk Advantages • deh osGkr eksBs {ks= O;kiys tkrs] T;keqGs tula[;k cny fdaok uSfefRrd vMFkGs ¼mnk- Mk;ukekbV oki:u eklsekjh] COTS] fojatu] O;k/kh vkf.k oknGakeqGs ukl/kwl½ utjsvkM gks.;kP;k ‘kD;rk deh gksrkr( • A large area is covered in a short time, which reduces the chance of overlooking population changes or occasional disturbances (e.g. dynamite fishing, COTS, bleaching, disease and • okijkl lksisvls iq

• Abundance estimates; these should be calibrated among observers gh i/nr okij.kkjs dk;ZØe%

Random swim • lkaiznk; lafu;a=.k dk;ZØe] lafu;a=.kklkBh dnkfpr ;kn`fPNd rj.kkpk okij d: ‘kdrkr(

Programmes that use this method: • Community monitoring programmes may use the random swim for monitoring;

79 • Management or research monitoring programmes may use the random swim for site selec- • O;oLFkkiu fdaok la’kks/ku lafua;=.k dk;ZØe lkbZV fuoMhlkBh ;kn`fPNd rj.k i/nrhpk okij d: ‘kdrkr- tion. i/nrhps fooj.k% Method description: lkbZV fuOkMhe/;s gokuG fdaok Ldqck Mk;Ogj lkFkhnkj tksMh lafu;a=.kklkBh vuq#i lkbZV~lph fuoM djrkr] mnk- Site selection involves a snorkel or scuba diver buddy pair selecting suitable sites for monitoring dkV{ks=kalkBh iqjs’kh ykxksikB csVs vkgsr dk gs rikl.ks- e.g. checking if there is sufficient continuous reef for transects. fofo/k çokG csVkaP;k ekinaMkP;k lafujh{k.kklkBh ;k–fPNd iksg.;kpk ns[khy okij dsyk tkÅ ‘kdrks- Random swims can also be used for monitoring various coral reef parameters. feGoysyh ekfgrh% Information obtained: fofo/k izokG csVs py?kVdkaP;kv/kZ&ek=kiw.kZ x.krhlg lkbZVps loZlk/kkj.k fooj.k- General description of the site with semi-quantitative counts of various coral reef variables. vko’;d lk/kulkezxh% dqByhgh fo’ks”k lk/kulkexzh ukgh- Equipment required: No special equipment. {ks=h; O;Drh Field personnel: • 1 gksMh pkyd@i`”BHkkx fujh{k.kdrkZ( • 1 boat driver/surface watch; • 2 izf’kf{kr fujh{k.kdrsZ- • 2 trained observers. iz;ksx’kkGk O;Drh% Lab personnel: • MsVk fo’ys”k.k] fu”d”kZ.k vkf.k dGo.ks- • Data analysis, interpretation and reporting. loZlk/kkj.kdk;Zi/nrh% General procedures: • fuoMysY;k lafu;a=.k i/nrhaP;k vuqdwyrk fu/kkZj.kklkBh csVkP;k loZlk/kkj.k {ks=kHkksorh iksgk] fdaok lafu;a=.kknjE;ku • Swim around the general reef area to determine suitability for monitoring methods selected, dqBY;k ekinaMkaph x.krh djkoh gs Bjo.;klkBh iztkrhaph ;knh cuok- or make a species list to decide which parameters to count during monitoring. Qk;ns% Advantages: • lkbZV vuqdwyrk fu/kkZj.kklkBh mi;qDr( • Useful to determine site suitability; • okijkr ?;k;P;k lafu;a=.k i/nrhaP;k izdkjkl Bjo.;kl mi;qDr mnk- lyx csV {ks=kalkBh vuqPNsnhr{ks=s mRre dke • Useful to decide on the type of monitoring methods to use e.g. transects work well for con- djrkr] tsOgk dh fBxGÓk Lo#ih csVkalkBh PkkSdV{ks= vf/kd vuqdwy vkgsr( rlsp ri’khykph vko’;d ikrGh mnk- tinuous reef areas, whereas quadrats are more suitable for patch reefs; and the level of detail iztkrh fdaok iksVtkrh ikrGh- required e.g. species or genus level. lhek% Limitations: • O;kIr gks.kkjk Hkkx ftFki;Zar Mk;OglZ ikgw ‘kdrkr frFkoj e;kZfnr curks] vkf.k laHkor% rs loksZRre fBdk.k vlw ‘kdr • The area covered is limited to where the divers look and this may not be the best location. We ukgh- lkbZV fuoMhlkBh vkEgh ekaVk VksP;k okijkph] R;kuarj vf/kd ri’khyklkBh vkf.k iztkrh ;knÓk cuo.;klkBh recommend using manta tow to select sites, and then random swims for more detail and to ;kn`fPNd rj.k okij.;kph f’kQkjl djrks- make species lists. vko’;d izf’k{k.k% Training required: lkbZV fuoM Site selection • fuoM dj.;ktksX;k lkbZVP;k izdkjkps Kku vkf.k ‘kD; vlw ‘kd.kkÚ;k y{; lafu;a=.k i/nrh. • Knowledge of the type of site to select and the possible target monitoring methods. lafu;a=.k dk;ZØeklkBh ri’khykph ikrGh fu/kkZfjr dj.;klkBh To determine level of detail for monitoring programme • eqyHkwr izokG csV vksG[kw ‘kd.kkjs fo’ks”kK( ts.ksd:u dqBY;k xks”Vh ekstkO;k gs Bjfork ;sbZy. • Basic coral reef identification expertise in order to decide what things to count.

80 6.6.11.4 Ecological and socio-economic monitoring of coral reefs 6.6.11.4 izokG csVkaps ifjfLFkrhd vkf.k lekt&vFkZ’kkL=h; lafu;a=.k

There are two main types of monitoring: lafu;a=.kkps nksu eq[; izdkj vkgsr% • Ecological monitoring; and • i;kZoj.kh; lafu;a=.k • Socio-economic monitoring. • lekt&vFkZ’kkL=h; lafu;a=.k-

Ecological monitoring includes the natural environment (biological and physical) e.g. the fish, i;kZoj.kh; lafu;a=.kkr uSlfxZd i;kZoj.k ¼tho’kkL=h; vkf.k HkkSfrd½ mnk- ekls] izokG fdaok xkG lkp.ks- coral or sedimentation. i;kZoj.kh; vkf.k lekt&vFkZ’kkL=h; ekinaMs ;kaP;kr vusdnk toGhd vk

81 nities near coral reefs. Socio-economic data can help mangers determine which stakeholder and Lkekt&vFkZ’kkL=h; MsVk izca/kdkal dks.krs lacaf/kr vkf.k lkaiznk; ?kVd ;’kLoh O;oLFkkikpk vk/kkj cuw ‘kdrkr ;kps fu/kkZj.k community attributes provide the basis for successful management. dj.;kl enr d: ‘kdrks-

The most frequently used socio-economic parameters include: lokZr okjaokj okijY;k tk.kkÚ;k Lkekt&vFkZ’kkL=h; ekinaMkr lekfo”V vlrkr%

• Community populations, employment levels and incomes; • lkeqnkf;d tula[;k] fu;qDrh Lrj vkf.k feGdrh( • Proportion of fishers, and where and how they fish; • dksGh yksd] rlsp rs dksBs vkf.k dls eklsekjh djrhy ;kps izek.k( • Catch and price statistics for reef fisheries; • csVs eRL;O;olk;kP;k idM.;kP;k vkf.k nj vkdkj.;kP;k lkaf[;dh( • Decision making structures in communities; • leqnk;krhy fu.kZ; ?ks.;kP;k lajpuk( • Community perceptions of reef management; • çokyh O;oLFkkiukP;k leqnk;krhy ladYiuk( • Tourist perceptions of the value of MPAs and willingness to pay for management etc. • i;ZVdkaP;k MPAs P;k eqY;kaP;k ladYiuk vkf.k vkf.k O;oLFkkiuklkBh vnk dj.;klkBh LosPNkbz-

What type of monitoring? d’kk izdkjps lafu;a=.k\

Your choice of monitoring programme will depend on a number of factors. Our aim is to guide lafu;a=.k dk;ZØekph vkiyh fuoM dkgh ?kVdkaoj voyacwu vlsy- vkeps /;s; vkiY;k iq

• What information do you need to know? Is your question general or specific? • vkiY;kyk dqByh ekfgrh tk.kwu ?;k;ph vkgs\ vkiyk iz’u loZlk/kkj.k vkgs dh fof’k”B\ • What do you need to monitor? • vkiY;kyk dk; lafu;a=.k djk;yk gos\ • What resources do you have available? • vkiY;ktoGdks.krh lk/kulkexzh miyC/k vkgs\ • What scale of monitoring programme do you want? • vkiY;kyk dks.kR;k ekikpk lafu;a=.k dk;ZØe gok vkgs\ • What types of reef do you have in the area? • Hkkxke/;s vkiY;ktoG dks.kR;k izdkjph çokyh vkgsr? • What methods should you use? • vki.k dks.kR;k i/nrh okijkO;k\ • How often should you monitor? • fdrh okjaokjrsus vki.k lafu;a=.k djk;yk gos\ • Quality control and training? • xq.koRrk fu;a=.k vkf.k izf’k{k.k\ • Data handling and communicating results • MsVk gkrkG.kh vkf.k fudky lapkj.k • The need to involve the public • tursl lkehy dj.;kph xjt • What information do you need to know? What is your question? • rqEgkyk dks.krh ekfgrh tk.kwu ?;ko;kph vkgs\rqepk iz’u dk; vkgs\

The information you need to manage your reef will determine which monitoring protocols you use. vkiys csV O;oLFkkfir dj.;klkBh vkiY;kyk goh vlysyh ekfgrh]vki.k okijk;P;k lafu;a=.k f’k”Vkpkjkps fu/kkZj.k djsy- Threats to coral reefs can be categorized as human, natural or climate-related, although some izokG csVkal vl.kkjs /kksds ekuoh] uSlfxZd fdaok okrkoj.k&laca/kh vls Js.khd`r dsys tkÅ ‘kdrkr] tjh dkgh uSlfxZd iz?kkr natural impacts may be exacerbated by human impacts. For example, global climate change may ekuoh çHkkoka}kjs vtqu ?kkrdi.kkr cnyys tkÅ ‘kdrkr- mnkgj.kkFkZ] tkxfrd okrkoj.k cny izokG fojatukph rhozrk vkf.k increase the severity and frequency of coral bleaching, while COTS outbreaks may be influenced okjaokjrk ok

82 The type of reef will affect the type of monitoring method you select due to the accessibility and csVkpk izdkj vki.k fuoMysY;k lafu;a=.k i/nrhl lqxerk vkf.k oLrhLFkku izdkjkaeqGs izHkkfor djsy- habitat types. • lqxerk% deh lqxe vlysY;kP;k rqyusr lqxe csVkaps vf/kd okjaokj lafu;a=.k djkos vls vkiY;kyk okVr vlsy- i/nrh • Accessibility: You may wish to monitor accessible reefs more frequently than less accessible T;kauk okjaokj lkbZV HksVhaph vko’;drk ykxr vlrs] mnk- xkG lkp.;kps fiatjs fdaok izokG Hkjrh IysV~l] ;k lgt ones. Methods that require frequent site visits, e.g. to sedimentation traps or coral recruit- lqxerk dj.;kl LoLr iMrkr- ment plates, are cheaper to do at accessible sites. • oLrhLFkku izdkj% vkiY;kik’kh fBxGLo#ih fdaok lyx csVs vkgsr dk\ ykac vuqPNsnhr{ks=s dnkfpr fBxGLo#ih • Habitat type: Do you have patch reefs or continuous reefs? Long transects may not be suit- csVkalkBh vuqdwy ulrhy] i.k PkkSdV{ks= fdaok LFkk;h eRL;x.kuk okijyh tkÅ ‘kdrs- lyx csV vf/kdrj uewusdj.k able for patch reefs, but quadrats or a stationary fish census can be used . A continuous reef i/narhlkaBh vuq#i vlw ‘kdrs] tls dh vuqPNsnhr{ks=s] T;kyk oxZ ehVjkP;k ngkP;k iVhr tkxk ykxrs- is better suited to most sampling methods, such as transects, which require tens of square metres of area. leqæfdukÚ;kps [kMd [kkjQqVh csVkapk rG

yxwu

csVkps f’k[kj

rGf’kyk

What are the main ecological monitoring categories? izeq[k ifjfLFkrhdh lafu;a=.k Js.kh dks.kR;k\ 1. Physical parameters; 1. HkkSfrd ekinaMs: 2. Water temperature, Salinity, pH, Turbidity, Heavy metals, K, Na, etc., 2. ik.;kps rkieku] {kkj;qDrrk] pH] xaxs] ykWCLVlZ] f’kaiY;k b-, • Mangroves • Sea turtles, Sea snakes • [kkjQqVh • ekls • Benthic communities (living and • Costal and Oceanic Birds • furyLFk lkaiznk; ¼ftfor o xSj&ftfor • leqnzh dklos] leqnzh liZ non-living components); • Sea mammals ?kVd½( • fdukjiV~Vhyxrps rlsp leqnzh i{kh • Invertebrates; • vi`”Boa’kh;: • leqnh lLru

What methods should you use? vki.k dqByh i/nr okijk;yk goh\

Many methods have been developed to monitor the different reef components. Several major fofo/k csVkaP;k ?kVdkaps lafu;a=.k dj.;klkBh fofo/k i/nrh fodflr dj.;kr vkY;k vkgsr- dkgh izeq[k izokG csV lafu;a=.k coral reef monitoring programmes have refined and integrated protocols and we recommend dk;ZØekauh f’k”Vkpkjkaukifj’kq/n vkf.k ,df=r dsys vkgs vkf.k vkEgh vkiY;kyk vkiys dk;ZØe fodflr dj.;klkBh ekud using the standard methods to develop your programme. This will enable comparisons with data i/nrhapk okij dj.;kph f’kQkjl djrks- ;kus vkiY;k iz{ks=kr nqlÚ;k lafu;a=d la?kkauh xksGk dsysY;k MsVkph rqyuk dj.;kl collected by other monitoring teams in your region. l{kerk feGsy-

Because we cannot measure everything on a coral reef, we must measure a small part. The part izokG csVkoj vki.k loZdkgh ekiw ‘kdr ‘kdr ulY;keqGs] vki.k dsoG ,d ygku Hkkx eki.ks vko’;d vkgs-ekiu dsys tkr vlysY;k of the coral reef that is measured is called a sample. To measure a part of the environment is ygku Hkkxkl l¡iy vls Eg.krkr- i;kZoj.kkP;k ,dk Hkkxkl eki.;kl l¡ifyax vls Eg.krkr- osGks osGh l¡ifyax djr jkg.;kl called sampling. To repeat sampling through time is called monitoring. A sample is intended to lafu;a=.k vls Eg.krkr- l¡iy laiw.kZ izokG csVkapk izfrfu/kh Eg.kwu ;ksftr vlrs- be representative of the whole coral reef. i/nr Eg.kts ekfgrh d’kk izdkjs xksGk dsyh xsyh ;kpsfooj.k vkgs] mnk- js”kk fdaok fcanw vkarjNsn fdaok dkV{ks=kph ekaM.kh d’kh djkoh- The method is the description of how the information is collected, e.g. line or point intercept f’k”Vkpkj Eg.kts l¡ifyax i/nrhps eki vkf.k vkdkjmnk- vuqPNsnhr{ks= ykach vkf.k Øekad] osGc/n rj.kkpk dkyko/khfdaok DokMªWV eki- transect or how to lay the transect. The protocol is the size and shape of the sampling method e.g. transect length and number, duration of a timed swim or quadrat size.

83 foLr`r ekikps lafu;a=.k ekaVk Vks

csV lry

csV mrkj

MPA dkV{ks=s dkV{ks=s lhek

e/;e ekikps lafu;a=.k

deh ekikps lafu;a=.k csV rG csV lry

dkV{ks=s DokMªWV izokG HkjrhP;k VkbZYl

An illustration of the three scales of monitoring: broad-scale covering large areas at lower resolution, e.g. with a lafu;a=.kkP;k rhu ekikaps lksnkgj.k Li”Vhdj.k% deh n`”;rsr foLr`r&ekikps lafu;a=.k] mnk- ekaVk Vks oki#u( mPp i`FkDdj.kkr manta tow; medium-scale for higher resolution at medium scales e.g. line transects; and fine-scale for gathering high e/;&ekikpslafu;a=.k mnk- js”kh; vuqPNsnhr{ks=s] vkf.k ygku ekikps lafu;a=.k mPp i`FkDdj.kkpk MsVk xksGk dj.;klkBh- resolution data at small scales.

The first consideration: what type of reef habitat do you want to monitor? If you want to compare izFke fopkjk/khurk% vkiY;kyk dqBY;k izdkjps csV oLrhLFkku lafu;af=r djk;ps vkgs\ tj vkiY;kyk lafu;a=.k lkbZV~lph monitoring sites, they must be of the same habitat type. Coral reef habitats change with depth rqyuk djk;ph vlY;kl] R;k nksUgh ,dkp oLrhLFkkukaP;k izdkjkP;k vl.ks vko’;d vkgs- izokG csVkaojhy oLrhLFkkus csVko- and position on the reef e.g. front reefs, back reefs and lagoon reefs are distinct habitats. Many jhy [kksyh vkf.k fLFkrhuqlkj cnyrkr mnk- leksjhy csVs] ekxhy csVs vkf.k [kkÚ;k ik.;krhy csVs gh osxGh oLrhLFkkus vkgsr- scientists select a particular depth at the front reef for their monitoring sites. The front reef is often fdR;sd ‘kkL=KR;kaP;k lafu;a=.k lkbZV~ldfjrk leksjhy csVkl ,d fof’k”B [kksyh fuOkMrkr- leksjhy csV gs usgeh lafu;a=.kkl easier to monitor because it is often more continuous than back reefs, which tend to be patchy. lksis vlrs] dkj.k rs cÚ;kpnk fBxGLo#ih vl.;kPkk dy vl.kkÚ;k ekxhy csVkais{kk vf/kd fujarj vlrs- vf/kdrj izokG Most coral growth occurs on the front reef. However, front reefs may be difficult to get to due to ok< gh leksjhy csVkoj gksrs- rFkkfi] leksjhy csVs feGo.ks [kjkc gokekukeqGs dBh.k vlw ‘kdrs- Eg.kwup] vki.k cktqps fdaok rough weather. Therefore, you may select the side or back reef. It is usually necessary to conduct ekxhy csV fuoMw ‘kdrk- foLr`r losZ{k.k dj.ks gs lk/kkj.ki.ks vfuok;Z vlrs] mnk- ekaVk Vks vkf.k dkgh Hkw&lR;kiu losZ{k.ks a broad survey, e.g. a manta tow and some ground truth surveys (exploratory dives) to ensure that ¼’kks/kd Lo#ikP;k cqMÓk½ ts.ksd:u fuoMysyh lkbZV rqyukRed oLrhLFkkukae/;s vkgs ;kph [kk=h gksbZy- the selected sites are in a comparable habitat. vki.k vkiY;k lkbZV~l d’kk fuoMky\ How do you select your sites? vki.k fuoMysY;k lkbZV~l vlk;yk gO;k% The sites you choose should be: • LokjL; vlysY;k {ks=kP;k izkfrfuf/kd( • Representative of the area of interest; • fRkp oLrhLFkkus vlysY;k] ts.ksd:u fofo/k lkbZV~l osGsP;k ek/;ekus rqyuk dsY;k tkO;k- • Contain the same habitat so that the different sites can be compared through time. lafu;a=.k dk;ZØe jpusr lkbZV fuoM ,d egÙokpsikÅy vkgs vkf.k vkiY;k dk;ZØekP;k mfn~n”Vkaoj fuHkZj vlsy- mnk- tj Site selection is a critical step in designing a monitoring programme and will depend upon the mfn~n”VÓ ek’kkaph foiqyrk MPA P;k vkr ckgsj vlysY;kis{kk vf/kd vl.;kps fu/kkZj.k dj.;kps vlY;kl] objectives of your programme e.g. if the objective is to determine if fish abundance is higher

84 inside an MPA than outside, you should monitor both inside and outside your MPA. This is called vki.k vkiY;k MPA P;k vkr rls ckgsj v’kk nksUgh fBdk.kh lafu;a=.k djk;yk gos- ;kykçHkkokpk vH;kl EgVys tkrs- an impact study. vki.k losZ{k.kklkBh fuoM djr vlysyh okLrfod lkbZV LokjL; vlysY;k Hkkxkph izkfrfu/khd vlkoh- Eg.kwup] MPA The actual sites you choose for the surveys should be representative of the area of interest. Hkkxkr eRL; losZ{k.ks dsyh tkoh] th leLr MPA vkf.k ckgsjhy {ks=krhy lelekukaps izfrfu/khRodj.kkjh vlrhy- Therefore, fish surveys should be conducted in an area of the MPA that is representative of the whole MPA and similar to the outside area. lkbZV fuoM.;klkBh] vkiY;kyk iq

How many replicates should you survey? LokjL; vlysY;k {ks=klkBhps izfrfu/khRo iqjo.;klkBh vko’;d fjIyhdsV~lph la[;k gh R;kP;k ekiuiV~Vhoj rlsp osGsP;k vuqlkj vki.k ‘kks/kw ‘kd.;kph bPNk vlysY;k cnykapkvkokdk ;kaoj voyacwu vlsy- vki.k ‘kks/kw bfPNr cnykapk • How many samples (called replicates) should you make? • Where should you locate your replicates?

