The Regulation of Beta- Dystroglycan Internalization

Total Page:16

File Type:pdf, Size:1020Kb

The Regulation of Beta- Dystroglycan Internalization The Regulation of Beta- Dystroglycan Internalization Robert Piggott A thesis submitted to the University of Sheffield for the degree of Doctor of Philosophy Department of Biomedical Sciences, University of Sheffield July 2014 I TABLE OF CONTENTS CONTENTS………………………………………………………………………………II ABBREVIATIONS LIST…………………………………………………………....……VI ABSTRACT……………………………………………………………………………..VIII Chapter 1: Introduction .................................................................................. 1 1.1.1 The Dystroglycan Subunits ..................................................................... 2 1.1.2 Dystroglycan is an Essential Adhesion Protein......................................... 4 1.1.3 Dystroglycan in the Dystrophin-associated Glycoprotein Complex ............ 5 1.1.4 Dystroglycan in Other Complexes ......................................................... 10 1.1.5 Dystroglycan Complex Formation in Response to the Extracellular Matrix ................................................................................................................... 13 1.1.6 Summary: Why Dystroglycan is an Essential Protein.............................. 15 1.2.1 Duchenne Muscular Dystrophy ............................................................. 17 1.2.2 The mdx Mouse and Other Models ........................................................ 19 1.2.3 Dystroglycan Disruption and Other Muscular Dystrophies ...................... 22 1.2.4 Summary: The Loss and Restoration of β-Dystroglycan in DMD Pathology and Therapy ................................................................................................. 23 1.3.1 The H2Kb ts-A58 Myoblast Cell Line .................................................... 24 1.3.2 Chapter Summary ................................................................................ 26 Chapter 2: Materials and Methods ................................................................ 27 2.1 Bacterial Methods ................................................................................... 28 2.1.1 Preparation of Competent Bacteria..................................................... 28 2.1.2 Plasmid Purification ......................................................................... 28 2.1.3 Transformation of Competent Bacteria ............................................... 29 2.2 Protein Methods .................................................................................... 29 2.2.1 Growth and Induction of Recombinant Proteins ............................... 29 2.2.2 WW Domain GST Fusion Purification ............................................. 30 2.2.3 Multi-Dsk Protein Purification ........................................................ 30 2.2.4 Bradford Assay .............................................................................. 31 2.2.5 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis ........... 31 2.2.6 Electroblotting of Proteins .............................................................. 32 2.2.7 Western Blotting ............................................................................ 32 2.2.8 Peptide Arrays ............................................................................... 33 II 2.3 Cell Culture and Assays ......................................................................... 33 2.3.1 Growth of H2K Myoblasts .............................................................. 33 2.3.2 Preparation of Lysates .................................................................... 34 2.3.3 Immunoprecipitation ...................................................................... 34 2.3.4 Orthovanadate Treatment of H2K Myoblasts .................................... 34 2.3.5 Biotinylation Assay ........................................................................ 35 2.3.6 Transferrin Uptake Assay ............................................................... 35 2.3.7 Cholera Toxin Uptake Assay........................................................... 36 2.3.8 LysotrackerTM Staining and Ammonium Chloride Treatment ............. 36 2.3.9 H2K Myoblast Transfection ............................................................ 36 2.4 Microscopy Techniques.......................................................................... 37 2.4.1 Preparation of Cells for Microscopy ................................................ 37 2.4.2 Epifluorescence Microscopy ........................................................... 38 2.4.3 Confocal Microscopy ..................................................................... 38 2.5 Computer Aided Analysis of Data ........................................................... 38 2.5.1 Gel and Blot Analysis .................................................................... 38 2.5.2 Image Processing ........................................................................... 39 2.5.3 Co-localization Analysis ................................................................. 39 2.5.4 Statistical Analysis......................................................................... 39 2.6 Tables ................................................................................................... 40 2.6.1 Buffers and Solutions ..................................................................... 40 2.6.2 Antibodies ..................................................................................... 43 2.6.3 Gel Formulations ........................................................................... 44 2.6.4 Plasmids ........................................................................................ 44 Chapter 3: Y890 Phosphorylation and the Internalization of β -Dystroglycan 45 3.1.1 Introduction......................................................................................... 