The Tumor Suppressor Effect of the Glucocorticoid Receptor in Skin Is Mediated Via Its Effect on Follicular Epithelial Stem Cells

Total Page:16

File Type:pdf, Size:1020Kb

The Tumor Suppressor Effect of the Glucocorticoid Receptor in Skin Is Mediated Via Its Effect on Follicular Epithelial Stem Cells Oncogene (2007) 26, 3060–3068 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc ORIGINAL ARTICLE The tumor suppressor effect of the glucocorticoid receptor in skin is mediated via its effect on follicular epithelial stem cells D Chebotaev1, A Yemelyanov1, L Zhu2, RM Lavker1 and I Budunova1 1Department of Dermatology, Feinberg Medical School, Northwestern University, Chicago, IL, USA and 2Bioinformatics Core, Northwestern University, Chicago, IL, USA Glucocorticoids are potent inhibitors of mouse skin The cellular response to glucocorticoids is mediated tumorigenesis. The glucocorticoid control of cellular through the glucocorticoid receptor (GR), a well-known functions is mediated via the glucocorticoid receptor transcription factor (Beato et al., 1995). In non- (GR), a well-known transcription factor. Recently, we stimulated cells, GR resides in the cytoplasm bound generated transgenic mice overexpressing GR under to the complex of chaperone proteins including heat control of the keratin5 (K5) promoter, and showed that shock proteins (Hsp90, Hsp70, Hsp40)and immuno- K5.GR animals are resistant to skin carcinogenesis. philins such as Fkbp51 (Beato et al., 1995; Pratt and Follicular epithelial stem cells (SCs), located in the bulge Toft, 2003). Following hormone binding, the GR region of the hair follicle, are believed to be one of the dissociates from the chaperones and forms homodimers, target cells for skin carcinogenesis. We found that the which enter the nucleus. Chaperons including Fkbp51 number of putative hair follicle SC detected as label- play an important role in GR-mediated signaling: retaining cells was significantly less in the K5.GR they affect GR/hormone-binding affinity, and are transgenics compared to wild type (w.t.) littermates. We involved in GR shuttling between the nucleus and also showed that GR overexpression led to a reduction in cytoplasm (Davies et al., 2002). There are two major the clonogenicity of the follicular epithelial SCs. We mechanisms of gene regulation by GR (Beato et al., evaluated the global effect of GR on gene expression in a 1995; De Bosscher et al., 2003; Necela and Cidlowski, population of follicular SC-enriched bulge keratinocytes 2004). The direct positive transcriptional regulation of isolated by fluorescence activated cell sorting. We found genes (transactivation)requires binding of the GR that GR affected the expression of numerous bulge SC homodimer to glucocorticoid-response elements (GRE) ‘signature’ genes, genes involved in the maintenance of SC in gene promoters. The indirect negative regulation and progenitor cells of non-epidermal origin and proa- (transrepression)is mediated via negative cross-talk poptotic genes. Our findings underscore the important role with other transcription factors including AP-1, NF-kB of GR signaling in the homeostasis of follicular epithelial and p53. SCs, and suggest that the reduction in their number may To study the effect of GR in skin tumorigenesis, we underlie the tumor suppressor effect of GR in the skin. generated keratin5 (K5).GR transgenic animals in which Oncogene (2007) 26, 3060–3068. doi:10.1038/sj.onc.1210108; K5 promoter drives GR expression to basal keratino- published online 4 December 2006 cytes in interfollicular epidermis and in the outer root sheath of hair follicles, as well as to some other stratified Keywords: epidermis; stem cells; glucocorticoid receptor; epithelia (Perez et al., 2001). In K5.GR transgenic skin carcinogenesis animals, GR has a nuclear localization and appears to be constitutively active (Perez et al., 2001; Budunova et al., 2003). We found that K5.GR transgenic animals are highly resistant to skin tumor development induced by activated v-Ha-ras oncogene followed by chronic Introduction treatment with tumor promoter (Budunova et al., 2003). In mice with GR overexpression, skin tumors developed Glucocorticoid hormones are potent inhibitors of later, and the average number of tumors per