The number of replicates needed to provide a representation of the area of interest is dependent upon its scale as well as the magnitude of change you want to be able to detect over time. The

85 magnitude of change you can detect is related to how well your sample represents the coral reef vkokdkvkiys uewus fdrh mRrersus LokjL; vlysY;k izokG csV {ks=kaps izfrfu/khRo djrs fdaok R;kph Li”Vrk ;kP;k’kh area of interest or its precision. lacaf/kr vlrs-

Where should you locate your replicates? vki.k vkiY;k fjIyhdsV~luk dqBs LFkkuc)djk;yk gos\

You should select sites that are representative of the coral reef. Statisticians would prefer all sites vki.k izokG csVkaps izfrfu/khRo dj.kkÚ;k lkbZV~lph fuoM djk;yk goh- lkaf[;dhrK lxGÓk lkbZV~luk ;kn`fPNdi.ks to be selected randomly, but this is often logistically difficult to achieve. In the real world the best fuoM.;kl ilarh nsrhy] i.k gs çek.kc)jhR;k cÚ;kpnk lk/; dj.;kl dBh.k vlrs- okLrfod txkr vkiyh lkbZV method of selecting your sites is stratified haphazard selection. This means you first select the fuoM.;kph loksZRre i/nr vkgs FkjkFkjkus c/n vlysY;kph ;k–fPNd fuoM- ;kpk vFkZ vki.k izFke csV lafu;af=r dj.;kps reef habitat (reef zone and depth) that you want to monitor, then haphazardly select suitable sam- oLrhLFkku fuoMrk ¼csV iz{ks= vkf.k [kksyh½] ex ;k–fPNdi.ks ;k Hkkxkr vuqdwy uewuk lkbZV~l fuoMrk- iqUgk djk;P;k ple sites within this area. For repeat surveys, you can go back to the same site and haphazardly losZ{k.kklkBh] vki.k R;kp lkbZVyk ijr tkÅ ‘kdrk vkf.k vuqPNsnhr{ks=kaph vankt R;kps Hkkxkr vkdfLedi.ks iqUgk ekaM.kh re-lay the transect in approximately the same area as on the previous visit. It is also important that d: ‘kdrk th ekxhy HksVhP;k osGsl dsyh gksrh- fjIyhdsV~l ,d nqlÚ;kyk Nsn.kkjh ul.ksgh frrdsp egRokps vkgs dkj.k replicates do not overlap with each other because the statistics used to analyse your monitoring vkiY;k lafu;a=.k ekfgrhl fo’ysf”kr dj.kkÚ;k la[;k’kkL=kr izR;sd fjIyhdsVP;k Lora= ekfgrhoj vk/kkfjrvlrs] fdaok vU; information rely upon each replicate sample being independent of, or not associated with, the fjIyhdsV~l’kh fuxMhr ulrs- Lora= ul.kkÚ;k fjIyhdsV~luk lqMks fjIyhdsV~l Eg.krkr. other replicates. Replicates that are not independent are called pseudo replicates. dk;eLo#ih fo#/n ;k–fPNduewukd`r ;qfuV~l Permanent versus haphazard sampling units osGsP;k vuqlkj ?kM.kkÚ;k cnykal eki.;klkBh] vki.k ,drj To measure change over time, you can either Large-scale studies involve sampling across izR;sd osGsl R;k csVkapk rksp Hkkx ekik;yk gok ¼fuf’pr fdaok fo’kky&Js.khP;k vH;klkr ,slisl iljysY;k fo’kky {ks=Hkjkar measure the same part of reef each time (fixed large areas, which are widely spaced. Within dk;eLo:ih losZ{k.k lkbZV~l½ fdaok nj osGsl vki.k tsOgk l¡ifyax lekfo”V vlrs- izR;sd {ks=ke/;s] fjIyhdsV l¡iYl or permanent survey sites) or you can use the each area, replicate samples should be taken losZ{k.k djrk rsOgk FkjkFkjkph ;k–fPNd fuoM i/nr oki: ?ksrys tkos vkf.k nqlÚ;k {ks=ka’kh rqyuk dj.;kpk iz;Ru lq# stratified haphazard selection method each time and the level of variation should be estab- ‘kdrk- tsOgk vki.k dk;eP;k lkbZV~lps iqu%losZ{k.k djrk] dj.;kvk/kh izR;sd {ks=klkBh py?kVdkaP;k cnyhph ikrGh lished for each area before trying to compare LFkkfir dsyh tkoh- ;kl varj izfo”V ¼fdaok oxhZd`r½ l¡ifyax you survey. When you re-survey permanent sites, with other areas. This is called a nested (or fudkykarhy Qjd mnk- nksu losZ{k.kkaP;k njE;kuph izokG O;kIrh differences in the results e.g. percent coral cover, hierarchical) sampling design where succes- VDdsokjh okrkoj.kh; cnykaPkkxq.kfo’ks”k ekuw ‘kdrks- tsOgk vki.k jpuk tsFks Øe’k% ygku vodk’kh; ¼fdaok rdyknw½ ekis between the two survey periods can be attributed sively smaller spatial (or temporal) scales. \ ;kn`fPNd fdaok vkdfLed lkbZV~lps iqu%losZ{k.k djrk]vkiY;k vlrkr- to environmental change. When you re-survey Precision is important if you want to be able uewuk lapkryk dsoG rQkorhP;k iyhdMhycny i;kZoj.kh; tj vkiY;kyk vodk’k vkf.k osGsrhy i;kZoj.kh; cny random or haphazard sites, only the change to detect environmental change in space and cny Eg.kwu ekuyk tkÅ ‘kdrks- lkbZV losZ{k.kklkBh ;k nksUgh ‘kks/k.;kl ‘kD; gks.;klkBh vpwdrk egRokph vlrs- beyond the variance in your sample set can be time. i/nrhaP;k okijkps dkgh ykHk vkf.k rksVs vkgsr- Eg.kwup dqByh iqjs’kk l¡iYle/kwu MsVk xksGk dj.ks losZ{k.kkph vpwdrsph interpreted as environmental change. There are Collecting data from enough samples is i/nr okijkoh ;kl vki.k fopkjkr ?;k;yk gos- izokG csVkaP;k [kkrjtek dj.ks ¼lokZr ygku =qVh & SE½ egRokps vlrs important to ensure the precision (smallest advantages and disadvantages with using either lafu;a=.kkr lnSo dkgh uk dkgh ekuoh =qVh vl.kkj ;kph uksan dkj.k gs vkiY;kyk lkaxsy dh vkiys l¡iy gs LFkkuh; {ks=kps of these methods of survey site selection. So you standard error — SE) of the surveys because ?;k- ;kpk vFkZ ,dk o”kkZP;k rqyusr nqlÚ;k o”kkZP;k vkiY;k this will tell you if your sample is representa- izfrfu/khRo djrs- have to consider which method to use. Note that tive of the local area fudkyakrhy dkgh cny gs ekuoh =qVhus dkj.khHkwr vlrhy] uk there will always be some human error when dh i;kZoj.kh; cnykeqG monitoring coral reefs. This means that some of the changes in your results from one year to the next will be caused by human error rather than environmental change.

Quantitative information (from ‘quantity’) is when the subject of interest (e.g. coral cover) is ex- ek=kiw.kZ ekfgrh ¼*ek=s*iklwu½ rsOgk vlrs tsOgk LokjL;kpk fo”k; ¼mnk- izokG O;kIrh½ ,d Øekad Eg.kwu n’kZoyk tkrks ¼mnk- 32 VDds pressed as a number (e.g. 32% coral cover). Quantitative information is standardised and therefore izokG O;kIrh½- ek=kiw.kZ ekfgrh ekudhd`r vlrs] vkf.k Eg.kwup rqyus;ksX; vlrs- comparable. xq.koRrkiw.kZ ekfgrh ¼*xq.koRrs*iklwu½ Eg.kts LokjL;kP;k fo”k;kps O;Drhfu”B fooj.k ¼mnk- e/;e izokG O;kIrh½ vkf.k rqyukRed vH;klkBh Qualitative information (from ‘quality’) is a subjective description of the object of interest okijklkBh dBh.k vlrs dkj.k dh ,dk fujh{k.kdR;kZps *e/;e* izokG O;kIrhojhy euksxr nqlÚ;k fujh{k.kdR;kZis{kk osxGs vlw ‘kdrs- (e.g.medium coral cover) and is difficult to use for comparative studies because one observer’s xq.koRrkiw.kZ ekfgrh ek=kiw.kZ ekfgrhP;k leFkZuklkBh mi;qDr vlw ‘kdrs- mnk- izokG cnykaph Nk;kfp=s xzkQoj letoysY;k #

86 Should I do a pilot study? eh ,d ekxZn’khZ vH;kl djkok dk;\

Pilot studies can help you decide the size (e.g. length of transect or quadrat size) and the ekxZn’khZ vH;kl rqEgkyk vko’;d v’kk fjfIydsV~lpk vkdkj ¼mnk- vuqPNsnhrkph ykach fdaok uequk {ks=kpk number of replicates needed. The monitoring methods described in ‘section three’ of this book vkdkj½ vkf.k la[;k Bjfo.;kl enr d: ‘kdrhy- ;k iqLrdkP;k ^[kaM rhu* e/;s o.kZu dsysY;k lafujh{k.k recommend the size and number of replicates. For research monitoring where you want to i)rh fjfIydsV~lpk vkdkj vkf.k la[;k ;kaph f’kQkjl djrkr- la’kks/ku lafujh{k.kklkBh tsFks rqEgkyk detect fine-scale environmental changes, you will need to conduct a pilot study. However, if you ckjhd&Js.kh i;kZoj.kkRed cnykauk ‘kks/kk;ph bPNk vlrs] rsFks rqEgkyk ekxZn’khZ vH;klkph xjt Hkklsy- wish to reduce the number of replicates suggested by a standard monitoring method (maybe to rFkkfi] tj rqEgkyk ,dk çekf.kr lafu;a=.k i)rh}kjk ¼dnkfpr [kpZ okpfo.;kl½ fjfIydsV~lph la[;k save costs) we recommend you conduct a pilot study to determine the resolution of environmen- ?kVok;ph vlsy] rj vkEgh rqEgkyk rqEgh ‘kks/kw ‘kdky v’kk i;kZoj.kkRed js>ksY;q’kuyk fuf’pr dj.;klkBh tal changes you will be able to detect. ,dk ekxZn’khZ vH;klkps vk;kstu dj.;kph f’kQkjl djrks-

Permanent or fixed survey sites dk;eLo#ih fdaok BjysY;k losZ{k.k lkbZV~l

Permanent sites are generally recommended for long-term monitoring because they offer the dk;eLo#ih lkbZV~l ;k lk/kkj.ki.ks nh?kZ&dkyhu lafu;a=.kklkBh f’kQkjlizkIr vlrkr] dkj.k rs mR—”V çek.kkr greatest amount of information, consistency, repeatability and reliability. Managers usually prefer v[kaMLo#ih] iqujko`Rrhph vkf.kfo’oklkgZ ekfgrh izLrqr djrkr- izca/kd lk/kkj.kr% dk;eLo#ih lkbZV~luk ilarh nsrkr] dkj.k permanent sites because they are more comfortable with comparisons of a fixed sample of the R;k let.;kl dBh.k v’kk ;kn`fPNd uewusdj.kkP;k la[;k’kkL=koj voyacwu jkg.;kis{kk i;kZoj.kkP;k Bjkfod uewU;kaP;k environment rather than with relying upon the statistics of random sampling, which are more rqyusr vf/kd vkjkenk;h vlrkr- dk;eLo#ih lkbZV~luk R;k izkfrfu/khd vlrhy ;kph [kk=h dj.;klkBh usgeh ;kn`fPNd difficult to understand. Permanent sites should always be selected using a random or stratified fdaok FkjkFkjkP;k vkdfLed fuoM izfØ;sus fuoMys tkos- haphazard selection process to ensure they are representative. dk;eLo#ih lkbZV~luk vki.k dls vk[kky\ How do you mark permanent sites? dk;eLo#ih lkbZV~luk vk[k.ks vko’;d vkgs] ts.ksd:u vuqPNsnhr{ks= VsIl] PkkSdV{ks= fdaok Nk;kfp=.kkph midj.ks nj Permanent sites must be marked so that the transect tapes, quadrats or photographic equipment HksVhP;k osGsl R;kp fBdk.kh ftrdh ‘kD; frrD;k toGtoG Bsok;yk feGrhy- LVsuysl LVhyvk/kkj fdaok yks[kaMh nkaMÓkauk can be placed as close as possible to the same position on each visit. Stainless steel stakes or fdaok LVkj fidsVuk csVkoj vuqPNsnhr{ks= js”ksr 5 rs 10 ehVlZP;k varjkGoj fdaok dk;eLo#ih PkkSdV{ks=kP;k dksukMÓkr reinforcing rods or star pickets should be hammered into the reef at 5 to 10 metre intervals along gkrksMÓkus Bksdys tkos- fujh{k.kdrkZ ;k vk/kkjkaHkksorh ekiu iV~Vhl xqaMkGw ‘kdrkr ts.ksd:u vuqPNsnhr{ks=s R;kp LFkkuh a transect line or at the corners of a permanent quadrat. Observers can wrap a tape measure vkgsr ;kph [kk=h gksbZy- around these stakes to ensure that the transect is in the same position. vki.k fdrh okjaokj lafu;a=.k djkos\ How often should you monitor? lafu;a=.kkph okjaokjrk vkf.k lafu;a=.k dj.;ktksX;k fBdk.kkaph la[;k ;kanjE;ku ,d oLrwfofue; vlrs] mnk- ,dk fo’kky There is a trade-off between the frequency of monitoring and the number of locations to moni- csV {ks=koj deh lkbZV la[;soj eksBÓk izek.kkojhy lafu;a=.k dnkfpr ,danj csV vkjksX;kps >qdR;k dykps fp= izLrqr d: tor, e.g. a large monitoring effort at a small number of sites in a large reef area may give a biased ‘kdrs- ,dk fo’kky {ks=kps izfrfu/khRo dj.;klkBh] dkgh lafu;a=.k fBdk.ks vko’;d vlrhy- mi;qDr Bj.;klkBh] lafu;a=.k picture of the overall reef health. To represent a large area, several monitoring locations will be losZ{k.ks nj o”khZ fdaok dehr deh izR;sd ,d o”kkZvkM rjhikj ikMk;yk goh- rFkkfi] vf/kd okjaokj lafu;a=.kkl dnkfpr necessary. To be useful, monitoring surveys should be carried out every year or at least every dkgh O;oLFkkidh; iz’ukal mRrj |kos ykxw ‘kdrs] tls dh *mPpi.ks Hkze.k’khy ek’kkph foiqyrk fdrh vkgs\* vkf.k Eg.kwup second year. However, more frequent monitoring may be required to answer some management ,dk fBdk.kkl frekgh loZs{k.ks vf/kd pkaxyh vlrhy- questions, such as ‘what is the abundance of highly mobile fish?’ and so quarterly surveys at one location may be better. çHkkokapk vH;kl

Impact studies izokG csVkaojhy ekuoh çHkkokauk ik’oZHkweh ifj.kkekaiklwu vksG[kk;yk gos ts cgqrsdnk vodk’k vkf.k osG ;kar ifjdksVhps pyLo#ih vlrkr- ;kpk vFkZ vkiY;kyk lk/kulkexzhyk cÚ;kpnk lafu;af=r djk;yk gos vkf.k vodk’kh; pyLo#ikps Human impacts on coral reefs must be distinguished from background effects that are often fu;a=.k dj.;kl fdR;sd lkbZV~luk ¼izR;sd lkbZVyk fjIyhdsV~l uewus ?ksrysys vlrkuk½ çHkkokP;k vk/kh o uarj v’kk nksUgh extremely variable in space and time. This means we need to monitor the resources many times osGkal- çHkkokaP;k vH;klklkBh fc;k¡M fcQksj] vk¶Vj] daVªksy baiWDV ¼BACI P;k ikj½ jpuk okijyh tkoh- gh jpuk] çHkkokps and at many sites (with replicate samples taken at each site) both before and after an impact to vkf.k dehr deh 2 fu;af=r lkbZV~lps lafu;a=.k djrs] cÚ;kpnk çHkkokP;k vk/kh o uarjgh- ,[kknk çHkko] çHkkokP;k lkbZVyk control spatial variability. The Beyond Before, After, Control Impact (Beyond BACI) design should ,dk fo’kky i;kZoj.kh; cnykus n’kZoyk tkrks] fu;a=.kk’kh rqyuk dsY;kuarj. be used for impact studies. This design monitors both an impact and at least 2 control sites at many times before and after an impact. An impact is indicated by a greater environmental change at the impact site compared with the controls.

87 6.6.11.6 Monitoring physical parameters 6.6.11.6 HkkSfrd ekinaMkaps lafu;a=.k

Monitoring physical parameters complements ecological monitoring where direct changes to the HkkSfrd ekinaMkaps lafu;a=.k] ifjfLFkrhdh lafu;a=.kkl iwjd vlrs] tsFks fHkRrhar >kysY;k FksV cnykaukekiys tkrs- reef are measured. izokG csVkaP;k HkkSfrd i;kZoj.kkps lafu;a=.k dsY;kus] izca/kdkal fHkRrhaP;k vourhaP;k fdaok iwoZor gks.;kP;k dkj.kkps fu/kkZj.k Monitoring the physical environment of coral reefs helps managers to determine the cause of reef dj.;kl enr gksrs. degradation or recovery. ;sFks pfpZY;k tk.kkÚ;k Js.kh vkgsr% Categories discussed here are: • ik.kh vkf.k gosps rkieku( • Water and air temperature; • {kkj;qDrrk( • Salinity; • okÚ;kph ‘kDrh vkf.k leqnz fLFkrh( • Wind strength and sea state; • ik.;kph xq.koRrk( • Water quality; • x

Salinity izokG 3-2 VDds rs 4-2 VDD;kaP;k njE;kuph {kkj;qDrrk ilar djrkr] vkf.k i`”BHkkxkph {kkj;qDrrk tsOgk xksM ik.kh R;kaP;kr felGys tkrs rsOgk ?kVrs- mnk- tj iwj vkysyk vlsy fdaok vkS|ksfxd {ks=kadMwu iznw”k.k ?kMysys vlsy] fdaok okkysys vlrs- cnykaeqGs izokGkauk rk.k dkj.khHkwr gksrks- Eg.kwup {kkj;qDrrsps fjÝWDVksehVj water is added e.g. if there are floods or there is pollution from industries, or increase if surface oki:u lafu;a=.k dj.ks mi;qDr vkgs- i`”BHkkx vkf.k losZ{k.k [kksyhae/khy ik.;kps uewus rlsp i`”BHkkxh ekiysyh {kkj;qDrrk water evaporates. Changes may cause stress to corals. Therefore it is useful to monitor the salin- lhy dsysY;k IykLVhd daVsulZe/;s xksGk dsys tkÅ ‘kdrkr. ity using a refractometer. Water samples from the surface and survey depth can be collected in sealed plastic containers and the salinity measured at the surface.

fjÝWDVksehVj

88 Wind strength and sea state okÚ;kpk tksj vkf.k leqnzkph fLFkrh

This is useful when monitoring fish as the abundance of fish at a site changes according to the ,[kk|k lkbZVyk ek’kkaps lafu;a=.k djr vlrkuk gs mi;qDr vlrs dkj.k dh gokeku ifjfLFkrhauqlkj ek’kkaph foiqyrk cnyrs- weather conditions. eki.;kph ,dds [kkyhyizek.ks vkgsr. The measurement scales are listed here. okÚ;kP;k lkeF;kZph Js.kh okj~;kph xrh Wind strength category Wind strength (knots) 0 0 0 0 1 1-5 1 1-5 2 6-10 2 6-10 3 11-15 3 11-15 4 16-20 4 16-20 5 21-25 5 21-25

leqnz fLFkrh fooj.k Sea State Description 'kkaar ygku rjaxkle Calm Mirror like to small ripples FkksMklk fo’kky osOgysV~l] rqVrs dGl Slight Large wavelets, crests breaking Moderate Many white caps forming e/;e vusd lQsn f’k[kjs cu.ks Rough Large waves, 2-3 metres, white caps [koGysyk fo’kky ykVk] 2&3 ehVlZ] lQsn f’k[kj

Water quality ik.;kph xq.koRrk

Water pollution from human land-use is a serious threat to coral reefs around the world. How- ekuoh tehuh okijkeqGs dkj.khHkwr ik.;kps iznw”k.k txHkjkrhy izokG csVkalkBh xaHkhj tks[khe vkgs- rFkkfi] ik.;kP;k xq.koRrsps ever water quality monitoring can be expensive and requires measuring those pollutants that are lafu;a=.k [kfpZd vlw ‘kdrs vkf.k v’kk iznw”kdkauk eki.;kph xjt Hkklrsth vkiY;k {ks=kr lksMyh xsysyh vkgsr- ;kr released into your area. These may include suspended sediment (below), nutrients (nitrogen and lksMysyk xkG ¼[kkyh½] iks”kds ¼uk;Vªkstu vkf.k QkWLQjl la;qxs½] fo”kkjh /kkrw ¼mnk- f’kls] dWMfe;e vkf.k rkacs½] isVªksfy;e phosphorus compounds), toxic metals (e.g. lead, cadmium and copper), petroleum hydrocar- gk;MªksdkcZUl ¼Y;wczhds’ku rsys vkf.k ba/kus½] dhVduk’kds] vkWxZWuksDyksjhu VkdkÅ xks”Vh vkf.k tSfod lkexzhvknhvlw ‘kdrkr- bons (lubrication oils and fuels), pesticides, organochlorine wastes and organic matter. x

89 Sedimentation xkG lkp.ks xkG lkp.ks Eg.kts xkGkpk Hkkj tks csVkoj ;sÅu clrks- xkG lkp.;kps nj xkGkps fiatjs oki:u ekiys tkrkr- vki.k Sedimentation is the sediment load that arrives onto the reef. Sedimentation rates are measured >wIyWDVkWupk ¼csVkalkBh [kk| b-½ varizokg vkgs dk ;kps fu/kkZj.k dj.;klkBh xkGkP;k ?kVdkauk ns[khy ikgw ‘kdrk- using sediment traps. You can also look at the content of the sediments to determine if there is an influx of zooplankton (food for corals, etc.). xkG lkpklkBhps fiatj

Sedimentation traps i/nrhps fooj.k Method description ;kr ,d PVC xkG fiatÚ;kl csVk’kh tksMys tkrs vkf.k R;kl 3 efgU;kai;Zar csVkoj te.kkÚ;k xkGkl tek dj.;kl lksMwu Bsoys tkrs- gh i/nr rdyknw cny rkM.;klkBh okijyh tkÅ ‘kdrs] mnkgj.kkFkZ] çHkkokps eqY;ekiu This involves attaching a PVC sediment trap to the reef and leaving it for up to 3 months to collect sediments settling on the reef. This method can be used to detect temporal changes, for exam- ple, impact assessment.