46 3.1.2 The Importance of the Interaction Between β-Dystroglycan and Dystrophin ................................................................................................................... 46 3.1.3 The Effect of Y890 Phosphorylation ..................................................... 48 3.1.4 Hypotheis: Y890 Phosphorylation is Required for the Internalization of β - Dystroglycan in H2K Myoblasts .................................................................... 48 3.1.5 1709 and MANDAG2: Specific Information on the Antibodies Used in This Study........................................................................................................... 50 3.2.1 Phosphorylation of Y890 is Linked to a Change in the Cellular III Localization of β-Dystroglycan ..................................................................... 51 3.2.2 Development of Biotinylation Assay: Optimization of Biotinylation Buffer ................................................................................................................... 53 3.2.3 Development of Biotinylation Assay: Optimization of Stripping Washes..56 3.2.4 Development of Biotinylation Assay: A Loading Control for Pellet Fractions .................................................................................................... 60 3.2.5 The pY890 Form of β-Dystroglycan is Selectively Internalized in H2K Myoblasts .................................................................................................... 62 3.2.6 Hyperphosphorylation is not Solely Responsible for the Modification of Internalized β-Dystroglycan .......................................................................... 65 3.3.1 Discussion ........................................................................................... 67 3.3.2 Y890 Phosphorylation Changes the Cellular Localization of β - Dystroglycan ............................................................................................... 68 3.3.3 Developing the Biotinylation Assay for Internalization in H2K Myoblasts ................................................................................................................... 69 3.3.4 The pY890 Form of β-Dystroglycan is Internalized from the Plasma Membrane ................................................................................................................... 70 3.3.5 Y890 Phosphorylation and β-Dystroglycan Internalization in Other Systems ................................................................................................................... 72 3.3.6 Summary ............................................................................................. 73 Chapter 4: Phosphorylation of Y890 and the Ubiquitylation of β-Dystroglycan ..... 74 4.1.1 Introduction......................................................................................... 75 4.1.2 Identifying a Candidate for the Post-Translational Modification of β- Dystroglycan ............................................................................................... 75 4.1.3 Monoubiquitylation and the Internalization of β-Dystroglycan ................ 78 4.1.4 Hypothesis: Y890 Phosphorylation is Required for the Ubiquitylation of β- Dystroglycan in H2K Myoblasts .................................................................... 79 4.2.1 Enrichment of Cellular Ubiquitin by Affinity Tagging ........................... 80 4.2.2 Enrichment of Cellular Ubiquitin with the MultiDsk Protein................... 80 4.2.3 Y890 Phosphorylation is Linked to the Ubiquitylation of β-Dystrolycan . 82 4.2.4 Identification of the Ligase Responsible for the Ubiquitylation of β - Dystroglycan ............................................................................................... 87 4.3.1 Discussion: Establishing the Use of the
Recommended publications
  • Structural Biology of the Dystrophin-Deficient Muscle Fiber
    Dystrophin-deficient muscle fiber REVIEW ISSN- 0102-9010145 STRUCTURAL BIOLOGY OF THE DYSTROPHIN-DEFICIENT MUSCLE FIBER Maria Julia Marques Department of Anatomy, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil. ABSTRACT The discovery of dystrophin and its gene has led to major advances in our understanding of the molecular basis of Duchenne, Becker and other muscular dystrophies related to the dystrophin-associated protein complex. The concept that dystrophin has a mechanical function in stabilizing the muscle fiber membrane has expanded in the last five years. The dystrophin-glycoprotein complex is now considered a multifunctional complex that contains molecules involved in signal transduction cascades important for cell survival. The roles of dystrophin and the dystrophin- glycoprotein complex in positioning and anchoring receptors and ion channels is also important, and much of what is known about these functions is based on studies of the neuromuscular synapse. In this review, we discuss the components and the cellular signaling molecules associated with the dystrophin-glycoprotein complex. We then focus on the molecular organization of the neuromuscular junction and its structural organization in the dystrophin-deficient muscle fibers of mdx mice, a well-established experimental model of Duchenne muscular dystrophy. Key words: Confocal microscopy, Duchenne muscular dystrophy, mdx, neuromuscular junction INTRODUCTION that can improve the quality of life of the patients, Duchenne muscular dystrophy (DMD) is an X- death usually occurs in the early twenties, as a result linked recessive, progressive muscle-wasting disease of cardiac and/or respiratory failures [24]. that affects primarily skeletal and cardiac muscle. Several other muscular dystrophies have been DMD was first reported in 1868 by Dr.
