High Speed Linac-Beam Analyzer

Total Page:16

File Type:pdf, Size:1020Kb

High Speed Linac-Beam Analyzer United States Patent im mi 3,873,839 Johnson [45] Mar. 25, 1975 [54] HIGH SPEED LIN AC-BEAM ANALYZER Primary Examiner—James W. Lawrence [75] Inventor: Kenneth W. Johnson, Lockport, 111. Assistant Examiner—T. N. Grigsby Attorney, Agent, or Firm—Dean E. Carlson; Arthur A. [73 ] Assignee: The United States of America as Churm; Paul A. Gottlieb represented by the United States Atomic Energy Commission, [57] ABSTRACT Washington, D.C. A device for analyzing a charged particle beam devel- [22] Filed: Apr. 10, 1974 oped by an accelerator device having an RF driving signal is provided. The particle beam passes through a [21] Appl. No.: 459,824 transparent medium, developing light of intensity pro- portional to the intensity of the particle beam. A pho- [52] U.S. CI 250/369, 250/361, 250/362, tocathode is aligned to detect the light and thereby 250/396 generate an electron beam of intensity porportional to the intensity of the light. The RF driving signal is cou- [51] Int. CI GOlj 39/18, GO In 21/16, GOlt 1/20 pled via a phasevarying network to an X-axis deflec- [58] Field of Search 250/369, 361, 362, 379, tion system and, after a phase shift of 90°, to a Y-axis 250/396 deflection system. The electron beam is directed through the X-axis and Y-axis deflection system, [56] References Cited thereby causing the electron beam to precess about an UNITED STATES PATENTS axis and describe a circular trace in a plane perpendic- 2,912,646 11/1959 Pilny 250/396 ular to the axis. Means are provided to measure the 2,954,473 9/1970 Hoover et al 250/362 intensity of the beam along a particular narrow arc of 3,049,619 8/1962 Genovese, Jr 250/362 the circular trace as the phase of the RF signal applied 3,170,116 2/1965 Farrington 250/396 to the X and Y deflection system is varied from 0° to 3,805,075 4/1974 Roberts 250/369 360°. 7 Claims, 4 Drawing Figures £ PATENTED FEB I 81875 3,867,634 SHEET 1 OF 8 PATENTED MAR2 5.1375 3,873,839 SHEET 2 OF 2 f x x-input(time)— 3,873,839 1 HIGH SPEED LINAC-BEAM ANALYZER The electron beam is directed to pass through the X and Y deflection systems and thereby precesses about CONTRACTUAL ORIGIN OF THE INVENTION the longitudinal axis to describe a circular pattern in a The invention described herein was made in the plane perpendicular to the longitudinal axis. The pre- course of, or under, a contract with the UNITED 5 cessing beam may be focused and the point of conver- STATES ATOMIC ENERGY COMMISSION. gence made to impinge on a fluorescent screen, thereby illuminating a circular trace of particular diam- BACKGROUND OF THE INVENTION eter. A mask having a slit therethrough is coupled to A particle beam analyzer is a tool for examining the the fluorescent screen so that an arc of the circular frequency and amplitude characteristics of a beam of 10 trace traverses the slit. A photomultiplier tube is posi- charged particles developed by an accelerator. For ex- tioned directly opposite the slit so that it detects the in- ample, the ideal beam developed by a linear accelera- tensity of that portion of the beam traversing the slit. tor consists of a series of substantially identical bunches As the phase of RF driving signal applied to the deflect- or pulses of charged particles traveling at a speed ap- ing electrode is varied from 0° to 360°, the photomulti- proaching the speed of light, with the frequency of the 15 plier tube develops a signal representative of the inten- generation of each bunch by the accelerator corre- sity of the trace at each phase variation. An alternate sponding to the frequency of an RF driving signal. An embodiment of the invention provides a slit which is analyzer should detect the presence of these pulses and positioned to intersect the circular trace of the electron provide means for determining how closely coincident beam. The slit is aligned so that the electron beam pass- in time the particles are generated, which provides a 20 ing through the slit is directed to and the point of con- measure of the quality of the bunching together of the vergence impinges on the dynode of an electron multi- particles. plier tube which, as the phase of the RF signal applied Certain types of linear accelerators produce particle to the deflecting electrodes is varied from 0° to 360°, beams having a frequency of bunch generation greater develops a signal corresponding to the intensity of the than other types requiring a particle beam analyzer ca- 25 electron beam at each variation of phase. pable of sensitivity to the higher frequency accelera- tors. Thus the analyzer