Information obtained feGoysyh ekfgrh xkG lkp.;kps nj- ;kaph izLrqrh xkGkps otu ¼xzkEl½ izfr ,dd osG ;k :ikus dsyh tkrs- Sedimentation rates. These are presented as the weight of sediment (g) per unit time. vko’;d midj.ks Equipment required • ,dk Vksdkl lhycan dsysyk 5 lsaVhehVj O;klkpk vkf.k 11-5 ykachpk PVC ikbi( • PVC pipe of diameter 5 centimetres and length 11.5 centimetres and sealed at one end; • dk<.;kvk/kh xkG fiatjk lhycan dj.;klkBh >kd.k( • Lid to seal the sediment trap before removal; • udks vlysys izk.kh fdaok oLrw VÓwce/;s f’kj.ks VkG.;klkBh ikbiP;k oj 2&6 cWQYl( • 2-6 baffles at the top of the pipe to stop unwanted animals or objects getting into the tube; • lqdo.;kpk vksOgu ¼60°C i;Zar½( • Drying oven (to 60°C); • 1 feyhxzWe laosnu’khyrspk dkVk( • Balance of sensitivity 1 milligram; • {ks=h; O;Drh( • Field personnel: • 1 gksMh pkyd@i`”BHkkx fujh{k.k • 1 boat driver/surface watch

90 Lab personnel iz;ksx’kkGk O;Drh • Lab technician to process samples; • uewU;kaph izfØ;k dj.;klkBh yWc VsfDuf’k;u( • Data entry, analysis, interpretation and reporting. • MsVk uksan] fo’ys”k.k] fu”d”kZ vkf.k dGo.ks-

General procedure loZlk/kkj.k dk;Zi)rh • Hammer steel rods deep into the substratum; • v/k%Lrjkr LVhyP;k nkaMÓkus [kksyoj Bksdk( • Attach 3 sedimentation traps to each rod 20 centimetres above the substrate; • izR;sd nkaMÓkl 3 xkG lkp.;klkBhps fiatjs Fkjkiklwu 20 lsaVhehVj maPkhoj tksMk( • 4 sets are recommended at 3 m depth. If desired, place 2 additional sets either side of per- • 3 eh [kksyhl 4 lapkaph f’kQkjl dsyh tkrs- tj bPNk vlY;kl] 2 vfrfjDr lap dk;eLo#ikP;k manent benthic transects or quadrats (‘monitoring benthic communities’ p 27); furyLFkvuqPNsnhr{ks=kaP;k fdaok PkkSdV{ks=kP;k nksUgh cktwl ykok ¼*furyLFk lkaiznk;kap lafu;a=.k* p27½( • Seal the traps before removal; • dk<.;kvk/kh fiatÚ;kauk lhycan djk( • Remove on a 1-3 month basis; • 1&3 efgU;kaP;k fg’kksckr gVok( • In the lab, filter, dry (at 60°C) and weigh the sample to obtain the dry weight to the nearest • iz;ksx’kkGsr] fQYVj djk] lqdok ¼60ºcyk½ vkf.k uewU;kps otu djk o toGP;k feyhxzWeyk lqds otu feGok- milligram. vf/kykHk Advantages • midj.k Hkjiwj LoLr vkgs. • Equipment is fairly cheap. • xkG lkp.;kP;k njkoj çek.kc) dkfyd MsVk- • Quantitative temporal data on sedimentation rates. • ekaM.;kl] xksGk dj.;kl vkf.k izfØ;k dj.;kl lqyHk- • Simple to deploy, collect and process. lhek Limitations • fiatÚ;kauk nh?kZ dkGkalkBh lksMwu Bsow ‘kdr ukgh ¼3 efgU;kais{kk tkLr½ • Traps cannot be left for long periods (over 3 months). • izfr lsdan 20 lsaVhehVlZis{kk tkLr osx- • velocities greater than 20 centimetres per second. • fQYM lkbZVyk fiatjs xksGk dj.;kl o izfrLFkkiuklkBh okjaokj HksVh |kO;k ykx.ks- • Frequent visits to field sites to collect and replace traps. vko’;d izf’k{k.k Training required • U;wure fQYM o iz;ksx’kkGk izf’k{k.k • Minimal field and lab training tyizokg Currents vkiY;k vH;kl lkbZVP;k Hkkxkr l/;kP;k ik.kh izokgkph fn’kk vkf.k osx tk.k.ks egRokps vlrs] dkj.k dh rs vGÓkauh ;qDr It is important to know the direction and velocity of the prevailing currents in the area of your csV tho/kkjhauk rlsp gkfudkjd xkG ?kVd vkf.k rsyklkj[;k iznw”kdkauk ogkor vk.krkr- study site because they transport larval reef organisms as well as harmful sediments and pollut- ants such as oil.

çHkkfor csV

eyçokg la;a=

vçHkkfor csV

91 Current meters that can be left in situ at a study site izokg ehVlZ ts vH;kl lkbZVyk LoLFkkuhlksMwu Bsoys tkÅ ‘kdrkr are very expensive. To get an approximate idea of cur- rs [kwi egkx vlrkr- izokgkph fn’kk vkf.k osxkcn~ny vankt >saMs rent direction and velocity, you can release Rhodamine feGo.;klkBh] vki.k ÚgksMkekbu fdaok ¶yqjkslhu B Mk; lksMw B or a fluorescein dye and time its passage through ‘kdrk vkf.k ik.;krwu tk.;kl osG Bjokfdaok fMª¶V fMok;lsl ¼*okr the water or release drift devices (‘drogues’) and take fnXn’kZd*½ eqä djk vkf.k R;kaP;k vuqorhZ fLFkrhaP;k y{;kauk ekxs sightings of their successive positions. Drogues are ?;k-okr fnXn’kZd gs eanizokgh fdaok /khE;k xrhus okg.kkÚ;k ygku] LVk;jksQkse probably the best indicators of currents in small, semi- v/kZ&Hkfjr tyk’k; izokgkalkBh laHkor% loksZRre n’kZd vkgsr- contained water masses with sluggish or slow currents. cÚ;kp izdkjps okr fnXn’kZd fodr ?ksrys tkÅ ‘kdrkr fdaok jpys Many types of drogues can be purchased or construct- tkÅ ‘kdrkr- okr fnXn’kZd midj.kkr ¶yWxiksyyk] jMkj ifjorZd ed. The drogue apparatus should include a buoy that ekLV fdaok jsfM;ks ,aVsukyk vk/kkj ns.kkjk] rlsp okr fnXn’kZdP;k is large enough to support a flagpole, radar reflector otukl ik.;k[kkyh vks

• Manta tow; • vuqPNsnhr{ks=s( • Timed swim; • PkkSdV{ks=. • Transects; • Quadrats.

Advantages of transects vuqPNsnhr{ks=kaps Qk;ns • Easy to use; • okijkl lksih( • Tape measures are easy to carry in the water. • ekiu iV~VÓk ik.;kr us.;klgh lqyHk vlrkr

Limitations of transects vuqPNsnhr{ks=kaP;k lhek • Transects are not suitable where hard corals or target invertebrates are widely spaced and • V.kd izokGs fdaok y{; vi`”Boa’kh; foLr`rrsus foyx vlrhy o ygku vlrhy v’kkalkBh vuqPNsnhr{ks=s lqyHk ukghr- small. A manta tow is better for widely spaced organisms. foLr`ri.ks iljysY;k tho/kkjhalkBh ekaVk Vks vf/kd pkaxyh i/nr vkgs-

Transects are not suitable for patchy reefs because they require sufficient continuous reef over BhxGLo#ih csVkalkBh vuqPNsnhr{ks= vuqdwy ukghr] dkj.k dh R;kauk iqjs’kh lyx csVs ykxrkr T;koj vuqPNsnhr{ks=s which to lay the transect replicates. Quadrats or stationary fish counts are better suited for fjIyhdsV~l ekaMkoh ykxrkr- PkkSdV{ks= fdaok LFkkoj ekls x.krh ;kalkj[;k oLrhLFkkuaklkBh Bhd vlrkr- patchy reef habitats.

ekaVk Vks vkf.k osGc/n rj.ks Manta tow and timed swims foLr`r ekikps] csVkP;k lkbZVps loZlk/kkj.k fooj.k feGo.;klkBh] rlsp ,drj gksMhP;k ekxs ,dk Mk;Ogjyk csVkP;k Hkksorh These are the best methods for obtaining a broad scale, general description of a reef site and vks

92 Manta tow data sheet ekaVk Vks MsVk i=d

Manta Tow Board Survey Data Sheet ekaVk Vks cksMZ losZ{k.k MsVk i=d Name of Surveyor: Station: losZ{k.kdR;kZps uko LVs’ku%

Site: lkbZV%

Assistant: Date: Wind: Cloud: lgk;d% fnukad% okjk%

Entered by: Date: Hkj.kkÚ;kps uko% fnukad%a

Statistical analysis by: Date: lkaf[;dh fo’ys”kd% fnukad%

Transects vuqPNsnhr{ks=s

Transects provide medium-scale information. They are ines marked on the reef floor, where the vuqPNsnhr{ks=s e/;e Js.khph ekfgrh iqjorkr- R;kaph vk[k.kh csVkaP;k tfeuhoj js”kk vk[kwu dsyh tkrs] tsFks izokGs vkf.k corals and other objects underneath are counted. Lines can be tape measures, ropes or chains of vU; [kkyh vlysY;k xks”Vh ekstY;k tkrkr- js”kk ;k ekiu iV~Vhus ekstysY;k] Bjkfod fcanwaP;k v/khu ekius dsysY;k fofHkUu different lengths with measurements made under fixed points or where something happens e.g. ykachP;k nksjh fdaok J`a[kyk vlw ‘kdrkr fdaok tsFks dkgh ?kMw ‘kdrs] mnk- J`a[kykaps vkdMs ekst.ks fdaok tsFks furyLFk iztkrh counting chain links or where benthic species change. Transects can vary in length. Common cnyrkr- vuqPNsnhr{ks=s yakchr osxosxGh vlw ‘kdrkr- okijY;k tk.kkÚ;k lkekU; ykach vkgs 10] 20] 30 vkf.k 50 eh- vki.k lengths used are 10, 20, 30 and 50 m. The length you should use depends upon the abundance okijko;kph ykach lafu;a=.k dj.;ktksX;k py?kVdkaph foiqyrk vkf.k vodk’kh; forj.k rlsp lkbZVph vodk’kh; fHkUuHkkxrk and spatial distribution of the variable to be monitored as well as the spatial heterogeneity of the ;kaoj voyacwu vlrs- vodk’kh; fHkUuHkkxrk] vodk’kkHkjkr izk.kh vkf.k jksi izdkjkarhy cnykokapk lanHkZ nsrs- tj vodk’kh; site. Spatial heterogeneity refers to variation in the animal and plant types across space. If the HkkxfHkUurk mPp vlY;kl ¼mnk- fBxG Lo#ih csVs fdaok Mksaxj jkax vkf.k Hksxk ;karhy oLrhLFkkus½] ,d ykac vuqPNsnhr{ks= spatial heterogeneity is high (e.g. patch reefs or spur and groove habitat), a long transect (e.g. 50 ¼mnk- 50 eh½ ;k vodk’kh; cnykaeqGs [kwi tkLr rQkorh fn’kk nk[kosy ¼mnk- izokG] okGw vkf.k [kMd½ vkf.k vkiY;k m) will encompass too much of this spatial variation (e.g. coral, sand and rock) and the power of losZ{k.kkph cny ‘kks/k.;kph rkdr deh gksbZy- vuqPNsnhr{ks=s lk/kkj.kr% csV f’k[kjk’kh lekarj ,dk fLFkj [kksyhP;k daVwjP;k your surveys to detect change will be reduced. Transects are generally positioned parallel to the cjkscjhus Bsoyh tkrkr- fdukÚ;k’kh dkVdksukr Bsoysys vuqPNsnhr{ks=] tj vkiY;kyk R;kp vuqPNsnhr{ks=kar fofHkUu csVkaph reef crest along a constant depth contour. A transect laid perpendicular to the shore may be ap- {ks=s ¼fdaok [kksY;k½ lekfo”V djk;ph vlY;kl ;Fkk;ksX; Bjsy- iz{ks=kaP;k J`a[kysps losZ{k.k oLRkhLFkkus izdkjka’kh fuxMhr nwjLFk propriate if you want to include different reef zones (or depths) in the same transects. Surveying a MsVkP;k HkwlR;kiuklkBh mi;qDr B: ‘kdrs- range of zones may be useful to ground truth remote data relating to habitat types. vuqPNsnhr{ks=kaP;k losZ{k.kkps 4 ekxZ vkgsr% There are 4 ways to survey transects: 1. js”kh; vuqPNsnhr{ks= ¼js”kh; vkarjNsn vuqPNsnhr{ks=s vkf.k ,dk js”ksP;k v/khu J`a[kykvuqPNsnhr{ks=s ;kauk /k#u½; 1. Line transects (including line intercept transects and chain transects under a line); 2. fcanw vkarjNsn vuqPNsnhr{ks=s th ,dk fof’k”B varjkGkuarj xks”Vhal ,drj js”ksP;k [kkyh fdaok vuqPNsnhr{ks= iV~VhP;k 2. Point intercept transects which measure things at specific intervals either below the line or [kkyh vkf.k cktwl ekirs( below and to the side of the transect tape; 3. iV~Vk vuqPNsnhr{ks=s] th xks”Vhal vuqPNsnhr{ks=kP;k vkre/;s ,dk iV~VÓkr ekirs( vkf.k 3. Belt transects, which measure things in a belt inside the transect; and 4. J`a[kyk vkarjNsn vuqPNsnhr{ks=s- 4. Chain intercept transects.

93 1. Line intercept transect 1. js”kh; vkarjNsn vuqPNsnhr{ks=

Measurements on line transects are taken along the entire length of the line. Commonly used line vuqPNsnhr{ks=kojhy ekius js”ksP;k laiw.kZ ykachP;k lyx ?ksryh tkrkr- loZlk/kkj.ki.ks okijY;k tk.kkÚ;k js”kh; vuqPNsnhr{ks=kauk transects are called ‘line intercept transects’ (LIT), which focus on the horizontal plane of the reef, *js”kh; vkarjNsn vuqPNsnhr{ks=* ¼LIT½ EgVys tkrs] th csVkaP;k vkMO;k rykaoj >ksr Bsorkr] vkf.k *J`a[kyk vkarjNsn and ‘chain intercept transects’ (CIT), which measure the benthic cover in 3-dimensional terms as vuqPNsnhr{ks=* ¼CIT½] J`a[kyk csVkP;k daVwj lyx tkr vlY;kus 3 ferh; fg’kksckus furyLFk O;kIrh ekstrs- CIT csVkP;k the chain follows the contour of the reef. CIT enable the collection of information on reef rugosity jxksflVhoj ¼lajpukRed fDy”Vrk½ ekfgrh xksGk dj.;kl l{kerk nsrs vkf.k cgqrsdnk LIT lkscr okijyh tkrkr- jxksflVh (structural complexity) and are often used with LIT. The rugosity can provide information on the csVkP;k *vodk’kh; lwpdkadkoj* ekfgrh iqjow ‘kdrs] ts csV i`”BHkkx daVwj varjkps js”kh; varjk’kh vlysys izek.k vlrs- ,dk ‘spatial index’ of the reef, which is the ratio of the reef surface contour distance to the linear dis- nh?kZ&dkyhu lafu;a=.k dk;ZØekpk Hkkx Eg.kwu] vodk’kh; lwpdkad] csVkph m”.kdfVca/kh; fDYk”Vrsrhy cnykal ek=sP;k tance. As part of a long-term monitoring program,e, the spatial index provides a way of quantify- vk/kkjkoj eki.;kpk ekxZ iqjorks- ing changes in the topographical complexity of the reef. 2. fcanw vkarjNsn vuqPNsnhr{ks= 2. Point intercept transect fcanw vkarjNsn dkV{ks=* ¼PIT½] ,dk fof’k”B varjkGkoj ,drj dkV{ks= ekiiV~VhP;k [kkyh] fdaok dkV{ks= iV~VhP;k [kkyh Point intercept transects (PIT) measure objects at specific intervals either below the transect tape, vkf.k cktql ekirs- iqjs’kk fcanwla[;slg] LIT }kjs iqjoysY;k ekfgrh’kh rqyuk dj.;ktksxh ekfgrh PIT iqjow ‘kdrs- or below and to the side of the transect tape. With a sufficient number of points, PIT can provide information comparable with that provided by LIT. 3. iV~Vk vuqPNsnhr{ks=s

3. Belt transects iV~Vk vuqPNsnhr{ks=s js”kh; vuqPNsnhr{ks=kaizek.ksp vlrkr] ijarq FkksMs foLr`r vlrkr- rlsp cÚ;kpnk csaFkkslojhy çHkkokaP;k losZ{k.kklkBh okijys tkrs] tls dh fojatu fdaok O;k/kh] fdaok vi`”Boa’kh; vkf.k ek’kkaph x.krh dj.ks- ;Fkk;ksX; #anh vki.k Belt transects are the same as line transects but wider and are often used for surveying specific dk; ekir vkgkr ;koj voyacwu vlrs- ygku iztkrh fdaok uoHkrhZ ek’kkalkBh] vf/kdrj v#an iV~Vk dkV{ks=s ¼mnk- 2 ehVlZ impacts on the benthos, such as bleaching or disease, or counting invertebrates and fishes. The #an½ okijyh tkrkr] vkf.k izokG O;k/kh vkf.k æqisyk xksxyxk;h lkj[;k iz?kkrkalkBh] ,d 4 ehVj foLrkjkpk okijys tkrs- appropriate width depends upon what you are measuring. For small species or fish recruits, nar- vU; eksD;kP;k lw{e&vi`”Boa’kh;kalkBh foLr`r vuqPNsnhr{ks=s okijys tkrs] mnk 5 ehVlZ- row belt transects (e.g. 2 metres wide) are often used, and for impacts such as coral disease and Drupella snails, a 4 metre width is used. For other key macro-invertebrates wider transects may 4. J`a[kyk vuqPNsnhr{ks=s be used, e.g. 5 metres. Qk;cj Xykl VsIl miyC/k gks.;kvk/kh] vuqPNsnhr{ks=s vk[k.;klkBh lk[kG~;kapk okij loZlk/kkj.ki.ks gksr vls- J`a[kyk dBh.k 4. Chain transects fl) gksÅ ‘kdrkr] dkj.k dh Mk;OglZ ik.;k[kkyh vk[kwM ykachP;kp lk[kG~;k ?ksÅu tkÅ ‘kdrkr- ;kp vFkZ vlk dh ykacypd vuqPNsnhr{ks=s ,dk ekxksekx ekaMysY;k lk[kG~;kaP;k ykachauhp O;ki.ks t#jh curs- Before fibreglass tapes were available, chains were commonly used to mark transects. Chains can be difficult as only short lengths can be carried underwater by divers. This means that longer vk.k[kh ,d rQkor Eg.kts osGc/n rj.ks] tsFks *vuqPNsnhr{ks=s* ykachl iksg.;kP;k osGsdjoh ekiys tkrs- transects must be made up of several lengths of chain placed in succession.