animal as keratinocyte proliferation and effective inhibitors of well as the average tumor volume were drastically experimentally induced skin carcinogenesis in animal decreased. models especially at the stage of skin tumor promotion As a self-renewing tissue, the epidermis is governed by (reviewed in Budunova et al., 2003). stem cells (SCs). Most of SCs in mouse epidermis reside in the bulge of hair follicles – a specialized region of the outer root sheath in the permanent segment of hair Correspondence: Dr I Budunova, Department of Dermatology, follicle (Cotsarelis et al., 1990, Taylor et al., 2000; Fuchs Feinberg Medical School, Northwestern University, Ward Building et al., 2001). These follicular epithelial SCs are similar to 9-332, 303 East Chicago Avenue, Chicago, IL 60611, USA. E-mail: [email protected] SCs in other adult tissues: they are slow-cycling and Received 24 July 2006; revised 22 September 2006; accepted 28 have a high potential for self-renewal (Lavker et al., September 2006; published online 4 December 2006 2003; Blanpain et al., 2004; Blanpain and Fuchs, 2006). Effect of GR on follicular epithelial stem cells D Chebotaev et al 3061 During times of proliferative need, these cells help to Results maintain the epidermis (Lavker and Sun, 2000; Lavker et al., 2003). GR reduces the frequency of slow-cycling cells in the bulge There are several lines of evidence indicating that skin of the hair follicles tumors including both papillomas and squamous cell One of the most reliable ways to identify epithelial SCs carcinomas (SCC)originate from the follicular epithelial takes advantage of the fact that these cells are normally SCs (Morris, 2000; Owens and Watt, 2003). Impor- slow-cycling, and hence can be identified experimentally tantly, the loss of carcinogen-treated interfollicular as label-retaining cells (LRCs)(Bickenbach and Mack- keratinocytes did not affect SCC development during enzie, 1984; Morris et al., 1985). To analyse the two-stage carcinogenesis, and the number of skin distribution of putative SCs detected as LRCs in hair papillomas was decreased only twofold, suggesting a follicles of K5.GR transgenic versus wild-type (w.t.) follicular origin of all malignant and a portion of benign mice, we injected newborn pups (post-natal day 3) skin tumors in mice (Morris, 2000). subcutaneously with 5-bromo-2-deoxyuridine (BrdU) We report herein that the tumor suppressor effect of for 3 days. This protocol resulted in B100% of the GR in the skin may be mediated through a decrease in keratinocytes incorporating BrdU 24 h following the last the number of target cells (follicular epithelial SCs), injection in both w.t. and K5.GR newborn skin (Figure changes in their proliferative capacity and alterations in 1a and b). Following a 4-week chase, most of the rapidly their genetic profile that may lead to the decreased cycling transient amplifying (TA)cells in the upper part sensitivity to transformation. of outer root sheath and in interfollicular epidermis WT K5.GR ab cd Figure 1 GR reduced the number of LRC in the bulge of the hair follicle. Newborn K5.GR and w.t. mice were injected s.c. with BrdU for 3 days. BrdU-positive cells were identified by immunostaining. (a and b)– initial level of BrdU incorporation 24 h after the last BrdU injection (150 Â ). Note: almost all keratinocytes in both transgenic and w.t. animals are BrdU positive (brown nuclei). (c and d) BrdU-positive LRCs in the bulge of hair follicles after the 4-week chase period (300 Â ). Note: the number of LRCs is significantly reduced in hair follicles in K5.GR skin. Oncogene Effect of GR on follicular epithelial stem cells D Chebotaev et al 3062 divided, diluted the BrdU label and underwent terminal colonies (X4 mm in diameter)per plate was 6.3 72.3 in differentiation. At the same time, most of the quiescent w.t. and 1.570.8 in K5.GR cell cultures. BrdU-stained cells (LRCs)resided in the bulge region of the hair follicles. The number of LRCs after the 4-week chase period was significantly less in the GR transgenic Effect of GR overexpression on transcriptional profile of follicular epithelial stem cells bulge region when compared with the littermate controls: LRC represented 12.378.5% of bulge kerati- To investigate the global effect of the GR