    [Show full text]
  • Profiling of the Muscle-Specific Dystroglycan Interactome Reveals the Role of Hippo Signaling in Muscular Dystrophy and Age-Dependent Muscle Atrophy Andriy S
    Yatsenko et al. BMC Medicine (2020) 18:8 https://doi.org/10.1186/s12916-019-1478-3 RESEARCH ARTICLE Open Access Profiling of the muscle-specific dystroglycan interactome reveals the role of Hippo signaling in muscular dystrophy and age-dependent muscle atrophy Andriy S. Yatsenko1†, Mariya M. Kucherenko2,3,4†, Yuanbin Xie2,5†, Dina Aweida6, Henning Urlaub7,8, Renate J. Scheibe1, Shenhav Cohen6 and Halyna R. Shcherbata1,2* Abstract Background: Dystroglycanopathies are a group of inherited disorders characterized by vast clinical and genetic heterogeneity and caused by abnormal functioning of the ECM receptor dystroglycan (Dg). Remarkably, among many cases of diagnosed dystroglycanopathies, only a small fraction can be linked directly to mutations in Dg or its regulatory enzymes, implying the involvement of other, not-yet-characterized, Dg-regulating factors. To advance disease diagnostics and develop new treatment strategies, new approaches to find dystroglycanopathy-related factors should be considered. The Dg complex is highly evolutionarily conserved; therefore, model genetic organisms provide excellent systems to address this challenge. In particular, Drosophila is amenable to experiments not feasible in any other system, allowing original insights about the functional interactors of the Dg complex. Methods: To identify new players contributing to dystroglycanopathies, we used Drosophila as a genetic muscular dystrophy model. Using mass spectrometry, we searched for muscle-specific Dg interactors. Next, in silico analyses allowed us to determine their association with diseases and pathological conditions in humans. Using immunohistochemical, biochemical, and genetic interaction approaches followed by the detailed analysis of the muscle tissue architecture, we verified Dg interaction with some of the discovered factors.
    [Show full text]
  • Neuronal Dystroglycan Is Necessary for Formation and Maintenance of Functional CCK-Positive Basket Cell Terminals on Pyramidal Cells
    10296 • The Journal of Neuroscience, October 5, 2016 • 36(40):10296–10313 Cellular/Molecular Neuronal Dystroglycan Is Necessary for Formation and Maintenance of Functional CCK-Positive Basket Cell Terminals on Pyramidal Cells Simon Fru¨h,1,5 Jennifer Romanos,1,5 Patrizia Panzanelli,2 XDaniela Bu¨rgisser,3 XShiva K. Tyagarajan,1,5 X Kevin P. Campbell,4 XMirko Santello,1,5 and XJean-Marc Fritschy1,5 1Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland, 2Department of Neuroscience Rita Levi Montalcini, University of Turin, 10124 Turin, Italy, 3ETH Zurich, 8092 Zurich, Switzerland, 4Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242, and 5Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland Distinct types of GABAergic interneurons target different subcellular domains of pyramidal cells, thereby shaping pyramidal cell activity patterns. Whether the presynaptic heterogeneity of GABAergic innervation is mirrored by specific postsynaptic factors is largely unex- plored. Here we show that dystroglycan, a protein responsible for the majority of congenital muscular dystrophies when dysfunctional, has a function at postsynaptic sites restricted to a subset of GABAergic interneurons. Conditional deletion of Dag1, encoding dystrogly- can, in pyramidal cells caused loss of CCK-positive basket cell terminals in hippocampus and neocortex. PV-positive basket cell terminals were unaffected in mutant mice, demonstrating interneuron subtype-specific function of dystroglycan. Loss of dystroglycan in pyrami- dal cells had little influence on clustering of other GABAergic postsynaptic proteins and of glutamatergic synaptic proteins.