Another variation is timed swims, where the ‘transect’ length is measured by the swim time.

fcanw vkarjNsn ‘kk[kk;qDr V.kd izokG FkkGh V.kd izokG n.kdV izokG ‘kk[kk;qDr V.kd izokG vuqPNsnhr{ks=

okGw okGw fcanw vkarjNsn n.kdV izokG ekiu iV~Vh fcanw vkarjNsn vuqPNsnhr{ks= vuqPNsnhr{ks= js”kh; vkarjNsn ekiu iV~Vh vuqPNsnhr{ks=

J`a[kyk vkarjNsn vuqPNsnhr{ks=s

,dkp izokG csV {ks=kojhy fcanw vkarjNsn vuqPNsnhr{ks=s (PIT) js”kh; vkarjNsn vuqPNsnhr{ks=s (LIT) vkf.k J`a[kyk vkarjNsn vuqPNsnhr{ks=s (CIT) ;kaph rqyuk- PIT ekiu iV~VhP;k vk/kh fLFkr fcanwojhy oLrwaph uksan djrs( LIT Vsi [kkyh tsFksgh cny vk

94 Do transects cause damage to the reef? vuqPNsnhr{ks=s csVkl gkfu iksgksporkr dk\

Damage to the reef can be avoided if transects are laid carefully. However, it is difficult to avoid dkGthiwoZdrsusvuqPNsnhr{ks=s ekaM.kh dsY;kl csVkph gkfu VkGyh tkÅ ‘kdrs- rFkkfi] J`a[kyk vuqPNsnhr{ks=s okijr vlrkuk damaging the reefs when using chain transects. gkfu VkG.ks dBh.k vlrs-

Achievable precision of transects lk/; dj.;ktksxh vuqPNsnhr{ks=kaph vpwdrk

High (but not as high as permanent quadrats). mPp ¼ijarq dk;eLo#ih PkkSdV{ks=kbrdh ukgh½-

Generic equipment for transects vuqPNsnhr{ks=kalkBh loZlk/kkj.k lkexzh

How do you mark out transects? vki.kvuqPNsnhr{ks=kaP;k [kq.kk d’kk djky\ • Tape measures (waterproof fibreglass in a spool with a winding handle); • ekiu iV~Vh ¼,dk Liwye/;s fQjR;k ewBhlg tyfujks/kd Qk;cjXykl½( • Rope (with coloured markers or knots to indicate distance); • nksjh ¼varj n’kZo.;klkBh jaxhr [kq.kkalg fdaok xkBhalg½( • Chain – plastic (chain links of known length used to calculate distance; 1 centimetre links are • J`a[kyk & IykLVhd ¼varj ekst.;klkBh ekghrhP;k ykachP;k lk[kGhP;k dMÓk( 1 lsaVhehVjph dMh lokZr lqyHk½ easiest). vki.k iV~Vk vuqPNsnhr{ks= #anh d’kh ekstky\ How do you measure the belt transect width? vuqPNsnhr{ks= #anh ekiyh fdaok vankftr dsyh tkÅ ‘kdrs] vkf.k #anh ekiuklkBh fofo/k i/nrh vkgsr% The transect width can be measured or estimated, and there are several methods to measure the • PVC [kkac fdaok T-ckacw- width: • dk;k ykach vankthdj.k( • PVC pole or T-bar. • ekiu iV~Vh ¼fdaok RkRle½. • Body length estimation; • Tape measure (or equivalent). 1. PVC [kkac fdaok T-ckacw ekxkZP;k #anhgwu v/kkZ vlkok- foLr`r ckacw ik.;k[kkyh okijklkBh dBh.k vlw ‘kdrkr- v#an vuqPNsnhr{ks=kalkBh lk/kkj.ki.ks T-ckacw okijys tkrkr¼mnk- 2 ehVlZ½( 1. The PVC pole or T-bar should be half the width of the path. Wide poles can be difficult to use 2. vkiY;k fQu&Vksdkiklwups vkiY;k gkrki;Zarps varj] laiw.kZ losZ{k.kkP;k njE;ku vuqPNsnhr{ks=kP;k #anhP;k vkiY;k underwater. T-bars for narrow transects (e.g. 2 metres) are commonly used; vanktkal rikl.;kl ,d mi;qDr dk;k ykach eki vkgs( 2. The stretched distance from your fin-tip to your hand is a useful body length measure to 3. iV~VîkP;k vuqekuklkBh lanHkZ iqjo.;klkBh izR;sd fjIyhdsVP;k lq#okrhl ekiu iV~VÓk ekaMY;k tkÅ ‘kdrkr- check your estimates of transect width throughout the survey; iV~VîkP;k#anhapk vnkt yko.;klkBhph vkiyh dqor rikl.;klkBhpk ,d ekxZ Eg.kts ,d fcanwl uDdh dj.ks tks 3. Tape measures can be laid out at the start of each replicate to provide a reference for belt es- vkiY;kyk okVr vkgs dh xjtsph #anh vkgs o R;k varjkl ekikos- timates. Another way to test your ability to estimate belt width is by fixing on a point you think is the required width and measuring that distance. js”kh; vkarjNsn vuqPNsnhr{ks= MsVk if=dk losZ{k.kdR;kZps uko LVs’ku% LIT fufnZ”Vs Line Intercept Transect Data Sheet lkbZV% Name of Surveyor: Station: LIT Specifications lgk;d% fnukad% okjk%

95 Quadrats pkSdV{ks=s

The term “quadrat” generally refers to a square or rectangular sampling unit within which organ- ÞpkSdV{ks=ß lk/kkj.ki.ks ,dk pkSdksuh fdaok vk;rkdkj uewukdj.k ;qfuVpk lanHkZ nsrs T;kP;k vkrhy fdaok ;k {ks=kl isms are counted and measured, or to the form which marks this area. Quadrats can be used vk[k.kkÚ;k izk#iki;Zar vl.kkÚ;k tho/kkjhauk ekstys vkf.k ekiys tkrs- izR;sd iztkrh fdaok vU; csV ?kVdkaP;k O;kIrh to estimate the percent cover of each species or other reef components and obtain information VDdsokjhpk vankt orZo.;klkBh rlsp ?kurk] foiqyrk] oSfo/;] vkf.k olkgr vkdkjeku ;kaojhy ekfgrh feGo.;klkBh about density, abundance, diversity, and colony size. pkSdV{ks=kapk okij dsyk tkÅ ‘kdrks-

The appropriate quadrat size is dependent upon the size and spatial abundance of the organism ;Fkk;ksX; pkSdV{ks= vkdkjeku gs ekstY;k tk.kkÚ;k tho/kkjhaps eki vkf.k vodk’kh; foiqyrk ;kaoj voyacwu vlrs- being counted. Generic quadrat sizes that are used include: loZlk/kkj.ki.ks okijY;k tk.kkÚ;k pkSdV{ks=kr lekfo”V vlrkr% • 0.5-1 sqaure metre or larger quadrats to assess species diversity. This is the most common • iztkrh fofo/krsps fo’ys”k.k dj.;klkBh 0-5&1 oxZ ehVjph fdaok R;kgwu fo’kky pkSdV{ks=s- lk/kkj.kfuryLFk leqnk; size for general benthic community surveys. losZ{k.kklkBh gs lokZr izpfyr vkdkjeku vkgs- • 25 centimetres by 25 centimetres to measure coral recruits and other small organisms like • izokG uoHkrhZauk vkf.k vU; ygku tho/kkjh] tls dh ‘ksokG iztkrh] Mk;Msek fdaok nzqisyk ;kaps ekiu dj.;klkBh 25 algae species, Diadema or Drupella. lsaVhekVlZ xqf.kys 25 lsaVhehVlZ dsys tkrs-

There are 3 ways to survey quadrats: pkSdV{ks=kaP;k losZ{k.kklkBh rhu ekxZ vkgsr% 1. Visual estimation; 1. n`”;Lo#ikus vankthdj.k( 2. Visual point sampling (grid quadrats); 2. n`”; fcanw uewukdj.k ¼xzhM pkSdV{ks=s½( 3. Photo quadrats where images are digitised or point sampled to determine percent cover. 3. Nk;kfp= pkSdV{ks=s tsFks O;kIrh VDdsokjhps fu/kkZj.k dj.;klkBh izfrek MhthVk;TM fdaok fcanw uewukd`r dsY;k tkrkr-

Quadrats provide precise information for fine-scale, species-specific questions. Permanent quad- pkSdV{ks=s lw{e&ekikP;k] iztkrh&fufnZ”V iz’ukalkBh vpwd ekfgrh iqjorkr- dk;eLo#ih pkSdV{ks=s osGsP;k vuq#i fof’k”B rats are useful for observing specific coral colonies over time. izokG olkgrhal fujh{k.kk/khu Bso.;klkBh mi;qDr vlrkr-

Do quadrats cause damage to the reef? pkSdV{ks=kaeqGs csVkl gkfu dkj.khHkwr vlrs dk\ • Permanent quadrats – Damage to the reef can be avoided if quadrats are set carefully; • dk;EkLo#ikph pkSdV{ks=s &dkGthiwoZdrsus pkSdV{ks=kaph ekaM.kh dsY;kl csVkph gkfu VkGyh tkÅ ‘kdrs( • Random quadrats--Some potential damage carrying these underwater and placing them on • ;kn`fPNd pkSdV{ks=s &;kauk ik.;k[kkyh usr vlrkuk vkf.k e`nw csVkaoj Bsorkuk dkgh gkfu lHkkO; vlw ‘kdrs- fragile corals.

Advantages of quadrats pkSdV{ks=kaps Qk;ns • Quadrats can be made with inexpensive equipment. • pkSdV{ks=s deh[kfpZd lkexzhus cuoyh tkÅ ‘kdrkr- • Useful for fine-scale monitoring. • lw{e&eki lafu;a=.kklkBh mi;qDr-

Percent cover estimations O;kIrh VDdsokjh vankthdj.k Rare or uncommon species are less frequently overlooked in comparison with the point intersect method. nwfeZG fdaok vuU;lk/kkj.k iztkrh fcanw vkarjNsn i/nrhaP;k rqyusr deh okjaokji.ks utjsvkM dsY;k tkrkr-

Point intercept in quadrats pkSdV{ks=kar fcanw vkarjNsn Reasonably accurate measures of percent cover, species diversity, relative abundance, density and size can O;kIrh VDdsokjhps] iztkrh oSfo/;rk] rqyukRed foiqyrk] ?kurk ;kaps cÚ;kp vpwd izek.kkr ekivkf.k vkdkjeku feGoys tkÅ ‘kdrs- be obtained. Nk;kfp=&pkSdV{ks=s Photo-quadrats Nk;kfp=&pkSdV{ks=sfuryLFk leqnk;kapk ,d dk;eLo#ih vfHkys[k iqjorkr vkf.k ;kn`fPNd fdaok lap fcanw ¼p 43½ oki#u fo’ysf”kr dsyh tkÅ Photo-quadrats provide a permanent record of the benthic communities and can be analysed using random ‘kdrkr fdaok izfrekauk [kwip vpwd VDdsokjh O;kIrh vankt iqjo.;klkBh MhthVk;TM dsys tkÅ ‘kdrs- or set points (p 43) or the images can be digitised to provide very accurate percentage cover estimates. MhthVk;TM izfrek furyLFk leqnk;karhy osGsP;k vuq#i gks.kkÚ;k lw{e&ekikP;k cnykaps rqyukdj.k dj.;klkBh mi;qDr vlrkr- Digitised images can be used to compare fine-scale changes in benthic communities over time. pkSdV{ks=kaP;k lhek Limitations of quadrats • pkSdV{ks=s Bjkfod i`”BHkkx {ks=krhyp MsVk iqjow ‘kdrkr vkf.k jxksflVh eki.;klkBh okijyh tkÅ ‘kdr ukghr- fdpdV csV i`”BHkkxkaph • Quadrats provide data from the projected surface area only and cannot be used to measure rugosity. gh leL;k vkgs- rkVyhP;k vkdkjkph izokGs gh LraHkokj vkdkjkP;k izokGkaP;k rqyusr vfrizLrqr dsys tk.;kpk dy vlrks ¼js”kh; dkV{ks=s ;k This is a problem with complex reef surfaces. Plate-shaped corals tend to be overrepresented relative to ifjfLFkrhae/;s vf/kd ;Fkk;ksX; vlrkr½- columnar shaped corals (linear transects are more appropriate in these situations). • uktqd ‘kk[kkaP;k izokGkaps vf/kD; vlysY;k {ks=kar okijklkBh dBh.k- • Difficult to use in areas dominated by fragile branching corals.

96 Percent cover estimations O;kIrh VDdsokjh vankt

• Estimations are the least precise method to measure percent cover or abundance because of observer • fujh{k.kdR;kZae/khy izo`Rrh QjdkaeqGs vankthdj.k gh O;kIrh VDdsokjh fdaok foiqyrk ekst.;klkBh lokZr deh vpwdrk vlysyh i/nrh vkgs- bias. • gh osGoj fuHkZj vkgs] T;kr ,dk MkbOge/;s fdrh pkSdV{ks=s ‘kks/kyh tkÅ ‘kdrkr ;koj lhek yknyh tkrs- • The are time-intensive, which limits the number of replicate quadrats that can be searched on a dive. pkSdV{ks=kar fcanw vkarjNsn Point intercept in quadrats: • nwfeZG fdaok vuU;lk/kkj.k iztkrh ;k okjaokj utjsvkM dsY;k tkrkr- • Rare and uncommon species are frequently overlooked. Nk;kfp=&pkSdV{ks=s Photo-quadrats • Nk;kfp=kal fMthVk;TM dj.ks osG [kfpZd vkgs rlsp R;klkBh lax.kd vkf.k fof’k”B lkW¶Vos;jph lqxerk ykxrs- MhthVk;TM izfrekaph • Digitizing of photographs from photo-quadrats is time consuming and requires access to computers and rqyuk dj.;klgh cjkp osG [kpZ gksrks( specific software. Comparisons of digitized images are also time consuming; • ;kn`fPNd fBiD;kapk okijgh osG [kfpZd vkgs] ijarq MhthVk;thaxgwu ek= deh- • The use of random dots is also time consuming but less so than digitizing.

Types of data obtained from quadrats pkSdV{ks=kadMwu izkIr MsVkaps izdkj • Estimates of percent cover (visual quadrats); • O;kIrh VDdsokjhps vankt ¼n`”;Lo#ih pkSdV{ks=s½( • Precise measures of percentage cover (point intercept methods either done manually in the • O;kIrh VDdsokjhph vpwd ekis ¼,drj fQYMe/;s ekuopfyri.ks fdaok Nk;kfp=k}kjs ikj ikMysyh fcanw vkarjNsn i/nrh½( field or from photographs); • ?kM.;kph okjaokjrk ¼T;kr iztkrh ?kMrkr v’kk pkSdV{ks=kaiklwuP;k la[;sps eksteki d#u½ • Frequency of occurrence (calculated from the number of quadrats in which a species oc- • iztkrh oSfo/;rk] rqyukRed foiqyrk] ?kurk] vkdkjeku vkf.k izokGkanjE;kuP;k vkarjfØ;k- curs); • Species diversity, relative abundance, density, size and interactions between corals. pkSdV{ks=kaph lk/; dj.;ktksxh vpwdrk • tj nj osGsl ,dkp O;fDr}kjs dsys xsY;kl n`”; Lo#ikus dsysys vankthdj.k cjhp vpwdrk iqjors fdaok fujh{k.kdrsZ Achievable precision of quadrats ,d= izf’kf{kr vlY;kl- • Visual estimations provide reasonable precision if done by the same person each time or if • fcanw vkarjNsn gs n`”; vankthdj.kkis{kk vf/kd vpwd vlrkr- observers are trained together • Point intercept are more precise than visual estimations. pkSdV{ks=kalkBh loZlk/kkj.k lkexzh • pkSdV{ks=s fofHkUu lkexzhus cuoyh tkÅ ‘kdrkr] tls dh yks[kaMh jh&ckj] PVC fdaok LVsuysl LVhy ikbi] b- fo’kky Generic equipment for quadrats pkSdV{ks=kalkBh PVC ikbIl gkrkG.;kl lksis vlY;kdkj.kkus pkaxys vlrkr] i.k mIyodleL;k VkG.;klkBh R;kauk • Quadrats can be made from a variety of materials, such as iron re-bars, PVC or stainless steel Hkksds ikM.ks egRokps vlrs- pipes, etc. PVC pipes are good for larger quadrats as they are easier to handle but it is impor- • rqyukRedjhR;k FkksMÓk likV Fkjkoj okijys vlrk] pkSdV{ks=koj uk;ykWu /kkxk oki#u fxzM fuekZ.k dj.ks ‘kD; vlrs] tant to drill holes in them to avoid buoyancy problems. T;kus fcanw vkarjNsn i/nrhalkBh okij gksÅ ‘kdrks- pkSdV{ks=kP;k pkSdVhP;k ‘kh”kZ vkf.k rGkl v’kkp fxzM~l Vkd.ks • When used on relatively flat substrates, it is possible to create a grid on the quadrat using mi;qDr vlrsts.ksd:uiWjkyWDl =qVh VkGrk ;srhy vkf.k O;Drh rs O;Drh rQkorhsl gVork ;sbZy- fujh{k.kdR;kZauh nylon string to use for point intercept methods. It is useful to put similar grids on the top and fxzM~luk ,dk js”ksr ?;kos T;kus R;k Fkjkoj FksV[kkyh igkr vkgsr ;kph lqfuf’prh gksbZy- vleku i`”BHkkxkalkBh] fxzM bottom of the quadrat frame to avoid parallax error and remove bias. Observers should line Bhdk.kkapk vankt pkSdV{ks= pkSdVhl /k#up ekghr vlysY;k varjkaoj ¼mnk- 10 lsaVhehVlZ½ jaxoysY;k lanHkhZ; up the grids to ensure they are looking directly down at the substrate. For irregular surfaces, [kq.kkao#u ykoyk tkÅ ‘kdrks- dkslG.kkÚ;k pkSdV{ks=kalg ik.;kr izos’k lksik vlrks- grid positions can be estimated from painted reference marks at known distances (e.g. 10 centimetres) along the quadrat frame. Entry into the water is easier with collapsible quadrats.

97 Coral Reef Quadrat Data Sheet izokG csV DokMªWV MsVk if=dk Name of Station: Quadrat losZ{k.kdR;kZps LVs’ku% DokMªWV fufnZ”Vs% Surveyor: Specifications: uko% lkbZV% DokMªWV Ø Site: Quadrat No lgk;d% fnukad% okjk%

Hkj.kkÚ;kps uko% fnukad%a Entered by: Date: lkaf[;dh fo’ys”kd% fnukad% Statistical analysis by: Date: Nk;kfp=.k vkf.k fOgfM;ks lafu;a=.k Photography and video monitoring • gYyhP;k dkGkr izokG csVkaP;k lafu;a=.kklkBh MhthVy lkexzhpk okij vf/kd yksdfiz; gksÅ ykxyk vkgs- ;k i/nrh • The use of digital equipment in coral reef monitoring has become more popular recently. fQYMe/khy [kpkZal cjsp deh d: ‘kdrkr dkj.k R;kauk n`”;i/nrhaP;k rqyusr ik.;k[kkyh deh osG vko’;d vlrks] These methods can greatly reduce field expense and time because they require less time vkf.k R;kapk okij ‘kkL=K ulysY;k vuqHkoh Mk;OglZ}kjsgh dsyk tkÅ ‘kdrks- underwater compared with visual methods, and they can be used by experienced divers who vki.k Nk;kfp=kal fdaok fOgMh;ks pkSdVhaps fo’ys”k.k dls djrks\ may not be scientists. • Bhids fxzM & ;kr Nk;kfp=kaoj fdaok pkSdVhaoj ;kn`fPNd fdaok Øeokji.ks fBids Vkdys tkrkr- [kkyhy tyryLFk How do you analyze photographs or video frames? vksG[kys tkrkr( • Dot grid – this involves placing random or sequenced dots over the photograph or frame. The • fMftVk;ftax & ;kr fMftVk;ftax lkW¶Vos;j oki:u ekuopfyri.ks fofHkUu tyryLFk ux fMftVy izfresoj js[kkVys benthos beneath is identified; tkrkr- lkW¶Vos;j O;kIrh VDdsokjh vpwdi.ks eksteki dj.;klkBh okijys tkÅ ‘kdrs- tjh gh lokZr vpwd i/nrh • Digitizing – this involves manually drawing the different benthic items on a digital image with vlyh rjh] vko’;d vl.kkjh lkexzh egkx vlrs] fo’ks”kK gos vlrkr] vkf.k lokZr osG [kfpZd i/nrh vlrs- digitizing software. The software can be used to calculate the percentage cover very precisely. fOgfM;ksxzkQh gh QksVksxzkQh (Nk;kfp=.k) is{kk d/kh mRre vlrs\ Although this is the most accurate method, the equipment required is expensive, expertise is necessary, and it is the most time consuming method. loZlk/kkj.k csV {ks=kps fOgfM;ks QwVst mi;qDr xq.koRrklaca/kh ekfgrh iqjow ‘kdrs- ek=klaca/kh vH;klkalkBh] fo’kky {ks=kP;k ifjfLFkrhdh lafu;a=.kklkBh fOgfM;kst gs vf/kd ;Fkk;ksX; vlrkr] mnk- iV~Vk vuqPNsnhr{ks=kapk okij- izokG csV When is videography better than photography? tyryLFkkaiklwu fOgfM;kss dWesjkps varj iV~VÓkP;k #anhps fu/kkZj.k djrs- fOgfM;ksvuqPNsnhr{ks=kP;k iqUgk iqUgk dj.;kP;k Video footage of the general reef area can provide useful qualitative information. For quantitative uewuhdj.kklkBh vxnh rlkp iFk r;kj dj.ks] Fkjkiklwu osx vkf.k varj jk[k.ks dBh.k vkgs- ik.;k[kkyhy fOgfM;ks studies, videos are more appropriate for ecological monitoring of a large area, e.g. using belt tran- gkÅflaxoj cloysys ystlZuh ,desdkal Fkjkiklwu Bjkfod varjkoj Nsn.ks] fujh{k.kdR;kZal fLFkj varj jk[k.;kl enr djrs] sects. The distance the video camera is held from the coral reef benthos determines the width of ijarq gs egkx vlrs vkf.k Eg.kwup vf/kdrj ifjfLFkrhae/;s okij.ks vO;ogk;Z vlrs- the belt. Reproducing the exact path, speed and distance from the substrate for repeated sam- pling of a video transect is difficult. Lasers positioned on the video underwater housing to cross at a fixed distance from the substrate can help observers maintain a constant distance, but this is expensive and therefore impractical in most situations.