must be able to respond more BRIEF DESCRIPTION OF THE DRAWINGS quickly to the pulses which comprise the beam than for FIG. 1 is a schematic of the high-speed particle, beam the lower frequency accelerator analyzer. Prior art ana- analyzer; lyzers have a time resolution, which is the smallest mea- 30 FIG. 2 is a view of mask-screen-trace arrangement; surable time interval over which the analyzer can dis- FIG. 3 is a partial schematic of an alternate embodi- tinguish between the intensity, i.e., the varying number ment of the analyzer; and of charged particles, at adjacent points along the beam, FIG. 4 is a set of curves of the output of a particle on the order of 30 picoseconds. The modern high- beam analyzer. current linear accelerators require an analyzer which is 35 capable of operating at approximately 2 picoseconds DETAILED DESCRIPTION OF THE INVENTION time resolution. Referring to FIG. 1, there is shown a schematic of a In addition to the inadequacies of the prior art analy- linear accelerator and particle beam analyzer. A linear zer in terms of time resolution, transmission of high- accelerator is a device in which charged particles gain speed signals, associated with the beam, from the accel- 40 in energy by the action of oscillating electromagnetic erator to the analyzer by conventional means is ex- fields. A particle beam developed in the accelerator is tremely difficult. Transmission of these high-speed sig- composed of a series of particle bunches with the fre- nals for distances on the order of 50 feet or more by co- quency at which the bunches are generated corre- axial cable is subject to great induced error due to the sponding to the frequency of oscillation of the electro- difficulties of handling wire carried high frequency sig- magnetic fields. For illustrative purposes, the linear ac- nals. celerator 10 depicted in FIG. 1 is of the drift tube vari- It is therefore an object of this invention to provide ety. Any other type of linear accelerator having an RF a particle beam analyzer operable in the 2 picosecond driving signal is appropriate to practice the invention. time resolution range. Another example of such an accelerator is the traveling Another object of this invention is to provide a parti- wave linear accelerator. Linear accelerator 10 includes cle beam analyzer operable at a distance from the ac- a series of drift tube electrodes 11, 12, 13, 14 and 15, celerator. which are coupled to an RF oscillator 18, via leads 16 and 17. The RF oscillator 18 applies an RF signal to the SUMMARY OF THE INVENTION electrodes. Charged particles are developed by particle 55 A device is provided for analyzing a particle beam source 20 and are then accelerated by linear accelera- developed by an accelerator having an RF driving sig- tor 10 with a resultant beam from the linear accelerator nal. The particle beam is directed so that is passes 10 consisting of a series of pulses or bunches of parti- through a transparent medium, thereby developing cles. Each pulse will be similar to every other pulse due light of intensity proportional to the intensity of the 6q to the characteristics of the accelerator so that errors particle beam. A photocathode is aligned to detect the will be repeated in each pulse. It is desirable to detect light and generate an electron beam traveling along a the presence of these bunches and how closely in time longitudinal axis and of intensity proportional to the in- the particles are generated within each bunch to deter- tensity of the light beam. The RF driving signal is cou- mine if the accelerator is functioning properly. It is for pled via phase-varying means to X-axis and Y-axis de- this purpose that a particle beam analyzer is necessary. flection systems, with the signal applied to the X-axis The charged particle beam 23 developed by linear deflection system being constantly maintained 90° out accelerator 10 and contained in an evacuated beam of phase with the signal applied to the Y-axis system. guide 24 is directed to pass through a quartz bead 25 3,873,839 outside guide 24. When an electrically charged particle maintained constantly 90° out of phase with the signal is made to pass through a transparent medium, such as applied to the X-axis deflecting electrodes 41 and 42 by a quartz bead, at a velocity in excess of the speed of 90° phase shifter 60. The effect of applying identical light in that transparent medium, Cherenkov radiation A-C signals 90°out of phase to a deflection system in- occurs at a light intensity proportional to the quantity 5 cluding X-axis deflecting electrodes and Y-axis deflect- of particles ofthe incident beam.