    [Show full text]
  • Typology and Profile of Spine Muscles. Structure of Myofibrils and Role of Protein Components – Review of Current Literature
    Ovidius University Annals, Series Physical Education and Sport / SCIENCE, MOVEMENT AND HEALTH Vol. XI, ISSUE 2 Supplement, 2011, Romania The JOURNAL is nationally acknowledged by C.N.C.S.I.S., being included in the B+ category publications, 2008-2011. The journal is indexed in: Ebsco, SPORTDiscus, INDEX COPERNICUS JOURNAL MASTER LIST, DOAJ DIRECTORY OF OPEN ACCES JOURNALS, Caby, Gale Cengace Learning TYPOLOGY AND PROFILE OF SPINE MUSCLES. STRUCTURE OF MYOFIBRILS AND ROLE OF PROTEIN COMPONENTS – REVIEW OF CURRENT LITERATURE STRATON ALEXANDRU1, ENE-VOICULESCU CARMEN1, GIDU DIANA1, PETRESCU ANDREI1 Abstract. Muscular profile of spine muscles has a great importance in trunk stability. It seems that muscles which support the spine show a high content of red muscle fiber with a cross section area equal or higher than white muscle fibers. It is possible that lumbar extensor muscles to have different functional capacity between sexes. Most of the myofibril structural proteins except protein actin and protein myosin have a role in maintaining the structural integrity of muscle cell. Key words: muscle, fibres, myofibrils, proteins, spine. thoracic muscle structure lying superficial and deep is Introduction composed of 74% type I fibers, lumbar muscle Proper understanding of muscle fibers profile of structure located superficially is composed of 57% muscles supporting the spine and the role of muscle type I fibers and lumbar muscle structure located deep cell structural proteins leads to better achievements in is composed of 63% type I fibers. Type I muscle fiber performance training and rehabilitation. diameter is significantly larger than that of type II fibers. Another study, conducted on 42 patients Muscle fibers typology divided into two groups - 21 patients with lumbar Skeletal muscle contains two major types of back pain and 21 patients without lumbar back pain muscle fibers: slow twitch red or type I fibers) and almost identical groups as gender, age and body mass fast twitch white or type II fibers).
    [Show full text]
  • Advanced Fiber Type-Specific Protein Profiles Derived from Adult Murine
    proteomes Article Advanced Fiber Type-Specific Protein Profiles Derived from Adult Murine Skeletal Muscle Britta Eggers 1,2,* , Karin Schork 1,2, Michael Turewicz 1,2 , Katalin Barkovits 1,2 , Martin Eisenacher 1,2, Rolf Schröder 3, Christoph S. Clemen 4,5 and Katrin Marcus 1,2,* 1 Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; [email protected] (K.S.); [email protected] (M.T.); [email protected] (K.B.); [email protected] (M.E.) 2 Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany 3 Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; [email protected] 4 German Aerospace Center, Institute of Aerospace Medicine, 51147 Cologne, Germany; [email protected] 5 Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany * Correspondence: [email protected] (B.E.); [email protected] (K.M.) Abstract: Skeletal muscle is a heterogeneous tissue consisting of blood vessels, connective tissue, and muscle fibers. The last are highly adaptive and can change their molecular composition depending on external and internal factors, such as exercise, age, and disease. Thus, examination of the skeletal muscles at the fiber type level is essential to detect potential alterations. Therefore, we established a protocol in which myosin heavy chain isoform immunolabeled muscle fibers were laser Citation: Eggers, B.; Schork, K.; microdissected and separately investigated by mass spectrometry to develop advanced proteomic Turewicz, M.; Barkovits, K.; profiles of all murine skeletal muscle fiber types.