98 Advantages and limitations of visual counts and photography/video n`”;Lo#ikusekst.kh vkf.k Nk;kfp=.k@fOgMf;ksxzkQh ;kaps Qk;nsvkf.k lhek

Underwater visual counts ik.;k[kkyh n`”;#ikus ekst.;k Advantages Qk;ns • Data are ready to be analyzed immediately after the survey. • losZ{k.kkP;k Rofjr uarj MsVk fo’ys”k.kklkBh r;kj vlrks- Limitations: lhek% • More time spent underwater. • ik.;k[kkyh vf/kd osG ?kkyoyk tkrks- Digital/video surveys Mhthd`r@fOgMh;ks losZ{k.ks Advantages Qk;ns • Observers need not be trained scientists, only experienced divers; • Less time is spent in the field, which reduces the cost of field work; • fujh{k.kdrsZ gs izf’kf{kr ‘kkL=K vl.ks vko’;d ulrs] dsoG vuqHkoh Mk;OglZ vlkosr( • Provides a permanent record; • fQYMe/;s deh osG ?kkyoyk tkrk] T;kus fQYM dkekpk [kpZ deh gksrks( • Footage can be analysed to provide quantitative information as well as provide a visual image of data. • dk;eLo#ih vfHkys[k iqjoyk tkrks( Visual images can be more powerful than statistics and certainly a useful combination to demonstrate reef change to non-scientists; • QwVstps fo’ys”k.k d#u ek=kiw.kZrsus ekfgrh iqjoyh tkÅ ‘kdrs] rlsp MsVkph ,d n`”; vl.kkjh izfrek nsÅ ‘kdrs- n``”; izfrek lkaf[;dh’kkL=kis{kk vf/kd çHkkoh vlw ‘kdrkr vkf.k csV cnykaP;k xSj&’kkL=Kkauk izkR;f{kdklkBh uDdhp ,d mi;qDr lkaxM vlrkr( • Relatively easy to use; • okijkl rqyukRedrsus lqyHk( • It takes up to 4 hours underwater to collect data from a 20 metre chain transect, or 2-5 minutes to collect the video images. • 20 ehVj J`a[kyk vuqPNsn{ks=krwu ik.;k[kkywu MsVk xksGk dj.;kl 4 rklki;Zar ykxrkr] fdaok fOgfM;ks izfrek xksGk dj.;klkBh 2&5 fefuVs- Limitations • Photographs or video frames must be analysed using digital equipment, which is expensive to buy lhek% and maintain. This often makes the use of photography or video unsuitable for programmes with •  limited budgets; Nk;kfp=s fdaok fOgfM;ks ÝsEluk MhthVy lkexzhus fo’ys”k.k djkos ykxrs] th fodr ?ks.;kl vkf.k ns[kjs[k dj.;kl egkx vlrkr- ;keqGs Nk;kfp=.kkpk fdaok fOgMh;kspk okij e;kZfnr vFkZladYi vlrkuk vuqdwy vlr ukgh( • Requires a trained team of people in the laboratory to analyse images (otherwise the images remain in filing cabinets and are never analysed); • iz;ksx’kkGsr izfrekaps fo’ys”k.k dj.;kl izf’kf{kr yksd vko’;d vlrkr ¼vU;Fkk izfrek Qk;fyax dikVkrp jkgrkr vkf.k d/khp fo’ysf”kr dsY;k tkr ukghr½( • Organisms under coral plates or rock ledges are not visible; • Field observations are necessary to distinguish some species. Small organisms such as coral recruits • izokG FkkGÓk fdaok [kMdka[kkyhy tho/kkjh n`”; ulrkr( and macro algae cannot be distinguished; • dkgh iztkrharhy Qjd tk.k.;kl fQYM fujh{k.ks vko’;d vlrkr- ygku tho/kkjh tls dh izokG uoHkrhZ vkf.k lw{e ‘ksokG ;karhy Qjd • It is difficult to obtain quantitative information from photographs where soft corals are abundant rkMw ‘kdr ukgh( because they overshadow other organisms; • tsFks e`nw izokGs vU; tho/kkjhauk O;kiwu Vkdr vlY;kus] R;kaP;k foiqyrseqGs Nk;kfp=ko:u ek=kiw.kZ ekfgrh feGo.ks dBh.k vlrs- • Photographs or videos provide a 2-dimensional view of the reef. Therefore, these methods are not suitable for estimating spatial relief. Although stereo-photography will provide 3-D photographs it is • Nk;kfp=s fdaok fOgfM;kst csVkps ,d f}ehrh; n`”;rk iqjorkr- Eg.kwup] ;k i/nrh vodk’kh; lgk;rsps vankthdj.k dj.;klkBh vuqdwy ukghr- technically more complex and requires sophisticated analytical systems; LVhjh;ks&Nk;kfp=.k tjh 3 ferh; Nk;kfp=s iqjow ‘kdr vlyh rjh rs rkaf=djhR;k fdpdV vlrs vkf.k R;klkBh lqfoK fo’ys”k.k jpukaph vko’;drk vlrs( • To accurately detect small changes within a small area, you must photograph the area from exactly the same spot each time. Shifts in coral heads or rubble due to storms or bio-erosion can make this • ygku {ks=kr ygku cnykal vpwdi.ks rkM.;klkBh] izR;sd osGsl vki.k vxnh R;kp fBdk.kkgwu Nk;kfp=.k dj.ks vko’;d vkgs- izokG ‘kh”kZ almost impossible. This problem can be minimized by the use of monopod frames; fdaok jCcy ;kaps oknG fdaok tSfod&yqIrrk ;kaeqGs tkxso#u ljd.ks ;kl toGikl v’kD; cuow ‘kdrs- eksuksiksM pkSdVhapk okij d#u gh • Corals may be damaged if you place frames over them, especially in topographically complex areas; leL;k dehr deh dsyh tkÅ ‘kdrs( • Photo coverage of large areas is problematic. If a photo is taken from a long distance, the resolu- • izokGkaoj tj vki.k pkSdVh BsoY;kl dnkfpr R;kauk gkfu iksgkspw ‘kdrs] [kkld#u LFkykd`frd fDYk”V {ks=kae/;s( tion and water clarity may not be sufficient to identify organisms. An alternative is to take a series of overlapping photos and create a photo-mosaic. Under optimal conditions, it is possible to make a • fo’kky {ks=kph Nk;kfp=.k O;kIrh leL;kiw.kZ vlrs- tj Nk;kfp= ykacP;k varjko:u ?ksrys xsY;kl] R;kps i`FkDdj.k vkf.k ik.;kpk repeatable and accurate mosaic. lkQi.kk tho/kkjhauk vksG[k.;klkBh dnkfpr iqjsls ulrhy- ;koj ,d fodYi Eg.kts ijLijO;kIr dj.kkÚ;k Nk;kfp=kaph ,d ekfydkp dk<.ks vkf.k Nk;kfp=&ekstsd cuo.ks gks;- b”Vre ifjfLFkrhaP;k v/khu] ,d iqUgk iqUgk dj.;ktksxk vkf.k vpwd ekstsd cuo.ks ‘kD; vlrs-

99 Benthic communities furyLFk lekt

Coral reef managers need information on the status and trends in benthic communities to effec- izokG csVkaP;k izca/kdkal L=ksrkaP;k izHkkoh O;oLFkkiUkklkBh furyLFk lektkaP;k fLFkrh vkf.k #

Coral species diversity izokG iztkrh oSfo/;

Assessing coral diversity is easier where there are fewer species, e.g. Malvan, Goa, Netrani Island, tsFks deh iztkrh vlrkr rsFks izokG oSfo/; eqY;ekiu lksis vlrs] mnk- ekyo.k] xksok] us=kuh csV] fdaok tsFks dkgh iztkrh or where a few species are very dominant. In the Andaman and Nicobar Islands, Lakshadweep, vf/kD; vl.kkÚ;k vlrkr- vaneku vkf.k fudksckj csVs] y{k}hi] eUukjps fdaok dPNps vk[kkr ;kar izokG ok< izk:ikps Gulf of Mannar or Gulf of Kachchh, it often necessary to assess coral growth form as a substitute eqY;ekiu oSfo/;rspk jk[kho Eg.kwu cgqrsdnk vko’;d vlrs- vU; *iztkrh oSfo/;* mik; gs ek’kkadfjrk vlrkr- for diversity. Other ‘species diversity’ measures are for fish. O;kIrh VDdsokjh Percent cover V.kd izokGkph O;kIrhVDdsokjh gh csV vkjksX; eqY;ekiuklkBh izca/kdka}kjs okjaokj okijyh tk.kkjh ekfgrh gks;- fofo/k The percent cover of hard coral is the information most frequently used by managers to assess furyLFk izk.kh vkf.k jksikaphrlsp [kMd vkf.k jCcy ;kaph VDdsokjh O;kIrh] eki.;kl vkf.k let.;kl lksih vlrs- reef health. Percent cover of various benthic animals and plants, as well as rock and rubble, is easy to measure and understand. izokG vkjksX;

Coral health izokG e`r gks.;kekxs vlysY;k dkj.kkaps fu/kkZj.k vkf.k let feGo.;klkBh izokG vkjksX;kps fofo/k n’kZdkaps lafu;a=.k egRokps vlrs- izokG fojatu dkgh o”kkZaiklwu izokG csV O;oLFkkiukr ,d izeq[k fpark cuysyh vkgs] rlsp izokG O;k/kh ;k Monitoring various indicators of coral health is important to determine and understand the causes izdV :ikus okjaokjrk vkf.k forj.kkar okkY;k at a large number of sites; medium-scale surveys can provide more detailed information on the vkgsr ;koj vf/kd ekfgrh iqjow ‘kdrkr- iz’ukae/;s dnkfpr lekfo”V vlw ‘kdrs% abundance and type of coral disease, bleaching or mortality; and permanent fine-scale surveys • vkiY;k lkbZVyk izokG O;k/kh vkgsr dk] vkf.k vlY;kl R;kaPks izdkj vkf.k foiqyrk dk; vkgs\ can provide more information on how different species and specific coral colonies are affected. Questions might include: • izokG fojatukus izokGkauk dls nq”izHkkfor dsys vkgs\

• Are there coral diseases at our sites, and if so what is the type and abundance? izokG fojatu&fofufnZ”V i/nrh • How has coral bleaching affected corals? TO;kid izokG fojatukP;k ifjfLFkrhdh fufgrkFkkZP;k letkl iq

However, the methods following methods have been designed specifically for bleaching. izokGkae/;s O;k/kh mn~Hko.ks izdV :ikus ok

The occurrence of disease in corals is apparently increasing. Disease-specific surveys are useful in regions where this is a particular problem.

100 Structural complexity (rugosity) lajpukRed fDy”Vrk (jxksflVh)

Monitoring the rugosity of a reef is useful in determining how the structure of the coral reef csVkP;k jxksflVhps lafu;a=.k dj.ks] osGsP;k vuqlkj izokG csVkpk

Coral recruitment ,[kkns csV fujksxh vkgs dk ;kps fu/kkZj.k dj.;klkBh nh?kZ dkGklkBhph izokG O;kIrhojhy fdaok izokG ej.k iko.;kP;k njkojhy ekfgrh iqjs’kh ukgh- ,dk fujksxh csVklkBh uo HkrhZ vl.ks vko’;d vkgs] vkf.k ,d L=ksr fdaok vGÓkaph foojs Eg.kwu Information on coral cover or coral mortality over a long period is not sufficient to determine dke d: ‘kd.kkÚ;k izokG csVkaP;k {ks=kal Bjo.;klkBh izokG HkrhZps lafu;a=.k egRokps vlrs- v’kh ekfgrh ‘kkarhHkaxkuarj whether a reef is healthy. A healthy reef must have young recruits, and monitoring coral recruit- csVkP;k iwoZor gks.;kP;k laHkkO;rsps fu/kkZj.k d: ‘kdrs- izokG HkrhZ ,drj olkgr rkVY;k oki:u ekstyh tkÅ ‘kdrs] T;k ment is important to identify coral reef areas that function as a source or sink of larvae. Such uO;k HkrhZaojhy ekfgrh iqjorkr th fujh{k.k dj.;klkBh[kwi ygku vkgsr] fdaok n`”; fdaok Nk;kfp=.k ‘kks/kkauh] lk/kkj.kr% information can determine the recovery potential of a reef after disturbance. Coral recruitment PkkSdV{ks=ke/;sekstyh tkÅ ‘kdrs- fQYM ‘kks/k ;’kLoh HkrhZalkBh igkr vlrkr Eg.ktsp ts R;kaP;k ifgY;k o”kkZuarj ftfor can be measured using either settlement plates, which provide information on new recruits that jkghys- ;k {k.kh rs fQYMe/khy fujh{k.kdR;kZal n`”; vlrkr- are too small to observe in the field, or visual or photographic searches, usually in quadrats. Field searches look for successful recruits i.e. those that have survived their first year. At this point they are visible to observers in the field.

101 Coral monitoring data shee izokG lafu;a=.k MsVk if=dk csV pkp.kh js”kk vuqPNsnhr{ks= & Fkj

lkbZVps uko% ns’k@[kaM% vuqPNsnhr{ks= [kksyh% fnukad% xV izeq[k% MsVk uksandrkZ% vkjaHk osG% (laiw.kZ uko)% Fkjkaps dksM [kkyhy lQsn pkSdVhar Hkjk & fQYM MsVk if=dsizek.ksp- HC V.kd izokG SC e`nw izokG RKC gYyhp ekjysys izokG NIA iks”kds n’kZd ‘ksokG SP Liat RC [kMd RB #Ccy SD okGw SI [email protected] OT vU;

(izFke HkkxklkBh] tj vkjaHk fcanw 0 mvkgs] vafre fcanw vkgs 19.5 m) Hkkx 1 Hkkx 2 Hkkx 3 Hkkx 4 0 - 19.5 m 25 - 44.5 m 50 - 69.5 m 75 - 94.5 m 0 10 25 35 50 60 75 85 0.5 10.5 25.5 35.5 50.5 60.5 75.5 85.5 1 11 26 36 51 61 76 86 1.5 11.5 26.5 36.5 51.5 61.5 76.5 86.5 2 12 27 37 52 62 77 87 2.5 12.5 27.5 37.5 52.5 62.5 77.5 87.5 3 13 28 38 53 63 78 88 3.5 13.5 28.5 38.5 53.5 63.5 78.5 88.5 4 14 29 39 54 64 79 89 4.5 14.5 29.5 39.5 54.5 64.5 79.5 89.5 5 15 30 40 55 65 80 90 5.5 15.5 30.5 40.5 55.5 65.5 80.5 90.5 6 16 31 41 56 66 81 91 6.5 16.5 31.5 41.5 56.5 66.5 81.5 91.5 7 17 32 42 57 67 82 92 7.5 17.5 32.5 42.5 57.5 67.5 82.5 92.5 8 18 33 43 58 68 83 93 8.5 18.5 33.5 43.5 58.5 68.5 83.5 93.5 9 19 34 44 59 69 84 94 9.5 19.5 34.5 44.5 59.5 69.5 84.5 94.5 S1 S2 S3 S4 [kaM ljkljh HC P;k# O;k/kh vlysY;k: #DIV/0! fQYM MsVk if=dsrwu ekst.khl dkWih djk HC P;k# fojatu vlysY;k: #DIV/0! fQYM MsVk if=dsrwu ekst.khl dkWih djk O;k/kh vlysY;k HC ps %: 0 0 0 0 0% fojatu vlysY;k HC ps %: 0 0 0 0 0% RKCps %: 0% 0% 0% 0% 0%

Tjuhpre RKC vkgs> 10%,gs izkFkfed dkj.k fojatu dkWV~l oknG vkgs% vU; fVIi.;k%

csV pkp.kh lkjka’k MsVk ;k js”ks[kkyh VkbZi d: udk ljkljh ekst.kh ljkljh% % % % % SD ,dw.k S1 ,dw.k S2 ,dw.k S3 ,dw.k S4 ,dq.k csjht izfr Hkkx S1 S2 S3 S4 HC 0 HC 0 HC 0 HC 0 HC 0 HC 0 0% 0% 0% 0% 0% 0% SC 0 SC 0 SC 0 SC 0 SC 0 SC 0 0% 0% 0% 0% 0% 0% RKC 0 RKC 0 RKC 0 RKC 0 RKC 0 RKC 0 0% 0% 0% 0% 0% 0% NIA 0 NIA 0 NIA 0 NIA 0 NIA 0 NIA 0 0% 0% 0% 0% 0% 0% SP 0 SP 0 SP 0 SP 0 SP 0 SP 0 0% 0% 0% 0% 0% 0% RC 0 RC 0 RC 0 RC 0 RC 0 RC 0 0% 0% 0% 0% 0% 0% RB 0 RB 0 RB 0 RB 0 RB 0 RB 0 0% 0% 0% 0% 0% 0% SD 0 SD 0 SD 0 SD 0 SD 0 SD 0 0% 0% 0% 0% 0% 0% SI 0 SI 0 SI 0 SI 0 SI 0 SI 0 0% 0% 0% 0% 0% 0% OT 0 OT 0 OT 0 OT 0 OT 0 OT 0 0% 0% 0% 0% 0% 0% # 0 # 0 # 0 # 0 0 ,dw.k vfuok;Zrsus = 40 izR;sd HkkxklkBh.

102 Sample of data sheet for REA transect survey: Hard coral colonies leLr iz{ks=s 2010 REA vuqPNsnhr{ks= loZs{k.k MsVk i=dkpk uewuk% V.kd izokG olkgrh

No Species Transect Position on Size ( Length Sedimentation Mortality % Type and size Ø- iztkrh vuqPNsnhr{ks= Ø- vuqPNsnhr{ks=kojhy vkdkjeku ¼ykach X#anh] xkG lkp.ks % u’ojrk % lg;ksxh Fkjkpk izdkj vkf.k No transect X Width, CM % (diameter, CM ) of CM CM Sedimentation associated substrate Bhdk.k xkG lkp.ks½ vkdkjeku ¼O;kl] ½ H1 H1 H2 H2 H3 H3 H4 H4 H5 H5 H6 H6 H7 H7 H8 H8 H9 H9 H10 H10 H11 H11 H12 H12 H13 H13 H14 H14 H15 H15 H16 H16 H17 H17 H18 H18 H19 H19 H20 H20

Sample of data sheet for REA transect survey: Soft coral colonies REA vuqPNsn{ks= loZs{k.k MsVk i=dkpk uewuk% e`nw izokG olkgrh

No Spe- Transect Position Size ( Length Sedimentation Mortality Type and size (diameter, Ø- iztkrh vuqPNsnhr{ks= Ø- vuqPNsnhr{ks=kojhy vkdkjeku ¼ykach X#anh] xkG lkp.ks % e`R;qnj % lg;ksxh Fkjkpk izdkj vkf.k cies No on X Width, CM % % CM ) of associated Bhdk.k CM xkG lkp.ks½ vkdkjeku ¼O;kl] CM½ transect Sedimentation substrate S1 S1 S2 S2 S3 S3 S4 S4 S5 S5 S6 S6 S7 S7 S8 S8 S9 S9 S10 S10 S11 S11 S12 S12 S13 S13 S14 S14 S15 S15 S16 S16 S17 S17 S18 S18 S19 S19 S20 S20

103 Sample of data sheet for REA transect survey: Physical and biological attributes (not necessary) REA vuqPNsnhr{ks= loZs{k.k MsVk i=dkpk uewuk% HkkSfrd vkf.k tho’kkL=h; ?kVd (vfuok;Z ukgh)

Site Date: Physical Conditions: lkbZV fnukad% HkkSfrd fLFkrh% Transect Water depth: vuqPNsn{ks= Ø- ik.;kph [kksyh% No Meter Phy Biol Remark Meter Phy Biol Remark ehVj HkkSfrd tho’kkL=h; ‘ksjk ehVj HkkSfrd tho’kkL=h; ‘ksjk 1 51 Legend (Physical) 1 51 dksjho 'kCn ¼HkkSfrd½ 2 52 BR= Bedrock 2 52 BR= ryf’kyk 3 53 BD= Boulder 3 53 BD= /kksaMekrh 4 54 CB= Cobble 4 54 CB= /kksaMk 5 55 RB= Rubble 5 55 RB= Mcj 6 56 SD= Sand 6 56 SD= okGw 7 57 ST= Silt and Mud 7 57 8 58 ST= xkG vkf.k fp[ky 9 59 8 58 9 59 10 60 Legend (Biological) 10 60 11 61 BA= Bare dksjho 'kCn ¼tho'kkL=h;½ 12 62 SP= Seepe 11 61 BA= m?kMk 13 63 MA= Macro algae 12 62 SP= fuL;anh Hkwfe 14 64 Ea= Encrusting algae 13 63 MA= eksBs ‘ksokG 15 65 CA= Coralline algae 14 64 Ea= vya—r ‘ksokG 16 66 BY= Bryozoans 15 65 CA= çokykHk 'ksokG 17 67 BN= Barnacles 16 66 BY= czk;ks>ksUl 18 68 HC= hard coral 17 67 19 69 SC= Soft coral BN= cukZdy 18 68 20 70 SA= Sea anemone HC= dBh.k çokG 21 71 19 69 SC= e`nw çokG 22 72 20 70 SA= lh ,useksu 23 73 21 71 24 74 22 72 25 75 23 73 26 76 24 74 27 77 25 75 28 78 26 76 29 79 27 77 30 80 28 78 31 81 29 79 32 82 30 80 33 83 31 81 34 84 32 82 35 85 33 83 36 86 34 84 37 87 35 85 36 86 38 88 37 87 39 89 38 88 40 90 39 89 41 91 40 90 42 92 41 91 43 93 42 92 44 94 43 93 45 95 44 94 45 95 104 Site Date: Physical Conditions: lkbZV fnukad% HkkSfrd fLFkrh% Transect Water depth: vuqPNsnhr{ks= ik.;kph [kksyh% No Ø- Meter Phy Biol Remark Meter Phy Biol Remark ehVj HkkSfrd tho'kkL=h; 'ksjk ehVj HkkSfrd tho’kkL=h; ‘ksjk 46 96 46 96 47 97 47 97 48 98 48 98 49 99 49 99 50 100 50 100