on gene nocytes in K5.GR transgenics versus 35713.3% in w.t. expression in follicular epithelial SCs, we analysed bulge keratinocytes using cDNA arrays. We performed three controls (Po0.05)(Figure 1c and d).A similar result was noted following the 8-week chase period (data not separate gene profiling experiments, and using 1.5-fold shown). or greater change and a P-value of 0.05 as criteria for gene selection identified more than 200 genes whose expression was affected by GR in all comparisons of GR reduces the clonogenicity of SC-enriched bulge follicular epithelial SCs. Following the elimination of keratinocytes unknown genes, we selected B150 genes for further Under normal conditions, SCs are slow-cycling, quies- analyses. The results of gene ontology analysis for cent cells; however, culturing SCs stimulate their biological processes are presented in Supplementary proliferation. To assess whether GR overexpression Figure 2. The complete list of genes differentially affected the proliferative potential of SCs, we analysed affected by GR in SC is presented in Supplementary their behavior in culture. We isolated a follicular Tables 1 and 2. epithelial SC-rich population of bulge keratinocytes from transgenic and w.t. mice in the telogen stage of the Gene array validation hair cycle using fluorescence activated cell sorting To validate the gene array results, we selected four analysis with the recently published surface markers upregulated (including GR itself)and five downregu- CD34 and a6-integrin (Trempus et al., 2003; Blanpain lated genes, and measured the change in their expression et al., 2004; Tumbar et al., 2004)(see Supplementary by quantitative real-time PCR (Q-RT-PCR).
Recommended publications
  • The Role of Z-Disc Proteins in Myopathy and Cardiomyopathy
    International Journal of Molecular Sciences Review The Role of Z-disc Proteins in Myopathy and Cardiomyopathy Kirsty Wadmore 1,†, Amar J. Azad 1,† and Katja Gehmlich 1,2,* 1 Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (K.W.); [email protected] (A.J.A.) 2 Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK * Correspondence: [email protected]; Tel.: +44-121-414-8259 † These authors contributed equally. Abstract: The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
    [Show full text]
  • The N-Cadherin Interactome in Primary Cardiomyocytes As Defined Using Quantitative Proximity Proteomics Yang Li1,*, Chelsea D
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs221606. doi:10.1242/jcs.221606 TOOLS AND RESOURCES The N-cadherin interactome in primary cardiomyocytes as defined using quantitative proximity proteomics Yang Li1,*, Chelsea D. Merkel1,*, Xuemei Zeng2, Jonathon A. Heier1, Pamela S. Cantrell2, Mai Sun2, Donna B. Stolz1, Simon C. Watkins1, Nathan A. Yates1,2,3 and Adam V. Kwiatkowski1,‡ ABSTRACT requires multiple adhesion, cytoskeletal and signaling proteins, The junctional complexes that couple cardiomyocytes must transmit and mutations in these proteins can cause cardiomyopathies (Ehler, the mechanical forces of contraction while maintaining adhesive 2018). However, the molecular composition of ICD junctional homeostasis. The adherens junction (AJ) connects the actomyosin complexes remains poorly defined. – networks of neighboring cardiomyocytes and is required for proper The core of the AJ is the cadherin catenin complex (Halbleib and heart function. Yet little is known about the molecular composition of the Nelson, 2006; Ratheesh and Yap, 2012). Classical cadherins are cardiomyocyte AJ or how it is organized to function under mechanical single-pass transmembrane proteins with an extracellular domain that load. Here, we define the architecture, dynamics and proteome of mediates calcium-dependent homotypic interactions. The adhesive the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble properties of classical cadherins are driven by the recruitment of stable AJs along intercellular contacts with organizational and cytosolic catenin proteins to the cadherin tail, with p120-catenin β structural hallmarks similar to mature contacts. We combine (CTNND1) binding to the juxta-membrane domain and -catenin β quantitative mass spectrometry with proximity labeling to identify the (CTNNB1) binding to the distal part of the tail.