    [Show full text]
  • B3GALNT2 Is a Gene Associated with Congenital Muscular Dystrophy with Brain Malformations
    European Journal of Human Genetics (2014) 22, 707–710 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg SHORT REPORT B3GALNT2 is a gene associated with congenital muscular dystrophy with brain malformations Carola Hedberg*,1, Anders Oldfors1 and Niklas Darin2 Congenital muscular dystrophies associated with brain malformations are a group of disorders frequently associated with aberrant glycosylation of a-dystroglycan. They include disease entities such a Walker–Warburg syndrome, muscle–eye–brain disease and various other clinical phenotypes. Different genes involved in glycosylation of a-dystroglycan are associated with these dystroglycanopathies. We describe a 5-year-old girl with psychomotor retardation, ataxia, spasticity, muscle weakness and increased serum creatine kinase levels. Immunhistochemistry of skeletal muscle revealed reduced glycosylated a-dystroglycan. Magnetic resonance imaging of the brain at 3.5 years of age showed increased T2 signal from supratentorial and infratentorial white matter, a hypoplastic pons and subcortical cerebellar cysts. By whole exome sequencing, the patient was identified to be compound heterozygous for a one-base duplication and a missense mutation in the gene B3GALNT2 (b-1,3-N-acetylgalactos- aminyltransferase 2; B3GalNAc-T2). This patient showed a milder phenotype than previously described patients with mutations in the B3GALNT2 gene. European Journal of Human Genetics (2014) 22, 707–710; doi:10.1038/ejhg.2013.223; published online 2 October 2013 Keywords:
    [Show full text]
  • An Adhesome Comprising Laminin, Dystroglycan and Myosin IIA Is
    © 2014. Published by The Company of Biologists Ltd | Development (2014) 141, 4569-4579 doi:10.1242/dev.116103 RESEARCH ARTICLE An adhesome comprising laminin, dystroglycan and myosin IIA is required during notochord development in Xenopus laevis Nicolas Buisson1, Cathy Sirour2, Nicole Moreau1, Elsa Denker3, Ronan Le Bouffant1, Aline Goullancourt1, Thierry Darriberè 1,* and Valérie Bello1,* ABSTRACT final step, vacuolation, which begins in cells at the anterior and Dystroglycan (Dg) is a transmembrane receptor for laminin that must progesses through to the posterior end of embryos, provides both be expressed at the right time and place in order to be involved stiffness and an increase in cell volume, leading to notochord in notochord morphogenesis. The function of Dg was examined in elongation. Vacuoles are lysosome-related organelles that form Xenopus laevis embryos by knockdown of Dg and overexpression and through a Rab protein and vacuolar-type proton-ATPase-dependent replacement of the endogenous Dg with a mutated form of the protein. acidification (Ellis et al., 2013). The peri-notochordal sheath, in This analysis revealed that Dg is required for correct laminin assembly, combination with the turgor pressure exerted by vacuolated cells, for cell polarization during mediolateral intercalation and for proper provides the rigidity of the notochord that is required for its function differentiation of vacuoles. Using mutations in the cytoplasmic as the major skeletal element of embryos. Although the functions of domain, we identified two sites that are involved in cell polarization integrin in these mechanisms have already been studied (Davidson and are required for mediolateral cell intercalation, and a site that is et al., 2006), there is no information on the involvement of required for vacuolation.