Recommended publications
  • Building a Photomultiplier Tube Testing Lab and Measuring Dark Rate
    Building a photomultiplier tube testing lab and measuring dark rate Suffolk County Community College and Brookhaven National Lab Lab Setup • Dark box set up to hold four Photomultiplier tubes simultaneously and output signals • Three step data collection 1. Discriminator 2. Delay Generator 3. Visual Scalar • Labview collects and files data and Oscilloscope shows signal outputs from PMTs Wiring Discriminator: The PMTs constantly output a signal (Dark current) regardless of whether or not it detected a photon. The discriminator sets a voltage that has to be exceeded for the signal to pass through. Delay Generator: The delay generator receives the input from the discriminator and outputs to the visual scalar. When active, the delay generator allows the signal to pass through, but only for a set period of time. Visual Scalar: The visual scalar receives the output from the delay generator and outputs the number of signals it receives. Dark Box “light tight” testing • The first problem we encountered with the dark box was there was there was a measureable difference in counts when testing with the lights on vs. the lights off. This meant that the box wasn’t completely sealed • We taped any visible weaknesses in the box and added a layer of foam tape between the box and the lid • We tested the modified box at several different voltages with the lights both on and off and the differences were negligible • The data is plotted above, the red line represents the data collected with the lights on and the black line represents the data with the lights off Dark Current • PMTs constantly output a very low signal whether or not the have detected a photon.
    [Show full text]
  • Characterisation of Silicon Photomultipliers for the Detection of Near Ultraviolet and Visible Light
    Universit`adegli Studi di Trento { Dipartimento di Fisica Fondazione Bruno Kessler { Integrated Radiation and Image Sensors Characterisation of Silicon Photomultipliers for the detection of Near Ultraviolet and Visible light Cycle XXIX G. Zappala' Supervised by: N. Zorzi Abstract Light measurements are widely used in physics experiments and medical ap- plications. It is possible to find many of them in High{Energy Physics, As- trophysics and Astroparticle Physics experiments and in the PET or SPECT medical techniques. Two different types of light detectors are usually used: thermal detectors and photoelectric effect based detectors. Among the first type detectors, the Bolometer is the most widely used and developed. Its in- vention dates back in the nineteenth century. It represents a good choice to detect optical power in far infrared and microwave wavelength regions but it does not have single photon detection capability. It is usually used in the rare events Physics experiments. Among the photoelectric effect based detectors, the Photomultiplier Tube (PMT) is the most important nowadays for the de- tection of low{level light flux. It was invented in the late thirties and it has the single photon detection capability and a good quantum efficiency (QE) in the near{ultraviolet (NUV) and visible regions. Its drawbacks are the high bias voltage requirement, the difficulty to employ it in strong magnetic field environments and its fragility. Other widely used light detectors are the Solid{State detectors, in particular the silicon based ones. They were developed in the last sixty years to become a good alternative to the PMTs. The silicon photodetectors can be divided into three types depending on the operational bias voltage and, as a conse- quence, their internal gain: photodiodes, avalanche photodiodes (APDs) and Geiger{mode detectors, Single Photon Avalanche Diodes (SPADs).
    [Show full text]
  • Photomultiplier Tubes 1)-5)
    CHAPTER 2 BASIC PRINCIPLES OF PHOTOMULTIPLIER TUBES 1)-5) A photomultiplier tube is a vacuum tube consisting of an input window, a photocathode, focusing electrodes, an electron multiplier and an anode usu- ally sealed into an evacuated glass tube. Figure 2-1 shows the schematic construction of a photomultiplier tube. FOCUSING ELECTRODE SECONDARY ELECTRON LAST DYNODE STEM PIN VACUUM (~10P-4) DIRECTION e- OF LIGHT FACEPLATE STEM ELECTRON MULTIPLIER ANODE (DYNODES) PHOTOCATHODE THBV3_0201EA Figure 2-1: Construction of a photomultiplier tube Light which enters a photomultiplier tube is detected and produces an output signal through the following processes. (1) Light passes through the input window. (2) Light excites the electrons in the photocathode so that photoelec- trons are emitted into the vacuum (external photoelectric effect). (3) Photoelectrons are accelerated and focused by the focusing elec- trode onto the first dynode where they are multiplied by means of secondary electron emission. This secondary emission is repeated at each of the successive dynodes. (4) The multiplied secondary electrons emitted from the last dynode are finally collected by the anode. This chapter describes the principles of photoelectron emission, electron tra- jectory, and the design and function of electron multipliers. The electron multi- pliers used for photomultiplier tubes are classified into two types: normal dis- crete dynodes consisting of multiple stages and continuous dynodes such as mi- crochannel plates. Since both types of dynodes differ considerably in operating principle, photomultiplier tubes using microchannel plates (MCP-PMTs) are separately described in Chapter 10. Furthermore, electron multipliers for vari- ous particle beams and ion detectors are discussed in Chapter 12.