    [Show full text]
  • Role of S100A8/A9 for Cytokine Secretion, Revealed in Neutrophils Derived from ER-Hoxb8 Progenitors
    International Journal of Molecular Sciences Article Role of S100A8/A9 for Cytokine Secretion, Revealed in Neutrophils Derived from ER-Hoxb8 Progenitors Yang Zhou †, Justine Hann †,Véronique Schenten, Sébastien Plançon, Jean-Luc Bueb, Fabrice Tolle ‡ and Sabrina Bréchard *,‡ Department of Life Sciences and Medicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg; [email protected] (Y.Z.); [email protected] (J.H.); [email protected] (V.S.); [email protected] (S.P.); [email protected] (J.-L.B.); [email protected] (F.T.) * Correspondence: [email protected]; Tel.: +352-466644-6434 † Both first authors contributed equally to this work. ‡ Both last authors contributed equally to this work. Abstract: S100A9, a Ca2+-binding protein, is tightly associated to neutrophil pro-inflammatory functions when forming a heterodimer with its S100A8 partner. Upon secretion into the extracellular environment, these proteins behave like damage-associated molecular pattern molecules, which actively participate in the amplification of the inflammation process by recruitment and activation of pro-inflammatory cells. Intracellular functions have also been attributed to the S100A8/A9 complex, notably its ability to regulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. However, the complete functional spectrum of S100A8/A9 at the intracellular level is far from being understood. In this context, we here investigated the possibility that the absence of Citation: Zhou, Y.; Hann, J.; intracellular S100A8/A9 is involved in cytokine secretion. To overcome the difficulty of genetically Schenten, V.; Plançon, S.; Bueb, J.-L.; modifying neutrophils, we used murine neutrophils derived from wild-type and S100A9−/− Hoxb8 Tolle, F.; Bréchard, S.
    [Show full text]
  • Recruitment of Monocytes to the Pre-Ovulatory Ovary Alex Paige Whitaker Eastern Kentucky University
    Eastern Kentucky University Encompass Online Theses and Dissertations Student Scholarship January 2016 Recruitment of monocytes to the pre-ovulatory ovary Alex Paige Whitaker Eastern Kentucky University Follow this and additional works at: https://encompass.eku.edu/etd Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Whitaker, Alex Paige, "Recruitment of monocytes to the pre-ovulatory ovary" (2016). Online Theses and Dissertations. 445. https://encompass.eku.edu/etd/445 This Open Access Thesis is brought to you for free and open access by the Student Scholarship at Encompass. It has been accepted for inclusion in Online Theses and Dissertations by an authorized administrator of Encompass. For more information, please contact [email protected]. Recruitment of monocytes to the pre-ovulatory ovary By Alex Whitaker Bachelor of Science Eastern Kentucky University Richmond, Kentucky 2013 Submitted to the Faculty of the Graduate School of Eastern Kentucky University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 2016 Copyright © Alex Whitaker, 2016 All rights reserved ii DEDICATION This thesis is dedicated to my parents Steve and Debby Whitaker for their unwavering encouragement. iii ACKNOWLEDGEMENTS I would like to thank my mentor, Dr. Oliver R. Oakley, for his support, guidance, and help regarding the completion of this project. If not for the many demonstrations of experimental techniques, reassurance when experiments failed, and stimulating ideas and background knowledge, this research may not have been finished. In addition, I would like to thank the other committee members, Dr. Marcia Pierce and Lindsey Calderon for comments and assistance with writing.