    [Show full text]
  • Syncoilin Modulates Peripherin Filament Networks and Is Necessary for Large-Calibre Motor Neurons
    Research Article 2543 Syncoilin modulates peripherin filament networks and is necessary for large-calibre motor neurons W. Thomas Clarke1,*, Ben Edwards1,*, Karl J. A. McCullagh1,‡, Matthew W. Kemp1,§, Catherine Moorwood1,¶, Diane L. Sherman2, Matthew Burgess1,** and Kay E. Davies1,‡‡ 1MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK 2Centre for Neuroscience Research, The University of Edinburgh, Summerhall, Edinburgh, EH9 1QH, UK *These authors contributed equally to this work ‡Present address: Regenerative Medicine Institute, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland §Present address: School of Women’s and Infants’ Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Western Australia, WA 6009 ¶Present address: Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA **Present address: Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK ‡‡Author for correspondence ([email protected]) Accepted 20 April 2010 Journal of Cell Science 123, 2543-2552 © 2010. Published by The Company of Biologists Ltd doi:10.1242/jcs.059113 Summary Syncoilin is an atypical type III intermediate filament (IF) protein, which is expressed in muscle and is associated with the dystrophin- associated protein complex. Here, we show that syncoilin is expressed in both the central and peripheral nervous systems. Isoform Sync1 is dominant in the brain, but isoform Sync2 is dominant in the spinal cord and sciatic nerve. Peripherin is a type III IF protein that has been shown to colocalise and interact with syncoilin.
    [Show full text]
  • What Do We Know About Dystroglycan?
    What Do We Know about Dystroglycan? Daniel Beltran 1 Outline 1. Basement membrane in epithelium and skeletal muscle. 2. Role of dystroglycan. 3. Muscle contraction and repair under normal conditions. 4. Dystroglycanopathies genetics. 5. Dystroglycanopathies muscle pathology. 2 Outline 1. Basement membrane in epithelium and skeletal muscle. 2. Role of dystroglycan. 3. Muscle contraction and repair under normal conditions. 4. Dystroglycanopathies genetics. 5. Dystroglycanopathies muscle pathology. 3 The human body: Cells and connections 4 The human body: Cells and connections Communication and …………… Contact 5 Basement Membrane Basement membrane 6 Basement Membrane Functions Adhesion Mechanic stability Polarity Survival Compartmentalization Proliferation More than just structure 7 Skeletal Muscle 8 Skeletal Muscle Basal Lamina Kjaer (2004). Physiological Reviews, 84: 649. 9 Skeletal Muscle Basal lamina Mouse skeletal muscle Human skeletal muscle 10 Goddeeris et al (2013). Nature, 503:136 Sabatelli et al (2003). Biochim Biophys Acta, 1638:57 Outline 1. Basement membrane in epithelium and skeletal muscle. 2. Role of dystroglycan. 3. Muscle contraction and repair under normal conditions. 4. Dystroglycanopathies genetics. 5. Dystroglycanopathies muscle pathology. 11 Dystroglycan Basement Membrane Laminin α Dystroglycan Membrane β Dystrophin 12 Basement Membrane compaction Colognato 1999. JCB, 145:619 13 Outline 1. Basement membrane in epithelium and skeletal muscle. 2. Role of dystroglycan. 3. Muscle contraction and repair under normal conditions. • Contraction. • Contraction induced muscle damage. • Sarcolemma repair. • Satellite cells mediated muscle repair. • Debris clearance and extracellular remodeling. 14 Muscle Contraction 15 Transmission of force DGC might contribute to “lateral transmission of force” from the sarcomere to the lateral extracellular matrix. 16 Muscle Fiber Repair Han et al (2007).