    [Show full text]
  • 06 - Photomultiplier Tubes and Photodiodes
    06 - Photomultiplier tubes and photodiodes Jaroslav Adam Czech Technical University in Prague Version 2 Jaroslav Adam (CTU, Prague) DPD_06, Photomultiplier tubes and photodiodes Version 2 1 / 38 The Photomultiplier (PM) tube Detection of very weak scintillation light Provide electrical signal Can be also done with silicon photodiodes, but PM are most widely used Characterized by spectral sensitivity Jaroslav Adam (CTU, Prague) DPD_06, Photomultiplier tubes and photodiodes Version 2 2 / 38 Structure of PM tube Jaroslav Adam (CTU, Prague) DPD_06, Photomultiplier tubes and photodiodes Version 2 3 / 38 Photoemission process Conversion of incident light to photelectron in sequence of processes (1) photon absorbed, it’s energy transfered to electron in material (2) Migration of electron to the surface of material (3) Escape of electron from the surface of photocathode Must overcome potential barrier (work function) of the material Jaroslav Adam (CTU, Prague) DPD_06, Photomultiplier tubes and photodiodes Version 2 4 / 38 Spontaneous electron emission Thermionic noise by the surface barrier Thermal kinetic energy of conduction electrons may be sufficient to overcome the barrier Average of thermal energy is 0.025 eV, but the tail of the distribution reaches higher energies Jaroslav Adam (CTU, Prague) DPD_06, Photomultiplier tubes and photodiodes Version 2 5 / 38 Fabrication of photocathodes Opaque - thickness > maximal escape depth Semitransparent - deposited on transparent backing Important uniformity of thickness Jaroslav Adam (CTU, Prague) DPD_06,
    [Show full text]
  • An Improved Design of the Readout Base Board of the Photomultiplier Tube for Future Pandax Dark Matter Experiments
    Prepared for submission to JINST An improved design of the readout base board of the photomultiplier tube for future PandaX dark matter experiments Qibin Zheng,0,2 Yanlin Huang,0 Di Huang,1 Jianglai Liu,1,3 Xiangxiang Ren,4 Anqing Wang,4 Meng Wang,4 Jijun Yang,1 Binbin Yan,1 Yong Yang1 0Institute of Biomedical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 1INPAC, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai 200240, China 2Terahertz Technology Innovation Research Institute, University of Shanghai for Science and Technology, Shanghai 200093, China 3Tsung-Dao Lee Institute, Shanghai Jiaotong University, Shanghai, 200240, China 4School of Physics and Key Laboratory of Particle Physics and ParticleIrradiation (MOE), Shandong University, Jinan 250100, China E-mail: [email protected] Abstract: The PandaX project consists of a series of xenon-based experiments that are used to search for dark matter (DM) particles and to study the fundamental properties of neutrinos. The next DM experiment PandaX-4T will be using 4 ton liquid xenon in the sensitive volume, which is nearly a factor of seven larger than that of the previous experiment PandaX-II. Due to the increasing target mass, the sensitivity of searching for both DM and neutrinoless double-beta decay (0aVV) signals in the same detector will be significantly improved. However, the typical energy of interest for 0aVV signals is at the MeV scale, which is much higher than that of most popular DM signals. In the baseline readout scheme of the photomultiplier tubes (PMTs), the dynamic range is very limited.