    [Show full text]
  • CDH12 Cadherin 12, Type 2 N-Cadherin 2 RPL5 Ribosomal
    5 6 6 5 . 4 2 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 A A A A A A A A A A A A A A A A A A A A C C C C C C C C C C C C C C C C C C C C R R R R R R R R R R R R R R R R R R R R B , B B B B B B B B B B B B B B B B B B B , 9 , , , , 4 , , 3 0 , , , , , , , , 6 2 , , 5 , 0 8 6 4 , 7 5 7 0 2 8 9 1 3 3 3 1 1 7 5 0 4 1 4 0 7 1 0 2 0 6 7 8 0 2 5 7 8 0 3 8 5 4 9 0 1 0 8 8 3 5 6 7 4 7 9 5 2 1 1 8 2 2 1 7 9 6 2 1 7 1 1 0 4 5 3 5 8 9 1 0 0 4 2 5 0 8 1 4 1 6 9 0 0 6 3 6 9 1 0 9 0 3 8 1 3 5 6 3 6 0 4 2 6 1 0 1 2 1 9 9 7 9 5 7 1 5 8 9 8 8 2 1 9 9 1 1 1 9 6 9 8 9 7 8 4 5 8 8 6 4 8 1 1 2 8 6 2 7 9 8 3 5 4 3 2 1 7 9 5 3 1 3 2 1 2 9 5 1 1 1 1 1 1 5 9 5 3 2 6 3 4 1 3 1 1 4 1 4 1 7 1 3 4 3 2 7 6 4 2 7 2 1 2 1 5 1 6 3 5 6 1 3 6 4 7 1 6 5 1 1 4 1 6 1 7 6 4 7 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
    [Show full text]
  • As Myeloid-Derived Suppressor Cells to the Accumulation of Splenocytes That Act Mice Display Aberrant Myelopoiesis Leading
    Mast Cell−deficient KitW-sh ''Sash'' Mutant Mice Display Aberrant Myelopoiesis Leading to the Accumulation of Splenocytes That Act as Myeloid-Derived Suppressor Cells This information is current as of September 24, 2021. Anastasija Michel, Andrea Schüler, Pamela Friedrich, Fatma Döner, Tobias Bopp, Markus Radsak, Markus Hoffmann, Manfred Relle, Ute Distler, Jörg Kuharev, Stefan Tenzer, Thorsten B. Feyerabend, Hans-Reimer Rodewald, Hansjörg Schild, Edgar Schmitt, Marc Becker and Michael Stassen Downloaded from J Immunol 2013; 190:5534-5544; Prepublished online 1 May 2013; doi: 10.4049/jimmunol.1203355 http://www.jimmunol.org/content/190/11/5534 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2013/05/01/jimmunol.120335 Material 5.DC1 References This article cites 55 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/190/11/5534.full#ref-list-1 by guest on September 24, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc.
    [Show full text]
  • IGFBP5) Reverses Cisplatin-Resistance in Esophageal Carcinoma
    cells Article Expression of Insulin-Like Growth Factor Binding Protein-5 (IGFBP5) Reverses Cisplatin-Resistance in Esophageal Carcinoma Dessy Chan 1,†, Yuanyuan Zhou 1,†, Chung Hin Chui 1, Kim Hung Lam 1, Simon Law 2, Albert Sun-chi Chan 3, Xingshu Li 3,*, Alfred King-yin Lam 4,* and Johnny Cheuk On Tang 1,* 1 State Key Laboratory of Chemical Biology and Drug Discovery, Lo Ka Chung Centre for Natural Anti-cancer Drug Development, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; [email protected] (D.C.); [email protected] (Y.Z.); [email protected] (C.H.C.), [email protected] (K.H.L.) 2 Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; [email protected] 3 School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; [email protected] 4 Griffith Medical School, Griffith University, Gold Coast, QLD 4222, Australia * Correspondence: [email protected] (X.L.); A.Lam@griffith.edu.au (A.K.L.); [email protected] (J.C.O.T.); Tel.: +852-3400-8727 (J.C.O.T.) † These authors contributed equally to this work. Received: 3 September 2018; Accepted: 16 September 2018; Published: 20 September 2018 Abstract: Cisplatin (CDDP) is one of the front-line chemotherapeutic drugs used in the treatment of esophageal squamous cell carcinoma (ESCC). Occurrence of resistance to CDDP has become one of the main challenges in cancer therapy. In this study, the gene expression profile of CDDP-resistant ESCC cells was investigated and molecular approaches were explored in an attempt to reverse the CDDP resistance.