Monitoring When should you choose this method? lafu;a=.klafujh{k.k xV vkf.k vki.rqEgh gh i)r d/kh okijyh ikfgts\ Category & Scale Js.kh vkf.k ekiiV~Vh Broad scale Choose this method for mapping and site selection and to cover a large area quickly. foLr`r eki izfrfp=.k vkf.k lkbZ fuoM rlsp ,dk fo'kky Hkkxkl >ViV O;ki.;klkBh ;k i/nrhl fuoMk- Manta tow or video Percent cover: Estimates percent coral cover over large areas in a short time, at low detail; towed diver limited to shallow, snorkel depths ekaVk Vks fdaok fOgfM;ks Vks O;kIrh VDdsokjh% deh osGkr izokG O;kIrhP;k VDdsokjhpk vankt nsrs] fuEu fooj.kkl( mFkGhl] gokuG [kksyhal e;kZfnr Coral health: Estimates only bleaching percent cover of live. Mk;Ogj izokG vkjksX;% dsoG ftforkaP;k fojatu O;kIrh VDdsokjhpk vankt nsrs- General Percent cover: Estimates of reef change. Good for dive tourism staff to keep an eye on the loZlk/kkj.k fujh{k.ks O;kIrh VDdsokjh% csV cnykaps vankt nsrs- okjaokjP;k HksVhanjE;ku csVkaoj utj Bso.;klkBh MkbOg i;ZVd deZpkÚ;kalkBh observations reef during frequent visits. General information only, low precision. Coral health: Recreational divers and researchers can make observations on coral health; pkaxyh- dsoG loZlk/kkj.k ekfgrh] deh vpwdrk- some training required; many sites covered at low cost. izokG vkjksX;% dje.kwdhlkBh MkbfOgax dj.kkjs vkf.k la’kks/kd izokG vkjksX;koj fujh{k.ks d: ‘kdrkr( FkksMsQkj izf’k{k.k Coral bleaching: Less instruction required. vko’;d( deh [kpkZl fdR;sd lkbZV~lph O;kIrh- Timed swim Percent cover: Estimates the coral cover or abundance of large invertebrates of a large area, izokG fojatu% deh funsZ’k vko’;d- at various depths if scuba is used; not as quick and cost-effective as a manta tow but more osGc/n rj.k O;kIrh VDdsokjh% Ldqckpk okij dsY;kl fofHkUu [kksyhal izokG O;kIrh fdaok foLr`r {ks=kP;k eksBÓk izek.kkrhy detailed. Disease-specific: Easy to carry out; information on extent of bleaching and types of corals vi`"Boa'kh;kaP;k foiqyrspk vankt nsrs( ekaVk Vks brdh pVdu gks.kkjh ulyh rjh vf/kd fooj.kiw.kZ- affected; lower precision compared with belt transects. O;k/kh fufnZ”V% ikj ikM.;kl lksih( fojatukpk vkokdk vkf.k izHkkfor izokGkaps izdkj ;koj ekfgrh iqjors- iV~Vk Medium scale Smaller area, more detailed and more precise than broad scale methods. More time con- vuqPNsnhr{ks=kaP;k rqyusr deh vpwdrk- suming and expensive than broad-scale methods. e/;e eki ygkuxs {ks=] foLr`r ekikP;k i/nrhais{kk vf/kd fooj.kiw.kZ vkf.k vf/kd vpwdrk- foLr`r ekikP;k i/nrhais{kk vf/kd Timed swim Species diversity: The highest level of expertise is required. osG[kkÅ vkf.k egkx- Line transects Percent cover: LIT - experienced staff, low to high detail, precise information; time con- osGc/n rj.k iztkrh oSfo/;% mPpre ikrGhph fo’ks”kKrk vko’;d vlrs- LIT & PIT suming. PIT – less experienced staff needed, quick and easy; can be as precise as LIT. Coral health: High detail and precise, but expertise required and time consuming. js”kh; vuqPNsnhr{ks=s LIT vkf.k O;kIrh VDdsokjh% LIT& vuqHkoh deZpkjh oxZ] deh rs mPp fooj.k] vpwd ekfgrh( osG[kkÅ- PIT& deh vuqHkoh deZpkjh Disease specific: Detailed information, time consuming. PIT oxZ ykxrks] Rofjr vkf.k lqyHk( LIT brdhp vpwd vlw ‘kdrs- izokG vkjksX;% mPp fooj.k vkf.k vpwd] ijarq fo’ks”kKrk Structural complexity: Size information collected along lines provides estimates of rugosity vko’;d vkf.k osG[kkÅ- (MBRS SMP and Line transect by AGRRA). Lakjpuk fDy”Vrk% js”ksP;k lyx eksBÓk izek.kkoj ekfgrh xksGk dsyh tkrs] th jxksflVhps vankt iqjorkr ¼MBRS SMP Belt transect Coral health: Medium detail and fairly quick; low to high expertise required depending on vkf.k AGRRA }kjsjs”kh; dkV{ks=s ½ level of detail wanted; Coral bleaching: Easy to do, but expertise is required; detailed information on the extent of iV~Vk vuqPNsnhr{ks= izokG vkjksX;% e/;e fooj.k vkf.k cjhp osxoku( gO;k vlysY;k fooj.k ikrGhuqlkj deh rs mPp fo’ks”kKrk vko’;d( bleaching and types of corals affected. izokG fojatu% dj.;kl lksis] ijarq fo’ks”kKrk vko’;d( fojatukpk vkokdk vkf.k izHkkfor izokGkaps izdkj ;koj Disease specific: As above. fooj.kiw.kZ ekfgrh iqjors- Chain transect Percent cover: experienced staff, low to high detail, precise information; more time con- O;k/kh fufnZ”V% ojhy izek.ks- suming than LIT. Disease specific: Difficult to carry out; experience required; detailed information on extent J`a[kykvuqPNsnhr{ks= O;kIrh VDdsokjh% vuqHkoh deZpkjh oxZ] deh rs mPp fooj.k] vpwd ekfgrh( LIT is{kkosG [kfpZd- of bleaching and types of corals affected. O;k/kh fufnZ”V% dj.;kl dBh.k] vuqHko vko’;d( fojatukpk vkokdk vkf.k izHkkfor izokGkaps izdkj ;koj fooj.kiw.kZ Structural complexity: Difficult to carry out; experience required. ekfgrh iqjors- Video transect Percent cover: High precision, medium detail; permanent record; experienced divers to col- Lakjpuk fdpdVi.kk% ikj ikM.;kl dBh.k] vuqHko vko’;d- lect data and experienced scientists for analysis; expensive equipment to buy and main- tain; do not use unless suitable resources are available. fOgMh;ks vuqPNsnhr{ks= O;kIrh VDdsokjh% mPp vpwdrk vkf.k e/; fooj.k] dk;eLo#ih uksanh( MsVk xksGk dj.;klkBh vuqHkoh Mk;OglZ( Fine scale Useful for asking detailed, small-scale questions. More time consuming and expensive than fo’ys”k.kklkBh vuqHkoh ‘kkL=K( [kjsnh dj.;kl o ns[kHkkyhl egkx lk/kulkexzh- tksoj vuqdwy L=ksr miyC/k ukghr medium-scale surveys. rksoj oki: udk- Visual quadrat Percent cover: High precision and detail, but less precise than permanent photo quadrats. lw{e eki fooj.kiw.kZ] y?kq&ekikps iz’u fopkj.;klkBh mi;qDr- e/;e&ekikaP;k losZ{k.kkais{kk osG[kkÅ vkf.k egkx- Smaller animals, e.g. coral recruits can be recorded more reliably with visual methods than photo quadrats. n`”; DokMªWV O;kIrh VDdsokjh% mPp vpwdrk vkf.k fooj.k] ijarq dk;eLo#ih PkkSdV{ks=kis{kk deh Li”Vrk- ygkuxs izk.kh mnk- izokG Disease specific: Very high detail and time consuming. Provides information on the extent HkrhZ n`”; i/nrhus Nk;kfp= PkkSdV{ks=kis{kk vf/kd fo’okliw.kZrsus uksanrk ;srkr- of bleaching and the types of corals affected. O;k/kh fufnZ”V% [kwip mPPk fooj.k vkf.k osG[kkÅ- fojatukpk vkokdk vkf.k izHkkfor izokGkaps izdkj ;koj ekfgrh iqjors- Coral recruitment: Provides information on coral recruits that have survived their first year izokG HkrhZ% v’kk izokG HkrhZaoj ekfgrh iqjors] T;kauh csVkaojhy R;kaP;k ifgY;k o”kkZr rx /kjyk- on the reef.

105 Monitoring When should you choose this method? lafu;a=.k Js.kh vkf.k ekiiV~Vh vki.k gh i/nr dsOgk fuoMkoh\ Category & Scale dk;eLo#ih Nk;kfp= DokMªWV O;kIrh VDdsokjh% mPp vpwdrk vkf.k ri’khy( dk;eLo#ih uksanh( MsVk xksGk dj.;klkBh vuqHkoh Mk;OglZ( Permanent photo Percent cover: High precision and detail; permanent record; experienced divers to collect quadrat data; experienced scientists to analyse; expensive equipment to buy and maintain. Do not fo’ys”k.kklkBh vuqHkoh ‘kkL=K( [kjsnh dj.;kl o ns[kHkkyhl egkx lk/kulkexzh- tksoj vuqdwy L=ksr miyC/k ukghr use unless suitable resources are available. rksoj oki: udk- Tagging coral Disease specific: Highest detail and most time consuming; provides precise information on izokG olkgrhal VWx dj.ks O;k/kh fofufnZ”V% mPpre ri’khy vkf.k lokZr tkLr osG[kkÅ( fofufnZ”V izokG olkgrhaoj rlsp R;k O;k/khaeqGs d’kk colonies specific coral colonies and how these are affected by disease. nq”izHkkfor gksrkr ;koj vpwd ekfgrh iqjors- Recruitment tiles or Coral recruitment: Provides information on coral recruits that are newly arrived on a reef. plates HkrhZ gks.kkÚ;k VkbZYl fdaok izokG HkrhZ% uO;kus csVkoj vkysY;k izokGkaP;k HkrhZoj ekfgrh iqjors- IysV~l

106

6.6.12 Assessment of biodiversity of rocky shores 6.6.12 [kMdkG fdukÚ;kaP;k tSofofo/krsps eqY;kadu

Apart from the better known habitats, there are several rocky vR;kf/kd ifjfpr oLrhLFkkukaP;k O;frfjä] Hkkjrh; mi[kaMkP;k lHkksorkyh dkgh outcrops around the Indian subcontinent. These rocky islands/ mapoVs Lo#ikps [kMdkG Hkkx vkgsr- [kMdkG csVs@mapoVs gs [kMdkG i`”BHkkx] outcrops frequently have a rocky substratum in the form of rocky xqgk] Hksxk b- P;k Lo#ikr [kMdkG ik;kaoj fLFkr vlrkr- T;kizek.ks izokG csVs beds, caves, crevices, etc. These features provide varied habi- iqjorkr R;kpizek.ks gs xq.k/keZ ek’kkauk oSfo/;iw.kZ oLrhLFkkus iqjorkr- rs tats for fishes just as a coral reef does. They attract fish from all lHkksorkyP;k ek’kkauk vkdf”kZr djrkr o vkljk iqjorkr- ;kizdkjs ;k [kMdkG around and provide refuge. Thus the fish diversity of these rocky Hkkxkap ek’kkaph oSfo/;rk mPp vlrs] vkf.k R;kauk [kMdkG tSofofo/krk oLrhLFkkus areas is high, and they are known as rocky biodiversity habitats. Eg.kwu vksG[kys tkrs-

Long-term monitoring of the rock fauna is important for con- [kMd izk.khthoukps nh?kZ&dkyhu lafu;a=.k R;kaP;k truhdj.kklkBh egRokps vkgs- serving them. Quadrats, line transects, belt transects and point PkkSdV{ks=] js”kh; vuqPNsnhr{ks=s] iV~Vk vuqPNsnhr{ks=s vkf.k fcanw ekst.kh ;k [kMdkG counts are some of the methods used commonly to monitor the fdukjiV~VÓkaoj izk.khthoukps lafu;a=.k dj.;kP;k dkgh i/nrh vkgsr- PkkSdV{ks= fauna along the rocky coasts. The quadrat and belt transect vkf.k iV~Vk vuqPNsnhr{ks=s i/nrh Eg.kts dsoG ,dk Bjkfod {ks=krhy izk.;kaph methods are nothing but counting all the animals in a fixed area. x.kuk dj.ks ,o

6.6.13 Fish census 6.6.13 eRL;x.kuk

The different fish species that appear together are referred to as fofHkUu ekls iztkrh T;k ,d= fnlwu ;srkr R;kauk Þekls tekoß EgVys tkrs- a “fish assemblage.” Three aspects of reef fish assemblages that csVkyxrP;k ek’kkaP;k tek gks.;kph lafu;a=.kktksxh rhu vaxs vkgsr% can be monitored are: • oSfo/;rk% fofHkUu iztkrhaph la[;k( • Diversity: the number of different species; • lajpuk % iztkrhaph lajpuk vkf.k rqyukRed foiqyrk( vkf.k • Structure: species composition and relative abundance; and • tula[;k ?kurk% iztkrhP;k ek’kkaph izfr ,dd {ks=kph la[;k. • Population density: the number of fish of a given species per unit area. leLr rhu xq.kfo’ks”kkauk vpwdrsus ekiw ‘kd.kkjh ,dp x.kuk i/nr fodflr djkoh vls iz;Ru dj.kstjh pkyw vlys rjh] ekls tSo’kkL=K lk/kkj.kr% v’kh ,dy Although attempts have been made to develop a single census i/nr vfLRkRokr ul.;koj lger vkgsr- vkiY;k O;oLFkkidh; xjtkalkBh method that will accurately measure all three characteristics, fish dks.krh ekfgrh lokZr xjtsph vkgs gs Bjowu exp ,d fdaok vf/kd ;Fkk;ksX; biologists generally agree that no such single method exists. You i/nrhaph fuoM djk;yk goh- will need to decide what information is most important for your management needs and then select one or more appropriate 6.6.13.1 x.kuk i/nrh methods. n`”;Lo#ikuseRL;x.kuk dj.;klkBhph lokZr tkLr okijY;k tk.kkÚ;k i/nrh vkgsr% LFkk;h ekst.kh] iV~Vk vuqPNsnhr{ks=s] vkf.k ;kn`fPNd rj.k ra=s- i/nr fuoMrkuk] 6.6.13.1 Census methods lacaf/kr ek’kkP;k iztkrhP;k okx.kwdhl y{kkr ?ks.;kph [kk=h djk ¼mnk- xw<] f’kdkÅ] Mk;OglZeqGs vkdf”kZr gks.kkjh fdaok nwjtk.kkjh½. The most common methods for visual fish censuses are: station- ary counts, belt transects, and random swim techniques. In • LFkk;h x.kuk rqyukRed foiqyrk vkf.k lxGÓk iztkrhaP;k R;k lkbZVyk ?kMwu choosing a method, be sure to consider the behaviour of the rel- ;s.;kph okjaokjrk ;koj >ksr Bsors- evant fish species (e.g., cryptic, schooling, attracted or repelled • iV~Vk vuqPNsnhr{ks=s i/nr vf/kd pkaxys ?kurk vankt feGorkr vkf.k izfr by divers). x.kuk foLr`r {ks= O;kirs- • The stationary census focuses on the relative abundance • ;kn`fPNd rj.k ra= laiw.kZ iztkrh le`/nrsoj vf/kd ifjiw.kZ ekfgrh iqjors- and frequency of occurrence of all the species observed at the site. • The belt transect method yields better density estimates and covers a larger area per census. • The random swim technique provides more complete infor- mation on the total species richness. 6.6.13.2 Limitations 6.6.13.2 lhek

All visual census methods have the following limitations: lxGÓk n`”;Lo#ikus dsY;ktk.kkÚ;k x.kukauk iq

6.6.13.3 Frequency and number of censuses for effective monitoring 6.6.13.3 izHkkoh lafu;a=.kklkBh okjaokjrk vkf.k x.kukaph la[;k

How many censuses, how many sites and how often to sample will depend on your monitor- fdrh x.kuk] fdrh lkbZV~l vkf.k fdrh okjaokj uewukdj.k djkos gs vkiY;k lafu;a=.k mfn~n”Vkaoj voyacwu vlsy- lq#okrhl] ing objectives. Initially, you may want to census fish over several consecutive days to determine vkiY;kyk vYi&dkGkr dkgh cny gksr vkgs dk ;kps fu/kkZj.k dj.;klkBh dkgh fnol ykxksikB eRL;x.kuk djkoh’kh if there is any short-term variability. To detect seasonal changes in abundance and species okVsy- iztkrhaph le`/nrk vkf.k foiqyrk ;krhy eksleh cnykal rkM.;klkBh] tksoj vk/kkjjs”kk LFkkfir gksr ukgh rksoj richness, fish should be censused monthly until a baseline is established. To detect long-term eRL;x.kuk ekfldjhR;k dsyh tkoh- nh?kZ&dkyhu cnykauk’kks/k.;klkBh] o”kkZr dehr deh ,dnk uewukdj.k djk;yk gos] changes, sampling should be conducted at least once a year, at approximately the same time of fnolkP;k vankts R;kp osGsl- R;kp efgU;kr fdaok dehr deh izR;sd o”khZ R;kp ekslekr x.kuk dj.ks ilarhizkIr vlrs] T;kr day. It is preferable to census during the same month or at least in the same season each year, dehr deh 10 x.kuk izR;sd lkbZVyk izR;sd osGsl ikj ikMysY;k vlrkuk- la[;k’kkL=h; fo’ys”k.k dnkfpr uewukdj.kkP;k with at least 10 censuses conducted each time at each site. Statistical analysis may indicate more b”VrerslkBh vf/kd uewus xjtsps vkgsr vls n’kZow ‘kdrs- samples are necessary to optimize sampling 6.6.13.4 LFkkoj eRL;x.kuk 6.6.13.4 Stationary fish census LFkkoj eRL;x.kuk i/nr laiw.kZ Hkkjr&iWflfQd {ks=kr cjhp foLr`ri.ks okijyh tkr vkgs- izkFkfed ra= ;sFks izLrqr dsys tkr The stationary fish census method has been very widely used throughout the Indo-Pacific region. vkgs] tjh vkiY;kyk ;k i/nrhr dsysyk cny vkiY;k fof’k”V HkkxklkBh mRre vlY;kps okVr vlys rjhgh- ;Fkk;ksX; The basic technique is presented here, although you may find a variation of this method better ifjorZu ¼mnk- uewukdj.k dsY;k tk.kkÚ;k Hkkxkps {ks=eki cny.ks] izfr x.kusl ?kkyoysyk osG] ik.;k[kkyh vlrkuk osGsps for your particular area. Appropriate modifications (e.g., changing the size of area sampled, the okVi dls dsys tkrs½ gs loZ LFkkuh; ifjfLFkrhaoj voyacwu vlsy ¼mnk- n`”;rk] [kksyh½ vkf.k O;oLFkkiu xjtk- amount of time spent per census, how the time is allocated while underwater) will depend on lo- cal conditions (e.g., visibility, depth) and management needs.