    [Show full text]
  • Photomultiplier Tube Basics Photomultiplier Tube Basics
    Photomultiplier tube basics Photomultiplier tube basics Still setting the standard 8 Figures of merit 18 Single-electron resolution (SER) 18 Construction & operating principle 8 Signal-to-noise ratio 18 The photocathode 9 Timing 18 Quantum efficiency (%) 9 Response pulse width 18 Cathode radiant sensitivity (mA/W) 9 Rise time 18 Spectral response 9 Transit-time and transit-time differences 19 Transit-time spread, time resolution 19 Collection efficiency 11 Very-fast tubes 11 Linearity 19 Fast tubes 11 External factors affecting linearity 19 General-purpose tubes 11 Internal factors affecting linearity 20 Tubes optimized for PHR 12 Linearity measurement 21 Measuring collection efficiency 12 Stability 21 The electron multiplier 12 Long-term drift 21 Secondary emitting dynode coatings 13 Short-term shift (or count rate stability) 22 Voltage dividers 13 Gain 1 Supply and voltage dividers 23 Anode collection space 1 Applying the voltage 23 Anode sensitivity 1 Voltage dividers 2 Specifications and testing 1 Anode resistor 2 Maximum voltage ratings 1 Gain adjustment 2 Anode dark current & dark noise 1 Magnetic fields 2 Ohmic leakage 1 Thermionic emission 1 Magnetic shielding 27 Field emission 1 Environmental considerations 28 Radioactivity 1 Temperature 28 PMT without scintillator 1 Atmosphere 29 PMT with scintillator 1 Mechanical stress 29 Cathode excitation 1 Radiation 29 Dark current values on test tickets 1 Reference 30 Afterpulses 17 www.photonis.com Still setting Construction the standard & operating principle A photomultiplier tube is
    [Show full text]
  • Unusual Tubes
    Unusual Tubes Tom Duncan, KG4CUY March 8, 2019 Tubes On Hand GAS-FILLED HIGH-VACUUM • Neon Lamp (NE-51) • Photomultiplier • Cold-cathode Voltage (931A) Regulator (0B2) • Magic Eye (1629) • Hot-cathode Thyratron • Low-voltage (12DY8) (884) • Space Charge (12K5) 2 Timeline of Related Events 1876, 1902 William Crookes Cathode Rays, Glow Discharge 1887 [1921] Hertz, Einstein Photoelectric Effect 1897 [1906] J. J. Thomson Electron identified 1920 Daniel Moore (GE) Voltage Regulator 1923 Joseph Slepian Secondary Emission (Westinghouse) 1928 Albert Hull, Irving Thyratron Langmuir (GE) [1928] Owen Richardson Thermionic Emission 1936 Vladimir Zworykin Photomultiplier (RCA) 1937 Allen DuMont Magic Eye 3 Neon Bulbs • Based on glow-discharge (coronal discharge) effect noticed by William Crookes around 1902. • Exhibit a negative incremental resistance over part of the operating range. • Light-sensitive: photo-ionization causes the ionization voltage to decrease with illumination (not generally a desirable characteristic). • Used as indicators , voltage regulators, relaxation oscillators , and the larger ones for illumination . 4 Neon Lamp/VR Tube Curves 80 Normal Abnormal Glow Glow 70 60 Townsend Discharge 50 Negative Resistance 40 Region 30 Volts across Device across Volts 20 10 Conduction Destroys Lamp Destroys Arc Conduction Arc Chart details (coronal) Glow depend on -5 element 10 -20 10 -15 10 -10 10 1 geometry and Current through Device (A) gas mixture. 5 Cold-Cathode Voltage Regulator Tubes • Very similar to neon bulbs: attention paid to increasing current-carrying capability and ensuring a constant forward voltage. • Gas sometimes includes radio-isotopes to reduce sensitivity to photo-ionization. • Developed at General Electric Research Labs by Daniel Moore around 1920.