    [Show full text]
  • The Oestrogen Receptor Alpha-Regulated Lncrna NEAT1 Is a Critical Modulator of Prostate Cancer
    ARTICLE Received 5 Dec 2013 | Accepted 26 Sep 2014 | Published 21 Nov 2014 DOI: 10.1038/ncomms6383 OPEN The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer Dimple Chakravarty1,2, Andrea Sboner1,2,3, Sujit S. Nair4, Eugenia Giannopoulou5,6, Ruohan Li7, Sven Hennig8, Juan Miguel Mosquera1,2, Jonathan Pauwels1, Kyung Park1, Myriam Kossai1,2, Theresa Y. MacDonald1, Jacqueline Fontugne1,2, Nicholas Erho9, Ismael A. Vergara9, Mercedeh Ghadessi9, Elai Davicioni9, Robert B. Jenkins10, Nallasivam Palanisamy11,12, Zhengming Chen13, Shinichi Nakagawa14, Tetsuro Hirose15, Neil H. Bander16, Himisha Beltran1,2, Archa H. Fox7, Olivier Elemento2,3 & Mark A. Rubin1,2 The androgen receptor (AR) plays a central role in establishing an oncogenic cascade that drives prostate cancer progression. Some prostate cancers escape androgen dependence and are often associated with an aggressive phenotype. The oestrogen receptor alpha (ERa)is expressed in prostate cancers, independent of AR status. However, the role of ERa remains elusive. Using a combination of chromatin immunoprecipitation (ChIP) and RNA-sequencing data, we identified an ERa-specific non-coding transcriptome signature. Among putatively ERa-regulated intergenic long non-coding RNAs (lncRNAs), we identified nuclear enriched abundant transcript 1 (NEAT1) as the most significantly overexpressed lncRNA in prostate cancer. Analysis of two large clinical cohorts also revealed that NEAT1 expression is asso- ciated with prostate cancer progression. Prostate cancer cells expressing high levels of NEAT1 were recalcitrant to androgen or AR antagonists. Finally, we provide evidence that NEAT1 drives oncogenic growth by altering the epigenetic landscape of target gene promoters to favour transcription. 1 Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, 413 East 69th Street, Room 1402, New York, New York 10021, USA.
    [Show full text]
  • Lithium Chloride Corrects Weakness and Myopathology in a Preclinical Model of LGMD1D
    ARTICLE OPEN ACCESS Lithium chloride corrects weakness and myopathology in a preclinical model of LGMD1D Andrew R. Findlay, MD,* Rocio Bengoechea, PhD,* Sara K. Pittman, BS, Tsui-Fen Chou, PhD, Correspondence Heather L. True, PhD, and Conrad C. Weihl, MD, PhD Dr. Findlay [email protected] Neurol Genet 2019;5:e318. doi:10.1212/NXG.0000000000000318 Abstract Objective To understand DNAJB6’s function in skeletal muscle and identify therapeutic targets for limb- girdle muscular dystrophy 1D (LGMD1D). Methods DNAJB6 knockout (KO) myoblasts were generated with Crispr/cas9 technology, and differ- entially accumulated proteins were identified using stable isotope labeling, followed by quan- titative mass spectrometry. Cultured KO myotubes and mouse muscle from DNAJB6b-WT or DNAJB6b-F93L mice were analyzed using histochemistry, immunohistochemistry, and im- munoblot. Mouse functional strength measures included forelimb grip strength and inverted wire hang. Results DNAJB6 inactivation leads to the accumulation of sarcomeric proteins and hypertrophic myotubes with an enhanced fusion index. The increased fusion in DNAJB6 KO myotubes correlates with diminished glycogen synthase kinase-β (GSK3β) activity. In contrast, LGMD1D mutations in DNAJB6 enhance GSK3β activation and suppress β-catenin and NFAT3c signaling. GSK3β inhibition with lithium chloride improves muscle size and strength in an LGMD1D preclinical mouse model. Conclusions Our results suggest that DNAJB6 facilitates protein quality control and negatively regulates myogenic signaling. In addition, LGMD1D-associated DNAJB6 mutations inhibit myogenic signaling through augmented GSK3β activity. GSK3β inhibition with lithium chloride may be a therapeutic option in LGMD1D. *These authors contributed equally to the manuscript. From the Washington University School of Medicine (A.R.F., R.B., S.K.P., H.L.T., C.C.W); Department of Neurology (A.R.F., R.B., S.K.P., C.C.W), Hope Center for Neurological Diseases, St.