1. Establish a sampling radius. At each randomly selected site, record the depth, maximum re- 1. uewukdj.kkph f=T;k LFkkfir djk- izR;sd ;kn`fPNdi.ks fuoMysY;k lkbZVyk] [kksyhph uksan ?;k] lkbZVph vf/kdre lief of the site, and percent cover by various bottom type classifications (e.g., sand/clay, rock eqDrrk] vkf.k fofo/k rGkP;k izdkjkps oxhZdj.kka}kjsaph O;kIrh VDdsokjh ¼mnk- [email protected]] [kMd lajpuk] ‘ksokG] structure, algae, rubble, etc.). Stretch a tape measure out 15 metres along the desired area to nxMfoVkaps rqdMs] b-½- uewukdj.k O;kl vk[k.;klkBh ,d ekiu iV~Vh LokjL;kP;k {ks=klyx 15 ehVj ykac vks

111 (e.g., Black tailed snapper Lutjanus fulvus, would be LUFU) or the first three letters, if necessary ¼mnk-] dkGh ‘ksiVhPkk LuWij yqrtkul Qqyol ¼Lutjanus fulvus½] cusy LUFU fdaok ifgyh rhu v{kjs] tj leku to distinguish between similar names. ukokae/khy Qjd nk[ko.ks vko’;d >kY;kl- During this initial 5 minute period, list only the different species you observe within the cyl- lq#okrhP;k 5 fefuVkaP;k dkGkr] vki.k flysaMje/kwu ikgw ‘kdr vlysY;k fofHkUu iztkrhaphp ukos ;knhc/n djk- ek’kkps inder. Do not record data on fish size or numbers of individuals – except for species that are vkdkjeku fdaok R;kaph la[;k ;koj MsVk uksanw udk &dsoG v’kk iztkrhapk viokn oxGwu T;k flysaMje/kwu tkr vkgsr moving through the cylinder and are unlikely to remain there, e.g. sharks, rays, mackerels, vkf.k frFks jkg.;kph ‘kk’orh okVr ulY;kl] mnk- ‘kkdZ] iljV ekls] iV~Vsnkj ekls] tWDl- jacks. 3. ;knhojhy izR;sd iztkrhph la[;k vkf.k vkdkjeku uksank- tsOgk lq#okrhpk 5 fefuVkapk dkG lairks] vki.k lwphc/n 3. Record the number and size of each species on the list. When the initial 5-minute period is dsysY;k iztkrhaP;k vkdkjeku vkf.k foiqyrsojhy MsVk uksan.;kl lq# djk over, begin recording data on the size and abundance of the species you have listed • vkiY;k iztkrh lwphP;k [kkyiklwu oji;Zar dke djr] izR;sd iztkrhP;k ek’kkaph la[;k ekstk vkf.k ekik] ,dk • Working up from the bottom of your species list, count and measure the number of fish of osGsl ,d iztkrh] 7-5 ehVj [kq.ksHkksorh fQjrkuk tksoj laiw.kZ Hkkx U;kgkGyk tkr ukgh- each species, one species at a time, turning around at the 7.5 metre mark until the entire • tsOgk fo’kky ‘kkGk mifLFkr vlrkr] ek’kkapk vkdMk 10] 20] 50 fdaok 100 P;k iVhrgh ekstwu vankt cka/krk ;srks- area is scanned. • ek’kkaP;k dkVÓkaP;k ykachpk vankt yko.;kl ¼ojhy tcMÓkP;k Vksdkiklwu rs ikBhojhy e/;d js”kkaP;k varki;Zar½] • When large schools are present, the number of fish may be estimated by counting in 10s, R;kl ekiuiV~Vhoj ekstk- izR;sd iztkrhl iq

• If a species listed during the initial 5-minute sampling period is no longer present, record izR;sd x.kuslkBh [kksYkh ekiukP;k] lkbZVph eqDrrsP;k] [kMdkG oLRkhLFkkukaph lajpuk] [email protected]] vkf.k ‘ksokG data from memory. uksan.;klkBhP;k osGklg15 fefuVkagwu vf/kd osG ykxw u;s- vkiY;k ik.;k[kkyhy MsVk uksanh [kkyh nk[koysY;k uewU;kizek.ks • Any additional fish species observed in the sampling cylinder after the initial 5 minute list- fnlrhy] T;kr iztkrhaph lwphc/nrk vkf.k izR;sd vkdkjeku Js.khr ekstysY;k R;k iztkrhaP;k oS;fDrdkaph la[;k vlsy- ;k ing period are ignored unless you want to include them on a site species list. mnkgj.kkr] fujh{k.kdR;kZus ,d yqrtkul Qqyol ¼Lutjanus fulvus½ ikfgyk tks 15 lsaVhehVj ykac vkf.k nksu ts 5&7 lsaVhehVj ykachps gksrs- Each census should take no longer than 15 minutes, including the time needed to record the depth, relief of the site, structure of the rocky habitat, sand/clay, and algae. Your underwater data uewuk eRL;x.kuk MsVk i=d record may look something like the sample shown below, listing the species and the number of iztkr vkdkjeku Js.khizek.ks ek’kkaph la[;k vkf.k ykach individuals of that species counted in each size category. In this example, the observer saw one LOSUR 3 (1-2) 43 (2-6) 45 (3-7) Lutjanus fulvus that was 15 centimetres long and two that were 5-7 centimetres long. MUCE 2 (5-9) 12 (13-15) Sample Fish Census Data Sheet PLCHU 2 (130) 2 (10-13) Species No. And length of fish by size category DRPU 1 (3-4) LOSUR 3 (1-2) 43 (2-6) 45 (3-7) tsOgk vki.k MsVk lax.kd LizsM’khVe/;s Hkjrk] izR;sd vkdkjeku oxkZr izR;sd iztkrhpk vkdMk vkf.k ek’kkaps U;wure] MUCE 2 (5-9) 12 (13-15) vf/kdre vkf.k ljkljh vkdkjeku ;kaph uksan djk- PLCHU 2 (130) 2 (10-13) DRPU 1 (3-4) lq/kkjcny% dkgh vUos”kdkauk vls vk

One modification reduces the cylinder radius to 5 metres and includes any species observed dur- ing the entire 15 minute period. Because many fish adapt to the presence of a diver during the 15 minute period, this modifications results in the inclusion of more small, cryptic, and sedentary fish (e.g., gobies, blennies, morays). This method may also yield better density estimates for small, abundant territorial species.

112 6.6.13.5 Belt transect census 6.6.13.5 iV~Vk vuqPNsnhr{ks= x.kuk

Belt transects cover a larger area per census compared with stationary counts and are considered iV~Vk vuqPNsnhr{ks= x.kuk LFkk;h ekst.khP;k rqyusr izfr x.kuk {ks=kr ,d foLr`r {ks= O;kirs rlsp rqdMÓk rqdMÓkus most useful for counting patchily distributed species. They can be conducted along permanent forjhr iztkrhaP;k x.krhlkBh lokZr mi;qDr ekuyh tkrs- ;k izdkjph x.kuk losZ{k.k vk/kkjd fdaok vU; fpUgd vlysY;k transects marked with survey stakes or other markers that are randomly selected each time. dk;eLo#ih vuqPNsnhr{ks=kar dsyh tkÅ ‘kdrs Tkh izR;sd osGsl ;kn`fPNdi.ks fuoMYkh tkrkr-

The length and width of a belt transect may vary according to the species targeted by the census, iV~Vk vuqPNsnhr{ks=kP;k ykach vkf.k :anhr x.kus}kjs yf{;r iztkrhaP;k vuqlkj rQkor vlw ‘kdrs] i.k uewukdj.k dsysY;k but you must use the same dimensions for all transects sampled. A narrow transect (2 metres izR;sd vuqPNsnhr{ks=kalkBh vki.k vfuok;Zi.ks rhp ekstekis okijko;kl goh- ,d v#an vuqPNsnhr{ks= ¼1ehVlZ #an½ dnkfpr wide) may be good for small, cryptic species, while a wider transects (4 to 5 metres) can be use- ygku] xw< iztkrhalkBh pkaxys Bjsy] tsOgk dh foLrkjhr vuqPNsnhr{ks=s ¼4 rs 5 ehVlZ½ xzqilZ] LuWilZ] vkf.k iWjVfQ’klkBh ful for groupers, snappers, and parrotfish. Here is the basic technique: mi;qDr B: ‘kdrs- gs vkgs eqyHkwr ra=(

1. Swim at a constant speed along the selected area while stretching a fibreglass measuring 1. Qk;cjXykl ekiu iV~Vhl rGklyx 50 fdaok 100 ehVlZ rk.kr] fuoMd {ks=klyx fLFkj osxkus iksgk- tape 50 or 100 metres along the bottom. 2. vki.k tltls vuqPNsnhr{ks=klyx iksgrk o iV~Vhl m?kMrk] oS;fDrdkaps vkdMs] rlsp ,dk Bjkfod varjknjE;ku 2. As you swim along the transect and unreel the tape, record the fish species, number of indi- iztkrhaph U;wure o vf/kdre ykach ¼1 rs 5 ehVlZ½ nksUgh cktwal vkf.k js”ksP;k oj] T;kr T;k iztkrh vkiY;k [kkyh viduals, and the minimum and maximum lengths of species within a prescribed distance (1 vkgsr fdaok vkiY;k leksj frjdl vkgsr R;kauk /k#uek’kkaP;k iztkrhauk uksano-] vkiY;k ekxwu vuqPNsnhr{ks=kr f’kj.kkÚ;k to 5 metres) on either side and above the line, including species that are underneath you or ek’kkaph uksan d: udk- cross in front of you. Do not record fish entering the transect area behind you. iqUgk iqUgk dj.;kP;k x.kukalkBh iksg.;kpk osx ekud vl.ks vko’;d vkgs% mPprsus Hkze.k’khy vlysY;k iztkrh deh osxkr The swimming speed must be standardized for repeated censuses; highly mobile species may be vlrkuk vfr&vankftr gksÅ ‘kdrkr] tsOgk xw< iztkrh osxoku xfreqGsutjsru lqVw ‘kdrkr- over-estimated at slow speeds, while cryptic species may be overlooked at faster speeds.

iV~Vk vuqPNsnhr{ks= x.kuk

6.6.13.6 Random swim technique 6.6.13.6 ;kn`fPNd rj.k ra=

The random swim technique provides good information on relative abundance and species rich- ;kn`fPNd rj.k ra= rqyukRed foiqyrsoj vkf.k iztkrhaP;k le`/nrsoj mRre ekfgrh iqjors] ijarq tula[;k ?kursoj ukgh- ness, but not on population density. The entire census period is spent searching for unrecorded leLr x.kuk dkyko/kh ek’kkaP;k vU; MsVkl uksan dj.;kis{kk uksan u >kysY;k ek’kkaP;k iztkrhauk ‘kks/k.;kr ?kkyoyk tkrks- fish species rather than recording other data about the fish. To obtain reliable data, replicate fo’oklkgZ MsVk feGo.;klkBh] gqcsgwc uewuk x.kuk ikj ikM.ks vko’;d vkgs- sample censuses must be conducted. 50 fefuVkaP;k x.kuslkBh eqyHkwr ra= [kkyhyizek.ks izLrqr vkgs- The basic technique for a 50 minute census is presented below. 1. fuoMd {ks=kar ;kn`fPNd fBdk.kkaoj x.kuk lq# djk 1. Begin the census at a random location in the selected area 2. x.kuk dkyko/kh ikp 10 fefuVkaP;ke/;karj dkGkae/;s foHkkftr vlsy- e/;karj dkGkr izR;sd iztkrhps uko uksanok T;kr 2. The census period is divided into five 10 minute intervals. Record the name of each species fryk izFke ikfgys xsys- in the interval in which it is first seen. 3. R;kP;k foiqyrspk vankt yko.;klkBh] izR;sd iztkrhl R;kl ifgY;kank ikfgY;k xsysY;k varjkGkP;k vk/kkjkoj ,d xq.kla[;k 3. To estimate its abundance, each species is given a score based on the interval within which fnyh tkbZy- ¼vf/kd foiqyrkiw.kZ iztkrh vk/khP;k] rj xw

113 6.6.13.7 Fish census datasheet 6.6.13.7 eRL;x.kuk MsVk i=d

Your data sheet may looking something like this: vkiys MsVk i=d dnkfpr vls fnlsy%

uewuk ;kn`fPNd rj.k MsVk i=d

2/5/94: mPp eap] izokG O;kIrh% 21 VDds] [kksyh% 52* 0-10 min 11-20 min 21-30 min 31-40 min 41-50 min

GOEV HARA POPA CHAN EPCR STPL HAMA HOTR SAVE LAGO ST DO HABI CHCA OPMA SETO SCVI CHCY ANVI SCCO SPRU ABSA CAPU OCCH CHMU HYPU STPA CARU CARO

Score: 5 Score: 4 Score: 3 Score: 2 Score: 1

6.6.13.8 Monitoring the abundance of fishes 6.6.13.8 ek’kkaP;k le`/nrsps lafu;a=.k dj.ks

Date: Time: GPS Location: rkjh[k% osG% GPS fBdk.k% Weather: Gird No: Plot No: Salinity: gokeku% fxzM Ø% IykWV Ø% {kkj;qDrrk% Air Temp: Water Temp: Depth: Velocity: gosps rkieku% ik.;kps rkieku% [kksyh% osx%

Description of Effort: (Net, boat, number of fishermen etc) .. iz;Rukaps fooj.k% ¼tkGs] cksV] dksGÓkaph la[;k b-½

Sl.No. Species Total length (this column Body Length (Max Weight Remarks vuq- Ø- Ikztkrh ,dw.k ykach ¼gk LraHk dnkfpr ‘kjhjkph ykach ¼vf/kdre otu ‘ksjk may not be required!!! and Min) vko’;d ulsy!!½ vkf.k U;wure½

114 6.6.13.9 Fish survey data sheet 6.6.13.9 eklssslosZ{k.k MsVk i=d

Fish Survey Data Sheet ekls losZ{k.k MsVk i=d Name of Station: losZ{kdkps ukao LVs’ku% Surveyor: Site: LkkÃV%

Assistant: Date: Wind: Cloud: Visibility Lkgk;d% Rkkjh[k% okjk%

Size (cm) Fish ID <5 5-10 10-15 15-20 20-25 25-30 30-35 >35 vkdkj (cm) ek’kkph ID <5 5-10 10-15 15-20 20-25 25-30 30-35 >35

Entered by: Date: Hkj.kkÚ;kps uko% rkjh[k% Statistical analysis by: Date: lkaf[;dh; fo’ys”k.kdR;kZps uko% rkjh[k%

6.6.13.10 A comparison of different fish census methods 6.6.13.10 fofo/k eRL;x.kuk i/nrhaph rqyuk Comparisons of fish census methods Advantages Disadvantages fofo/k eRL;x.kuk i/nrhaph rqyuk Stationary Good for relative abundance; allows large Takes longer to train people; less likely to ykHk rksVs Census sample sizes in distinct habitats provide a complete site species list (unless modified) LFkk;h x.kuk rqyukRed foiqyrslkBh pkaxyh( izkoh.;iw.kZ yksdkauk izf’kf{kr dj.;kl tkLr dkG ?ksrs( iw.kZ lkbZV Belt Large area can be sampled per census; Fewer samples per unit of time compared oLrhLFkkukar fo’kky uewuk vkdkjkaph eqHkk nsrs iztkrh ;knh iqjo.;kph ‘kD;rk deh vlrs ¼tksoj Qsjcny Transect can target more mobile species; may with stationary methods; may not provide data djr ukgh½ provide more accurate density estimates on small habitats iV~Vsnkj izfr x.kuk fo’kky {ks=kps uewukdj.k dsys tkÅ ‘kdrs( osGsP;k izfr ;qfuVyk LFkk;h i/nrha’kh rqyuk dsY;kl for species such as snappers and groupers vuqPNsnhr{ks= vf/kd fQjR;k iztkrhal y{; d: ‘kdrs( LuWilZ vkf.k FkksMds uewus( ygku oLrhLFkkaukaoj dnkfpr MsVk iqjow Random Mostly likely to provide complete species Fewer samples per unit of time; provides xzqilZlkj[;k iztkrhalkBh tkLr vpwd ?kurk vankt ‘kd.kkj ukgh- Swim list; describes a larger portion of species fewer quantitative data and no density iqjow ‘kdrs per sample estimates. ;kn`fPNd rj.k laiw.kZ iztkrh ;knh iqjo.;kph vf/kdre laHkork( izfr osGsP;k izfr ;qfuVyk FkksMds uewus( FkksMdk la[;kRed MsVk uewuk iztkrhaP;k fo’kky Hkkxkps o.kZu nsrs iqjors vkf.k ?kurk vankt iqjor ukgh-

115 6.6.13.9 Data analysis of fish census 6.6.13.9 eRL;x.kuk MsVk fo’ys”k.k

You need to consider how you will analyze the data when you design your fish censusing method. tsOgk rqEgh eRL;x.kuk i/nrhph jpuk djrk rsOgk MsVk fo’ys”k.k dls dj.kkj gs fopkjkr ?ks.ks vko’;d vkgs- lk/kkj.kr% rs It is usually important to analyse data on frequency of occurrence, abundance, richness, even- ?kM.;kP;k okjaokjrsP;k] foiqyrsP;k] laiUursP;k] lekursP;k vkf.k oS;fDrd lkbV~lyk vl.kkÚ;k vkf.k R;kaP;k njE;kuP;k ness and diversity of species at individual sites and among sites. Data on changes in relative iztkrhaP;k oSfo/;rsojhy MsVkps fo’ys”k.k dj.ks egRokps vlrs- ijLij foiqyrk vkf.k ?kM.;kP;k okjaokjrsrhy cnykaojhy MsVk abundance and frequency of occurrence can provide information on population changes for oS;fDrd iztkrhalkBh tula[;k cnykoj ekfgrh iqjow ‘kdrks- egRokP;k iztkrhaP;k ljkljh vkdkjkrhy vkf.k vkdkj oxkZP;k individual species. Changes in average size and structure of size classes of important species can

116

6.7 Overview of data analysis 6.7 MsVk fo’ys”k.kkps fogaxkoyksdu

There are some standard methods to analyse the relative abundance of various substrate fofo/k v/k%Lrj Js.khaph rqyukRed le`/nrsps fo’ys”k.k dj.;klkBh dkgh ekud i/nrh vkgsr] tls dh ftoar izokG categories such as live coral cover, dead coral cover and their coral life forms, sponge, zoo- O;ki.ks] e`r izokG O;ki.ks vkf.k R;kaPks izokG vk;q”; izdkj] Lik¡t] >w&v¡fFkM~l] eWØks vkf.k ek;Øks ‘ksokG] okGw vkf.k anthids, macro and micro algae, sand and other benthic categories following formula were vU; furyLFk Js.khalkBh] [kkyhy lw= okijys tkr used. O;kIrh VDdsokjh ¾ Js.khph ,dw.k ykach@vuqPNsnhr{ks=kph ykach X 100 Percent cover = Total length of category/length of transect X 100 izR;sd izokGkph ijLij le`/nrk [kkyhy lw= oki#u ekiyh tkrs The relative abundance of each coral is calculated using the following formula ijLij le`/nrk ¾iztkrhaph O;kIrh@vuqPNsnhr{ks=kph ykach X 100 Relative abundance = cover of the species/total live coral cover X 100 gsp lw= vU; thoizdkj tls dh lw{e vi`”Boa’kh] ekls] ‘ksokG] leqnzh xor b- ;kalkBhgh vafxdkjys tkÅ ‘kdrs- Same formulacan be adopted for other lifeforms such as macro invertebrates, fish, algae, sea grass etc. oSfo/;] lekurk vkf.k izHkkfork

Diversity, evenness and dominance iztkrh oSfo/;rk vkf.k lekurk ‘kWuksu foOgj vkf.k flaIlu oSfo/;rk n’kZd okijys tkÅ ‘kdrkr] dkj.k dh ‘kWukWu oSfo/; n’kZd nqfeZG iztkrhaoj tksj Bsorks vkf.k flaIlu n’kZd loZlkekU; iztkrhaoj- Species diversity and evenness Shannon Weaver and Simpson diversity indices can be used, as Shannon diversity index emphasizes on rare species and Simpson index on most common oSfo/;klkBh ‘kWukWu&foOgj lw=kps *oS;fDrd* ekuY;k tk.kkÚ;k js”ks[kkyh 1 lsehizkstsD’kulg [kkyhyizek.ks ekiu djrk species. ;sbZy]

The Shannon-Weaver formula for diversity can be calculated as follows, with a projection of s 1 cm under the line being considered as an ‘individual’ H’ = 1- pi In pi i =1 s Σ H’ = 1- pi In pi tssFkspi = ni/N, N =js”ks[kkyh vlysY;k loZ iztkrhaps ,dw.k lsaVhehVlZ ¼oS;fDrd½] vkf.k ni = i js”ks[kkyhy iztkrhapk i =1 lsaVhehVjpk vkdMk- Σ where pi = ni/N, N = total number of centimetres (individuals) of all species under the line, lekursps eksteki J’ = H’/Hmax ;k izdkjs dsys tkÅ ‘kdrs] ts Eg.kts fopkjk/khu vlysY;k ,dw.k oS;fDrdkaps and ni = the number of centimetres of species i under the line. oSfo/; ¼lsaVhehVlZ½ Hkkxys] tj lxGÓk mifLFkr iztkrhal leku forjhr dsY;kl vfLrRokr vlysys oSfo/;- 1-00 ps eqY; vf/kdre lekursl n’kZors- izR;sd l¡ifyax lkbZVlkBh oSfo/; vkf.k lekurk lxGÓk vuqPNsnhr{ks=kiklwuP;k Evenness can be calculated as J’ = H’/Hmax, which is the diversity of the total number of lafeJ MsVkiklwu ekiyk tkÅ ‘kdrks- individuals (centimetres) under consideration divided by the diversity which would exist if all the species present are distributed equally. A value of 1.00 represents maximum evenness. flaIlu lwpdkadkph ‘kWukWu vkf.k foOgj lwpdkadk’kh rqyuk dj.;klkBh] flaIlupk iq

Index of dominance = Abundance of dominant coral species / Total coral cover çHkkfork lwpdkad ¾ izHkko’kkyh izokG iztkrhaps vf/kD;@,dw.k izokG O;kIrh

For inter-station comparison, the data on relative abundance and absolute change in abundance vkarj&voLFkku rqyuslkBh] ijLij le`/nrsojhy MsVk vkf.k izokGkae/khy le`/nrse/khy fuOoG cny rlsp vU; thoizdkj of corals and other lifeforms are subjected to agglomerative hierarchical analysis using the Ward gs CykWd varj ekiuklkg okWMZ i/nrh oki#u lafifMr oxhZd`r fo’ys”k.kkP;k v/khu vlrkr- VDdsokjh eqY;s ANOVAs method of linkage with the Block distance measure. Percent values are arcsine transformed for lkBh ifjofrZr dsysyh vkdZlkbu vlrkr- ek;ØkslkW¶V ,Dlsy] SPSS 10-0] LVWfVfLVdk] vksjhthu ;k lkW¶Vos;lZpk okij ANOVAs. For data analysis, software such as Microsoft Excel, SPSS 10.0, Statistica, Origin are dsyk tkrks- used.