    [Show full text]
  • Pysight: Plug and Play Photon Counting for Fast Intravital Microscopy
    bioRxiv preprint doi: https://doi.org/10.1101/316125; this version posted May 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PySight: plug and play photon counting for fast intravital microscopy Hagai Har-Gila, b, *, Lior Golghera, b, *, Shai Israelb, c, David Kaina, Ori Cheshnovksyd, Moshe Parnasb, c, and Pablo Blindera, b, aSchool of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, 30 Chaim Levanon St., Tel Aviv 6997801, Israel bSagol School of Neuroscience, Tel Aviv University, Israel cSackler Medical School, Tel Aviv University, Israel dThe Center for Nanosciences and Nanotechnology & School of Chemistry, The Raymond and Beverly Faculty of Exact Sciences, Tel Aviv University, Israel *Authors marked with * have equal contribution Imaging increasingly large neuronal populations at high rates detection event with 100 picoseconds accuracy, resulting in a pushed multi-photon microscopy into the photon-deprived modest data throughput while exceeding the spatio-temporal regime. We present PySight, an add-on hardware and soft- resolution of existing volumetric imaging setups (3,9, 11). ware solution tailored for photon-deprived imaging conditions. PySight more than triples the median amplitude of neuronal calcium transients in awake mice, and facilitates single-trial in- Results travital voltage imaging in fruit flies. Its unique data streaming A. System architecture. The anatomy of conventional architecture allowed us to image a fruit fly’s olfactory response over 234×600×330µm3 at 73 volumes per second, outperform- multi-photon systems involves, among others, a pulsed laser ing top-tier imaging setups while retaining over 200 times lower source, beam steering elements and their auxiliary optics, data rates.
    [Show full text]
  • A NOVEL PHOTOMULTIPLIER TUBE for CALORIMETRY at the SSC 4Rockefeller University, New York, NY L^I^H I Th Gains Beyond 5000 Aredi
    To be published in 4th Annual IISSC, New Orleans, March, ]992. ;J CCNF-920331—53 DE92 018768 A NOVEL PHOTOMULTIPLIER TUBE FOR CALORIMETRY AT THE SSC P. Cushman1, M.Iosue2, B.Johnson2, M.Madden3, R.Rusack4, M.Szawlowski3 aYale University, New Haven, CT 2Litton Electron Devices, Tempe, AZ 3Advanced Photonix Inc., Los Angeles, CA $ /a ? O"f S"^ 4Rockefeller University, New York, NY l^i^h I tH INTRODUCTION A silicon target photomultiplier tube with an anode consisting of a large area Avalanche Photodiode (APD) has been developed. The tube combines the advan- tages of an avalanche photodiode, excellent linearity and large dynamic range, with the properties of a phototube. The tube structure is proximity focussing, which is not affected by high magnetic fields approximately aligned with the axis. The high linearity makes this device attractive for caloriraetry at the SSC. The extension of this concept to an APD array will provide a cost effective fiber readout for both digital (tracking) and analogue applications. A tube equipped with an APD array is being developed currently as a readout option for the SDC Shower Maximum Detector. HYBRID PHOTOTUBE DESIGN A 16 mm diameter APD is-located at the anode of a proximity focussed pho- totube, 6.8 mm from a photocathode. Fig 1 is a schematic of the tube design. The photocithode is maintained at a negative high voltage (8-12 kV), the front surface of the APD is held to ground through a 1 kH resistor, and the back surface or anode of the APD is biased with a positive voltage of 1-2 kV.
    [Show full text]
  • A Monitor for Gamma Radiation at Zero Degrees 1
    Nuclear Instruments and Methods in Physics Research A277 (1989) 297-303 297 North-Holland, Amsterdam A MONITOR FOR GAMMA RADIATION AT ZERO DEGREES FROM THE SLC COLLISION POINT * G. BONVICINI, R. FREY, E. GERO and W. KOSKA University of Michigan, Ann Arbor, MI 48109, USA C. FIELD Stanford h'near Accelerator Center, Stanford, CA 94309, USA A. MINTEN CERN, CH-1211, Geneva 23, Switzerland Received 21 November 1988 Bremsstrahlung gamma rays are emitted in a narrow forward cone while the electron and positron beams are being measured with carbon fibers at the SLC (the linear collider at the Stanford Linear Accelerator Center). Beam-beam deflections which occur at the collision point also emit softer gamma rays, called beamstrahlung. A device to detect these gammas is described. It has a converter to produce electron-positron pairs and a gas Cherenkov volume to detect them in the presence of a large, low energy, radiation background. The system is used for beam diagnostics at the SLC. 1. Introduction diameters 30, 7 and 4.5 ~m. The electrons and positrons collide head-on, and the single beam pipe is in a straight The concept of the linear collider is centered on the line extending through the last focusing stage of each collision of high intensity beam bunches of microscopic beam line. The first significant dipole, B1, is encoun- dimensions. The development of diagnostic procedures tered by the exiting beam on its way to the dump at for the beams and their collisions will be important for about 38 m from the IP, and by 42 m the beam has the success of this new class of machines.