    [Show full text]
  • Suppressor of Cytokine Signaling-1 Peptidomimetic Limits Progression of Diabetic Nephropathy
    BASIC RESEARCH www.jasn.org Suppressor of Cytokine Signaling-1 Peptidomimetic Limits Progression of Diabetic Nephropathy †‡ † †‡ † † Carlota Recio,* Iolanda Lazaro,* Ainhoa Oguiza,* Laura Lopez-Sanz,* Susana Bernal,* †‡ †‡ Julia Blanco,§ Jesus Egido, and Carmen Gomez-Guerrero* *Renal and Vascular Inflammation Group and †Division of Nephrology and Hypertension, Fundacion Jimenez Diaz University Hospital-Health Research Institute, Autonoma University of Madrid; ‡Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders; and §Department of Pathology, Hospital Clinico San Carlos, Madrid, Spain ABSTRACT Diabetes is the main cause of CKD and ESRD worldwide. Chronic activation of Janus kinase and signal transducer and activator of transcription (STAT) signaling contributes to diabetic nephropathy by inducing genes involved in leukocyte infiltration, cell proliferation, and extracellular matrix accumulation. This study examined whether a cell-permeable peptide mimicking the kinase-inhibitory region of suppressor of cy- tokine signaling-1 (SOCS1) regulatory protein protects against nephropathy by suppressing STAT-mediated cell responses to diabetic conditions. In a mouse model combining hyperglycemia and hypercholesterolemia (streptozotocin diabetic, apoE-deficient mice), renal STAT activation status correlated with the severity of nephropathy. Notably, compared with administration of vehicle or mutant inactive peptide, administration of the SOCS1 peptidomimetic at either early or advanced stages of diabetes ameliorated STAT activity and resulted in reduced serum creatinine level, albuminuria, and renal histologic changes (mesangial expansion, tubular injury, and fibrosis) over time. Mice treated with the SOCS1 peptidomimetic also exhibited reduced kidney leukocyte recruitment (T lymphocytes and classic M1 proinflammatory macrophages) and decreased expression levels of proinflammatory and profibrotic markers that were independent of glycemic and lipid changes.
    [Show full text]
  • Identification of Differentially Expressed Genes in Human Bladder Cancer Through Genome-Wide Gene Expression Profiling
    521-531 24/7/06 18:28 Page 521 ONCOLOGY REPORTS 16: 521-531, 2006 521 Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling KAZUMORI KAWAKAMI1,3, HIDEKI ENOKIDA1, TOKUSHI TACHIWADA1, TAKENARI GOTANDA1, KENGO TSUNEYOSHI1, HIROYUKI KUBO1, KENRYU NISHIYAMA1, MASAKI TAKIGUCHI2, MASAYUKI NAKAGAWA1 and NAOHIKO SEKI3 1Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520; Departments of 2Biochemistry and Genetics, and 3Functional Genomics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan Received February 15, 2006; Accepted April 27, 2006 Abstract. Large-scale gene expression profiling is an effective CKS2 gene not only as a potential biomarker for diagnosing, strategy for understanding the progression of bladder cancer but also for staging human BC. This is the first report (BC). The aim of this study was to identify genes that are demonstrating that CKS2 expression is strongly correlated expressed differently in the course of BC progression and to with the progression of human BC. establish new biomarkers for BC. Specimens from 21 patients with pathologically confirmed superficial (n=10) or Introduction invasive (n=11) BC and 4 normal bladder samples were studied; samples from 14 of the 21 BC samples were subjected Bladder cancer (BC) is among the 5 most common to microarray analysis. The validity of the microarray results malignancies worldwide, and the 2nd most common tumor of was verified by real-time RT-PCR. Of the 136 up-regulated the genitourinary tract and the 2nd most common cause of genes we detected, 21 were present in all 14 BCs examined death in patients with cancer of the urinary tract (1-7).
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]