    [Show full text]
  • The Toxic Effect of R350P Mutant Desmin in Striated Muscle of Man and Mouse
    Acta Neuropathol (2015) 129:297–315 DOI 10.1007/s00401-014-1363-2 ORIGINAL PAPER The toxic effect of R350P mutant desmin in striated muscle of man and mouse Christoph S. Clemen · Florian Stöckigt · Karl-Heinz Strucksberg · Frederic Chevessier · Lilli Winter · Johanna Schütz · Ralf Bauer · José-Manuel Thorweihe · Daniela Wenzel · Ursula Schlötzer-Schrehardt · Volker Rasche · Pavle Krsmanovic · Hugo A. Katus · Wolfgang Rottbauer · Steffen Just · Oliver J. Müller · Oliver Friedrich · Rainer Meyer · Harald Herrmann · Jan Wilko Schrickel · Rolf Schröder Received: 1 September 2014 / Revised: 14 October 2014 / Accepted: 30 October 2014 / Published online: 14 November 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Mutations of the human desmin gene on chro- Furthermore, we demonstrate that the missense-mutant mosome 2q35 cause autosomal dominant, autosomal reces- desmin inflicts changes of the subcellular localization and sive and sporadic forms of protein aggregation myopathies turnover of desmin itself and of direct desmin-binding part- and cardiomyopathies. We generated R349P desmin knock- ners. Our findings unveil a novel principle of pathogenesis, in mice, which harbor the ortholog of the most frequently in which not the presence of protein aggregates, but disrup- occurring human desmin missense mutation R350P. These tion of the extrasarcomeric intermediate filament network mice develop age-dependent desmin-positive protein aggre- leads to increased mechanical vulnerability of muscle fib- gation pathology, skeletal muscle weakness, dilated cardio- ers. These structural defects elicited at the myofiber level myopathy, as well as cardiac arrhythmias and conduction finally impact the entire organ and subsequently cause defects. For the first time, we report the expression level myopathy and cardiomyopathy.
    [Show full text]
  • Muscle Diseases: the Muscular Dystrophies
    ANRV295-PM02-04 ARI 13 December 2006 2:57 Muscle Diseases: The Muscular Dystrophies Elizabeth M. McNally and Peter Pytel Department of Medicine, Section of Cardiology, University of Chicago, Chicago, Illinois 60637; email: [email protected] Department of Pathology, University of Chicago, Chicago, Illinois 60637; email: [email protected] Annu. Rev. Pathol. Mech. Dis. 2007. Key Words 2:87–109 myotonia, sarcopenia, muscle regeneration, dystrophin, lamin A/C, The Annual Review of Pathology: Mechanisms of Disease is online at nucleotide repeat expansion pathmechdis.annualreviews.org Abstract by Drexel University on 01/13/13. For personal use only. This article’s doi: 10.1146/annurev.pathol.2.010506.091936 Dystrophic muscle disease can occur at any age. Early- or childhood- onset muscular dystrophies may be associated with profound loss Copyright c 2007 by Annual Reviews. All rights reserved of muscle function, affecting ambulation, posture, and cardiac and respiratory function. Late-onset muscular dystrophies or myopathies 1553-4006/07/0228-0087$20.00 Annu. Rev. Pathol. Mech. Dis. 2007.2:87-109. Downloaded from www.annualreviews.org may be mild and associated with slight weakness and an inability to increase muscle mass. The phenotype of muscular dystrophy is an endpoint that arises from a diverse set of genetic pathways. Genes associated with muscular dystrophies encode proteins of the plasma membrane and extracellular matrix, and the sarcomere and Z band, as well as nuclear membrane components. Because muscle has such distinctive structural and regenerative properties, many of the genes implicated in these disorders target pathways unique to muscle or more highly expressed in muscle.
    [Show full text]
  • Cytoskeletal Proteins in Neurological Disorders
    cells Review Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders Diana C. Muñoz-Lasso 1 , Carlos Romá-Mateo 2,3,4, Federico V. Pallardó 2,3,4 and Pilar Gonzalez-Cabo 2,3,4,* 1 Department of Oncogenomics, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; [email protected] 2 Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, 46010 Valencia, Spain; [email protected] (C.R.-M.); [email protected] (F.V.P.) 3 CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain 4 Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain * Correspondence: [email protected]; Tel.: +34-963-395-036 Received: 10 December 2019; Accepted: 29 January 2020; Published: 4 February 2020 Abstract: Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures within neurons (cell bodies and axons), which allow their proper development and function through life. Here, we will provide an overview of both the basic and novel concepts related to those cytoskeletal proteins, which are emerging as potential targets in the study of the pathophysiological mechanisms underlying neurological disorders.
    [Show full text]