119 6.8 Application in management 6.8 O;oLFkkiukrokij

How can rangers use these data? jsatlZ ;k MsVkyk dls oki: ‘kdrkr\

- in their management plans - R;kaP;k O;oLFkkiu ;kstukae/;s - day to day monitoring plans/ operational plans/ EIA reports - fnolk fnolkP;k lafu;a=.k ;kstuk@lafØ;d ;kstuk@EIA vgoky - Online databases like fish base - Q’kcslçek.ksp vkWuykbu MsVkcslsl - Social media - lkekftd feMh;k - Their personal database/ site based management - R;kaPkk [kktxh MsVkcsl@lkbZV vk/kkfjr O;oLFkkiu - supporting scientific community - ‘kkL=h; lektkyk leFkZu ns.;kl - publications - çdk’kus

Application in management O;oLFkkiukrokij

The charts below summarize the suggested components of a basic [kkyhy räk eqyHkwr lafujh{k.k miØekP;k lqpfoysY;k ?kVdkapk lkjka’k nsrks] tks fofo/k ifj- monitoring programme that will address a variety of situations. In all fLFkrhauk lacks/krks- loZ çdj.kkae/;s] nLrkost cufo.;kis{kk Nk;kfp=.k ,d pkaxyh dYiuk vkgs- cases, it is a good idea to use photography to document O;oLFkkiukpk ç’u@ mRrjs feGo.;klkBh lafu;a=.k dk;ZØekpk çdkj The management The type of monitoring programme to get answers ifjfLFkrh question/ Situation Coral bleaching Monitor individual coral colonies; measure water çokG fojatu oS;fDrd çokG olkgrhaps lafu;a=.k dj.ks% ik.;kps rkieku (PAR) temperature, photosynthetically active radiation ekst.ks] çdk’k laLys”k.kkP;k n`”Vhus lfØ; fdj.kksRltZu UV (PAR) and UV vkf.k Damage by boats, Measure physically damaged area; record number cksVh] LuksjdsylZ] HkkSfrd–”Vîk gkfu iksgkspysY;k {ks=kl eki.ks( eksMysY;k çokG snorkelers, divers of broken coral branches/plates Mk;olZ}kjs gkfu ‘kk[kk@IysV~lph uksan dj.ks Over fishing Fish census vfr eklsekjh ek’kkaph x.kuk dj.ks Sediments from dredg- Measure sedimentation rates and bacterial con- xkG milk fdaok xkG lkp.;kpk nj ekst.ks vkf.k thok.kqaph ?kurk ing or runoff centration ik.kyksVkeqGs xkG lkp.ks

In these situations, you should be monitoring at established quadrats ;k ifjfLFkrhae/;s] rqEgh çHkkfor {ks=kr vkf.k fu;af=r lkbZV~loj LFkkfir pkj efgU;kr ok lgk or transects in the affected areas and at control sites. efgU;kr lafu;a=.k djk;yk gos-

Baseline monitoring Monitor individual coral colonies and live coral vk/kkjjs[kh; lafu;a=.k oS;fDrd çokG olkgrh vkf.k ftfor çokG vkPNknukaps cover; measure water temperature, algal biomass, lafu;a=.k djk( ik.;kps rkieku] ‘ksokGkps tSootu] ik.;kph water transparency, and salinity; census reef ikjn’kZdrk] vkf.k {kkj;qDrrk ekik( csVkojhy ek’kkaph x.kuk djk- fishes. Sewage or other Monitor individual coral colonies, measure ey çokg fdaok vU; oS;fDrd çokG olkgrhaps lafu;a=.k djk] iks”kd rRos ekik] nutrient influx nutrients, water temperature, algal biomass, live iks”kdkaps vkxe ik.;kps rkieku] ‘ksokGkps thoHkkj] ftfor çokGkps vkPNknu] coral cover, salinity, dissolved oxygen and bacterial {kkj;qDrrk] foj?kGoysyk vkWfDltu vkf.k thok.kwapk teko ;kauk concentrations. ekik Desalination plant Measure water temperature and salinity fo{kkj.k IykaV fu%lj.k Ikk.;kps rkieku vkf.k {kkj;qDrrk ekik effluent oknGkeqGs ukl/kwl oS;fDrd çokG olkgrhaps lafu;a=.k] ‘ksokGkps tSoHkkj ekiu( Storm damage Monitor individual coral colonies; measure algal csVkojhy ek’kkaph x.kuk djk- biomass; census reef fishes rsy xGrh oS;fDrd çokG olkgrhaps lafu;a=.k djk- Oil spill Monitor individual coral colonies 118 Main sources: eq[; lzksr

Kaliaperumal, N. and Kalimuthu, S. 1997. Seaweed potential and its exploitation in India. Sea- dkyh;kis#ey] ,u- vkf.k dkyheqFkw] ,l- 1997. Hkkjrkrhy leqæh’ksokGkph miyH;rk vkf.k xSjokij- leqæh’ksokG vfHkokij weed Res. Utiln. 19(1&2):33-40. 19(1&2):33-40.

OECD 1996b. Guidelines for Aid Agencies for Improved Conservation and Sustainable Use of OECD 1996b.enrdkjh laLFkkalkBh lq/kkfjr laokn vkf.k m”.kdfVca/kh; vkf.k miks”.k dfVca/kh; nynyh çns’kkapk rx Tropical and Sub-Tropical Wetlands. Guidelines on Aid and Environment, No. 9. OECD, Paris at p. /kj.;ktksX;k okijklkBh ekxZnf’kZdk- lgk¸; vkf.k i;kZoj.kklkBh ekxZnf’kZdk] Ø- 9. OECD, iWfjl i`- 9 oj- 9. jkWcVZlu vkf.k MÓwd 1987) Robertson & Duke 1987) :csd] lh- ,V vy- 1999. jk”Vªh; nynyh çns’kkpk fodkl vkf.k furh ykxwdj.kklkBh lkpk- Rubec, C. et al. 1999. A Framework for Developing and Implementing National Wetland Policies. LekVZ] ,e- 1997. lsgÓqesM% cksysVhu ns yk lsnsikjk ,y ,LVqfM;ks ne ykWl gÓqesnkysl esMhVsj~jkfuvksl] [kaM 1/1, ekpZ Smart, M. 1997. Sehumed: Boletin de la Sedepara el Estudio de los Humedales Mediterraneos, 1997. Vol. 1/1, March 1997. lk,axsj ,V vy 1983 Saenger et al 1983 lafu;a=.kklkBh dk;Zç.kkyh Methodology for monitoring https://portals.iucn.org/library/efiles/documents/2009-015.pdf https://portals.iucn.org/library/efiles/documents/2009-015.pdf CITES (2008). “ifjf’k”Vs”-/kksD;kr vlysY;k ouLirh vkf.k çk.khtkr çtkrhae/;s vkarjjk”Vªh; Ø;foØ;koj vf/kos’ku . CITES (2008). “Appendices”. Convention on International Trade in Endangered Species of Wild www.cites.org/eng/app/appendices.shtml ¿28 tkusokjh 2008 jksth iqu%çkIrÀ- Flora and Fauna. www.cites.org/eng/app/appendices.shtml [Retrieved on 28 Jan 2008]. dkÅpeu vks-] oqyQhYM] b- ewjekUl] ,e- LVh;j] ,e- vkf.k QWfuax] b- ¼bMh,l½ LIDER U;kl (2009) okrkoj.kh; Couchman O., Wulffeld, E., Muurmans, M., Steer, M. and Fanning, E. (eds.) LIDER Foundation ‘kks/kdk;kZlkBh lkslk;Vh UK- leqæh dklos lafu;a=.k i/nrh fu;eiqfLrdk- pp. 1-23. (2009) Society for Environmental Exploration UK. Sea Turtle Monitoring Methods Manual.. pp. 1-23. WWF (2003) leqæh dklos% yksi iko.;kP;k Hkhrhus /kkLrkoysys oSf’od çoklh- vkarjjk”Vªh; çtkrh dk;ZØe] xksMkfYeax] UK. WWF (2003) Marine turtles: Global voyagers threatened with extinction. WWF International Spe- cies Programme, Godalming, UK. dksLdhfet] ih- vkf.k ok;lkusu] vkj-,- 1991. i{;kaph tula[;sps lafu;a=.kdrZs- çk.kh’kkL= laxzgky;] uSlfxZd bfrgklkps QhUuh’k laxzgky;] gsyfladh- Koskimies, P. and Väisänen, R.A. 1991. Monitoring bird populations. Zoological Museum, Finnish Museum of Natural History, Helsinki. vks*dkWUuj] vkj-ts- 1985- fczVh’k i{khla[;kaps nh?kZdkyhu lafu;a=.k- vkWfuZl QsfUudk 62(2): 73–79

O’Connor, R.J. 1985. Long-term monitoring of British bird populations. Ornis Fennica 62(2): ,YecxZ] ts- uEeh] ih- ikW;lk] ,p-] LtkscxZ] ds] xUukjlu] th- DykWlsu] ih- xqYyheSu] ,e- jkWMªhXt] Mh- vkf.k Ogkukusu] Ogh- 73–79. &,e- 2006. LFkykarjdR;kZ ;qjksih; cndkaP;k uO;k vkf.k n`wj esFkksMhd nsj DokaVhVk;VsfrOgsu OgksxsyQkWlZpqax bu nsu fcUusuxsokluZ- vkWfuZl QsfUudk 36(3–4): of migratory European ducks. Wildlife Biology 12(2): 121–127 66–78

Linkola, P. 1959. Zur Methodik der quantitativen Vogelforschung in den Binnengewässern. Ornis xzsufWDoLV]ih- 1965- fQuyaMP;k fdukjiV~Voj dkgh cnds vkf.k leqæh i{khla[;k ;kaP;k le`/nhr cny 1949–1963- Fennica 36(3–4): 66–78. fQUuh’k lkeuk la’kks/ku 27: 1–114-

Grenquist, P. 1965. Changes in abundance of some duck and sea-bird populations off the coast feUVkWu] C.D.T. 1968- ewdgalkae/;s tksMÓk vkf.k iSnkl- jkudksacMh 19: 41–60. of Finland 1949–1963. Finnish Game Research 27: 1–114. tksgkulsu] ds-,y-] cksVZeUu] Mh-] ekWlcsd] ,- vkf.k gkulsu] Vh-ch-] 2012- leqæhi{kh vkf.k leqæh Lru/kkjh ;kalkBh Minton, C.D.T. 1968. Pairing and breeding in mute swans. Wildfowl 19: 41–60. fu;eiqfLrdk xzhuy¡Me/;s Hkwdaifo”k;d ty;kus ;koj losZ{k.k- 3jh lq/kkfjr vko`Rrh- pp.1&78-

Johansen, K. L., Boertmann, D., Mosbech, A. and Hansen, T. B, 2012. Manual for Seabird and fgch] ,-vkj- vkf.k gkeaM] ih-,l- 1989- lsVkfl;UlP;k le`/nhlkBh vankthdj.kkPkh losZ{k.k ra=s- Rep. Int. Whal. Marine mammal survey on Seismic Vessels in Greenland. 3rd Revised edition, pp. 1-78. Commn ¼[kkl vko`Rrh 11½%47–80-

Hiby, A. R. and Hammond, P. S. 1989. Survey techniques for estimating abundance of ceta- ekWxZu] Mh-th-] ykbu VªkulsDV i/nrhauh yksdla[;k ?kursps vankthdj.k] esycuZ ceans. Rep. Int. Whal. Commn (Special Issue 11):47-80.

Morgan, D.G., Estimating Vertebrate Population Densities by Line Transect Methods, Melbourne

122 College of Advanced Education, Australia dkWyst vkWQ vWMokULM ,T;qds’ku] vkWLVªsfy;k

Palka, D., and J. Pollard (1999), “Adaptive line transect survey for harbor porpoises,” pp. 3-11 ikYdk] Mh-] vkf.k ts- iksykMZ ¼1999½] ÞvWMWIVhOg ykbu VªkalsDV losZ QkWj gkcZj ikWiksZ;tslÞ pp. 3-11 th-MCY;w- xkuZj] ,l- in G.W. Garner, S.C. Amstrup, J.L. Laake, B.F.J. Manly, L.L. McDonald and D.G. Robertson (eds.) lh- vWeLVªi] ts-,y- ykds] ch-,Q-ts ekuyh] ,y-,y- eWDMksuYM vkf.k Mh-th- jkWcVZlu ¼bMh,l-½ leqæh Lru/kkjh losZ{k.k vkf.k Marine Mammal Survey and Assessment Methods, Proceedings of the Symposium on Surveys, eqY;ekiu i/nrh] losZ{k.kkrhy fu”iUukaoj dk;Zokgh] leqæh Lru/kkjh tula[;kaps çpyu] fl,Vy MCY;w ,] USA , 25–27 Status & Trends of Marine Mammal Populations, WA, USA, 25-27 February 1998. A.A. Qsczqokjh 1998- ,-,- ckydsek] jkWVjMWe- Balkema, Rotterdam. ‘kkWVZ] ,Q-Vh-] eWdsa>h] ,y-ts- dksYl] vkj- th- vkf.k foMyj] ds-ih- ¼2002½ leqæh xor usV fu;eiqfLrdk leqæh xorkP;k Short, F.T., McKenzie, L.J., Coles, R.G. and Vidler, K.P. (2002) Sea grassNet Manual for Scientific oLrhLFkkukaP;k ‘kkL=h; lafu;a=.kklkBh (QDPI,QFS, Ciarns) 56pp.

Monitoring of Sea grass Habitat (QDPI,QFS, Ciarns) 56pp. bafXy’k] ,l-lh- foYdhUlu vkf.k Ogh csdj ¼1997½- m”.kdfVca/kh; leqæh L=ksrkalkBh losZ{k.k fu;eiqfLrdk- vkWLVªsfy;u bfULVhVÓwV vkWQ ejhu lk;Ul] VkÅUlfoys vkWLVªsfy;k: pp. 378 English, S, C Wilkinson and V Baker (1997). Survey Manual for Tropical Marine Resources. Townsville, Australia, Australian Institute of Marine Science, Townsville Australia: pp. 378 fgy ts- vkf.k foYdhUlu lh- ¼2004½ çokG csVkaP;k ifjlaLFkh; lafu;a=.kkP;k i/nrh ¼vko`Rrh 1½% Áca/kdkalkBh L=ksr ¼vkWLVªsfy;u bfULVhVÓwV vkWQ ejhu lk;Ul] VkÅUlfoys vkWLVªsfy;k½ 123 pp. Hill J. and Wilkinson C. (2004) Methods for Ecological Monitoring of Coral Reefs (Version 1): A Resource for Managers ( Australian Institute of Marine Science, Townsville Australia) 123 pp. jkWtlZ] lh-,l-] th xWjhlu] vkj xzkscj] >sM,e fgyhl vkf.k ,e, Ý¡ds ¼1994½- dWjsfc;u vkf.k if’peh vVykafVd çokG csVs lafu;a=.klkBh fu;eiqfLrdk- lsaV tkWu] USVI oftZu vk;yaM~l uW’kuy ikdZ: pp. 106. Rogers, CS, G Garrison, R Grober, ZM Hillis and MA Franke (1994). Coral Reef Monitoring Manu- al for the Caribbean and Western Atlantic. St. John, USVI, Virgin Islands National Park: pp. 106. bafXy’k] ,l-lh- foYdhUlu vkf.k Ogh csdj ¼1997½- m”.kdfVca/kh; leqæh L=ksrkalkBh losZ{k.k fu;eiqfLrdk- vkWLVªsfy;u bfULVhVÓwV vkWQ ejhu lk;Ul] VkÅUlfoys vkWLVªsfy;k: pp. 378 English, S, C Wilkinson and V Baker (1997). Survey Manual for Tropical Marine Resources. Townsville, Australia, Australian Institute of Marine Science, Townsville Australia: pp. 378 jkWtlZ] lh-,l-] th xWjhlu] vkj xzkscj] >sM,e fgyhl vkf.k ,e, Ý¡ds ¼1994½- dWjsfc;u vkf.k if’peh vVykafVd çokG csVs lafu;a=.klkBh fu;eiqfLrdk- lsaV tkWu] USVI oftZu vk;yaM~l uW’kuy ikdZ: pp. 106. Rogers, CS, G Garrison, R Grober, ZM Hillis and MA Franke (1994). Coral Reef Monitoring Manu- al for the Caribbean and Western Atlantic. St. John, USVI, Virgin Islands National Park: pp. 106.

iq

Carleton, JH and TJ Done (1995). Quantitative Video Sampling of Coal Reef Benthos: Large Scale dkWfyu] ih,y lWMksoh vkf.k ,e,y Mksfe;j ¼2003½- csVkadMhy ek’kkaP;k iSnk’khP;k leqPp;kP;k vH;klklkBh vkf.k tru Application. Coral Reefs 14; 35-46. dj.;klkBh fu;eiqfLrdk] csVkadMhy ek’kkaP;k iSnk’khP;k leqPp;kl tru dj.;klkBhP;k lkslk;Vhps fo’ks”k çdk’ku Ø- 1 Colin, PL, YJ Sadovy and ML Domeier (2003). Manual for the Study and Conservation of Reef ¼vko`Rrh 1.0). Fish Spawning Aggregations, Society for the Conservation of Reef Fish Aggregations Special Pub- lication No. 1 (Version 1.0).

123 Crosby, MP and ES Reese (1996). A Manual for Monitoring Coral Reefs with Indicator Species: ØkWlch] ,eih vkf.k b,l jhls ¼1996½- fun’kZd çtkrh vlysY;k çokG csVkaps lafu;a=.k dj.;klkBhps fu;eiqLrd% Butterflyfishes as Indicators of Change on Indo-Pacific Reefs. Silver Spring, MD, Office of Ocean baMks&iWflfQd csVkaoj cnykps fun’kZd Eg.kwu Qqyik[k#ekls- flYOgj fLizax] leqæ o fdukjiV~Vh L=ksr O;oLFkkiu] jk”Vªh; and Coastal Resource Management, National Oceanic and Atmospheric Administration: pp. 45. lkxjh vkf.k okrkoj.kh; Á’kklu% pp. 45.

Green, EP, PJ Mumby, AE Edwards and CD Clark (2000). Remote Sensing: Handbook for Tropical xzhu] bih] ihts eqach] ,b ,MoMZl vkf.k lhMh DykdZ ¼2000½- fjeksV lsaflax% m”.kdfVca/kh; fdukjiV~Vh O;oLFkkiukoj Coastal Management. Paris, UNESCO Publishing: pp. 316, gLriqfLrdk- iWfjl] UNESCO Ádk’ku: pp. 316.

Halford, AR and AA Thompson (1994). Visual Census Surveys of Reef Fish. Standard Operational gWyQksMZ] ,vkj vkf.k ,, FkkWaIlu ¼1994½- csVkadMhy ek’kkaph n`”; tux.kuk losZ{k.k- ekud lafØ;d i/nrh Øekad Procedure Number gWykpsj] ,y-b- vkf.k ch-,u- VhLlkWV] 1999- fo’kky ek=srhy ik.;k[kkyhy ifjfLFkrhdh losZ{k.k ra=s% çokG csVs lafu;=.k Hallacher, L. E. and B. N. Tissot, 1999. Quantitative Underwater Ecological Survey Techniques: A dk;Z’kkyk- ;k e/khy v/;k; 13: ekjkxkWl] ts- b- vkf.k vkj- xzkscj&Muleksj ¼bMh,l½- coral reef monitoring workshop. Chapter13 in: Maragos, J. E. and R. Grober-Dunsmore (eds.). fdaXtQksMZ] ,ets ¼1998½- l¡ifyax jpusph fo’ys”kd vaxs- ‘khrks”.k leqæh okrkoj.kkapk vH;kl dj.ks% , Kingsford, MJ (1988). Analytical Aspects of Sampling Design. Studying Temperate Marine Environments: A fdaXtQksMZ] ,ets vkf.k lh cWVj’khy- ifjfLFkrhdhdkjkaps gLriqLrd- d¡Vjcjh ;qfuoflZVh izsl] izsl- 49 pp.

Kingsford, MJ and C Battershill. Handbook for Ecologists. Canterbury University Press, Press. vkWDlyh] MCY;wth ¼1997½- l¡ifyax fM>kbu vk.k lafu;a=.k- bu% bafXy’k ,V vy] m”.kdfVca/kh; leqæh L=ksrkalkBh losZ{k.k 49 pp. fu;eiqfLrdk VkÅUlfOgys] vkWLVªsfy;u bafLVVÓwV vkWQ ejhu lk;Ul: pp. 307-326.

Oxley, WG (1997). Sampling Design and Monitoring. In: English et al, Survey Manual for Tropical ist] lh] th dksyeu] vkj fufu;ks vkf.k ds vksLcksuZ ¼2001½- xzsV cWjh;j jhQ vkWijs’ku izksfltj uacj 7 ps nh?kZ dkyhu Marine Resources. Townsville, Australian Institute of Marine Science: pp. 307-326. lafu;a=.k] vkWLVªsfy;u bafLVVÓwV vkWQ ejhu lk;Ul VkÅUlfOgys] vkWLVªsfy;k pp. 45.

Page, C, G Coleman, R Ninio and K Osborne (2001). Long-term Monitoring of the Great Barrier jkWtlZ] lh-,l-] th xWjhlu] vkj xzkscj] >sM,e fgyhl vkf.k ,e, Ý¡ds ¼1994½- dWjsfc;u vkf.k if’peh vVykafVd çokG csVs Reef Standard Operational Procedure Number 7, Australian Institute of Marine Science, Towns- lafu;a=.klkBh fu;eiqfLrdk- lsaV tkWu] USVI oftZu vk;yaM~l uW’kuy ikdZ: pp. 106. ville Australia pp. 45. foYdhUlu] lh] , xzhy] ts ,Yeuh vkf.k ,l Mh;ksu ¼2003½- çokG csVs leqæh lajf{kr {ks=s lafu;a=.k- MPAs P;k çHkkoh Rogers, CS, G Garrison, R Grober, ZM Hillis and MA Franke (1994). Coral Reef Monitoring Manu- O;oLFkkiukl lafu;a=.k d’kk çdkjs leFkZu nssÅ ‘kdrs ;kojhy d`rh ekxZn’kZd- VkÅUlfOgys] vkWLVªsfy;k] vkWLVªsfy;u al for the Caribbean and Western Atlantic. St. John, USVI, Virgin Islands National Park: pp. 106. bafLVVÓwV vkWQ ejhu lk;Ul vkf.k IUCN leqæh izksxzke% pp. 68

Wilkinson, C, A Green, J Almany and S Dionne (2003). Monitoring Coral Reef Marine Protected >kj] ts- ¼1999½- tSolkaf[;dh fo’ys”k.k] vIij lWMy jhOgj] U;w tlhZ% çsaVhl&gkWy- Areas. A Practical Guide on How Monitoring Can Support Effective Management of MPAs. Towns- ville, Australia, Australian Institute of Marine Science and the IUCN Marine Program: pp. 68

Zar, J (1999). Biostatistical Analysis, Upper Saddle River, New Jersey: Prentice-Hall.

124 122 http://www.indo-germanbiodiversity.com/sub-project-details-human_capacity_development.html