    [Show full text]
  • Photomultiplier Tubes
    Chapter 3 Photomultiplier Tubes Sergey V. Polyakov National Institute of Standards and Technology, Gaithersburg, MD 20899, USA Chapter Outline Head 3.1 Introduction 69 3.2 Brief History 69 3.3 Principle of Operation 71 3.3.1 Photoelectron Emission and Photocathodes 72 3.3.2 Secondary Emission, Dynodes 73 3.4 Photon Counting with Photomultipliers 76 3.5 Conclusion 82 References 82 3.1 INTRODUCTION Photomultiplier tubes (PMTs), also known as photomultipliers, are remarkable devices. While a PMT was the first device to detect light at the single-photon level, invented more than 80 years ago, they are widely used to this day, particularly in biological and medical applications. Modern PMTs deliver low noise and low jitter detection over a wide dynamic range. However, they offer limited detection efficiency, especially for longer wavelengths. We discuss the physical mechanisms behind the photon detection in PMTs, the history of their development, and the key characteristics of PMTs in photon-counting mode. 3.2 BRIEF HISTORY There are two distinct phenomena that are fundamental to the operation of a photomultiplier tube. The first is the photoelectric effect. A range of materials emit electrons when illuminated with light. The requirement is that the photons Single-Photon Generation and Detection, Volume 45. http://dx.doi.org/10.1016/B978-0-12-387695-9.00003-2 © 2013 Elsevier Inc. All rights reserved. 69 70 Single-Photon Generation and Detection have energy that is equal to or exceeding the so-called workfunction of the photoelectric material. The second is the phenomenon of secondary emission. When an incident electron possesses sufficient energy, it can knock out multiple electrons when hitting a surface, or when passing through a medium.
    [Show full text]
  • Development of Transverse Beam Position and Shape Monitor For
    DEVELOPMENT OF TRANSVERSE BEAM POSITION AND SHAPE MONITOR FOR INTEGRABLE OPTICS TEST ACCELERATOR BASED ON PHOTOMULTIPLIER TUBE ARRAY NADEZDA AFONKINA1,2,* 1 Europhotonics student, Aix-Marseille University, France, Marseille 2Summer intern, Fermilab, Batavia, IL 60510, USA *[email protected] Abstract: The report is dedicated to development and testing of a BPSM (Beam Position and Shape Monitor) for IOTA (Integrable Optics Test Accelerator) during summer internship at Fermi National Accelerator Laboratory (Fermilab). BPSM is based on 64-channel Photomultiplier tube (PMT) array Hamamatsu H7546B. Design with 8 of 64 channels is described in detail. Response, sensitivity and response speed test results are provided. Aspects of BPSM’s signal digitization and future development and commissioning are discussed. © 2016 Optical Society of America OCIS codes: (040.0040) Detectors; (040.1240) Arrays; (040.5250) Photomultipliers; (120.4290) Nondestructive Testing; (320.7080) Ultrafast Devices; (340.6720) Synchrotron Radiation. References and links 1. M. Gasior, R. Jones, T. Lefevre, H. Schmickler, K. Wittenburg, “Introduction to Beam Instrumentation and Diagnostics," CERN Yellow Report CERN-2014-009 , 23–60 (2014). 2. M. Church, “Design of the Advanced Superconducting Test Accelerator”, http://asta.fnal.gov/files/ ASTA_technical_description.pdf. 3. A. Valishev, “IOTA – A Brief Parametric Profile,” presented at the Focused Workshop on Scientific Opportunities in IOTA, Batavia, IL 60510, USA, 1 April. 2015. 4. A. H. Lumpkin, “Imaging Techniques for Transverse Beam-Profile/Size Monitors,” Proceedings of BIW2012, Newport News, VA USA, 2012. 5. A. Hofmann, Diagnostics with Synchrotron Radiation (CERN, 2005). 6. I. N. Nesterenko, E. A. Perevedentsev, A. A. Valishev, “Coherent synchrobetatron beam-beam modes: Experiment and simulation,” Phys.
    [Show full text]