University Microfilms International 300 N
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Blowflies of California
BULLETIN OF THE CALIFORNIA INSECT SURVEY VOLUME 4,NO. 1 THE BLOWFLIES OF CALIFORNIA (Diptera: Calliphoridae) BY MAURICE T. JAMES (Department of Zo'dlogy, State College of Washington, Pullman) UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES 1955 BULLETIN OF THE CALIFORNIA INSECT SURVEY Editors: E. G. Linsley, S. B. Freeborn, R. L. Usinger Volume 4, No. 1, pp. 1-34, plates 1-2, 1 figure in text Submitted by Editors, January 13, 1955 Issued October 28, 1955 Price, 50 cents UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES CALIFORNIA CAMBRIDGE UNIVERSITY PRESS LONDON. ENGLAND PRINTED BY OFFSET IN THE UNITED STATES OF AMERICA THE BLOWFLIES OF CALIFORNIA (Diptera: Calliphoridae) by Maurice T. James Identification of the blowflies of North America Blowflies are important from a medical and has been made much easier and more secure in veterinary standpoint. Some are obligatory or recent years by the publication of the monograph facultative parasites on man or on domestic or of that family by Hall (1948). However, there other useful animals. In our area, the primary exists ti0 regional treatment that covers any screwworm, Callitroga hominivorax (Coquerel), definite part of the United States. Hall's mono- 'is the only obligatory parasite that invades graph gives only general information about the living tissue, although larvae of Pmtocalliphora, geographical distribution of most of the species. represented in the Califdrnia fauna by seven These considerations, together with the fact that known species, feed on the blood of nesting Hall had obviously examined an insufficient birds, often with fatal results. Of the facultative amount of material from the western states, parasites, Callitroga macellaria (Fabricius), makes a review of the California species partic- Phaenicia sericata (Meigen), and Phormia regina ularly desirable. -
Genome and Ontogenetic-Based Transcriptomic Analyses of the Flesh Fly, Sarcophaga Bullata
GENOME REPORT Genome and Ontogenetic-Based Transcriptomic Analyses of the Flesh Fly, Sarcophaga bullata Ellen O. Martinson,*,1,2,3 Justin Peyton,†,2 Yogeshwar D. Kelkar,* Emily C. Jennings,‡ Joshua B. Benoit,‡ John H. Werren,*,4 and David L. Denlinger†,4 *Biology Department, University of Rochester, Rochester, NY 14627, †Departments of Evolution, Ecology and Organismal Biology and Entomology, Ohio State University, Columbus, OH 43210, and ‡Departments of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221 ORCID ID: 0000-0001-9757-6679 (E.O.M.) ABSTRACT The flesh fly, Sarcophaga bullata, is a widely-used model for examining the physiology of KEYWORDS insect diapause, development, stress tolerance, neurobiology, and host-parasitoid interactions. Flies in Diptera this taxon are implicated in myiasis (larval infection of vertebrates) and feed on carrion, aspects that are Sarcophaga important in forensic studies. Here we present the genome of S. bullata, along with developmental- and bullata reproduction-based RNA-Seq analyses. We predict 15,768 protein coding genes, identify orthology in diapause relation to closely related flies, and establish sex and developmental-specific gene sets based on our host-parasitoid RNA-Seq analyses. Genomic sequences, predicted genes, and sequencing data sets have been depos- interactions ited at the National Center for Biotechnology Information. Our results provide groundwork for genomic ontogenesis studies that will expand the flesh fly’s utility as a model system. forensics stress tolerance Sarcophaga bullata Parker (Diptera: Sarcophagidae), sometimes re- in the laboratory, making them useful models for diapause, cold ferred to as Neobellieria bullata (but see Stamper et al., 2012), is a flesh tolerance, and other stress responses. -
Identification of a Death-Scene Maggot Using Standardized Molecular
orensi f F c R o e l s a e n r a r u Raghavendra et al. J Forensic Res 2011, 2:6 c o h J Journal of Forensic Research DOI: 10.4172/2157-7145.1000133 ISSN: 2157-7145 Reserch Article Open Access Identification of a Death-scene Maggot using Standardized Molecular Methods: Sarcophagabullata Parker 1916 (Sarcophagidae) Out-numbers Blowflies (Calliphoridae) on an Urban Cadaver in Southeastern Texas Rekha Raghavendra1, Christopher P. Randle2 and Sibyl Rae Bucheli2* 1School of Medicine Case Western Reserve University, Cleveland OH, USA 2Department of Biological Sciences Sam Houston State University, Huntsville, TX, USA Abstract In forensic entomology,fly data including maggot age are frequently used to help estimate the time since death.Accurate identification of the maggot to species is critical for time since death estimations. However, within a family, maggots are notoriously difficult to identify to species.In this study, we employ phylogenetic datafrom the mtDNAgenes COI and COII to identify an unknown maggot to species (member of the family Sarcophagidae) harvested from a cadaver in June 2009 in Harrison County, Texas. The most closely related species to our unknown maggot was SarcophagabullataParker 1916, a somewhat common carrion-feeding species in southeastern United States that is now gaininggreater recognition as a forensically significant species. Keywords: Forensic entomology; case study; Sarcophagidae; species were collected despite law enforcement agents reporting the Sarcophagabullata Parker 1916 remains to be in a state of fresh/bloated decomposition.The unknown maggots were identified as members of the family Sarcophagidae Introduction using standard morphological features of the spiracular complex but Decomposition of a large mammalian carcass is greatly accelerated could not be further identified (Peterson 1960). -
Terry Whitworth 3707 96Th ST E, Tacoma, WA 98446
Terry Whitworth 3707 96th ST E, Tacoma, WA 98446 Washington State University E-mail: [email protected] or [email protected] Published in Proceedings of the Entomological Society of Washington Vol. 108 (3), 2006, pp 689–725 Websites blowflies.net and birdblowfly.com KEYS TO THE GENERA AND SPECIES OF BLOW FLIES (DIPTERA: CALLIPHORIDAE) OF AMERICA, NORTH OF MEXICO UPDATES AND EDITS AS OF SPRING 2017 Table of Contents Abstract .......................................................................................................................... 3 Introduction .................................................................................................................... 3 Materials and Methods ................................................................................................... 5 Separating families ....................................................................................................... 10 Key to subfamilies and genera of Calliphoridae ........................................................... 13 See Table 1 for page number for each species Table 1. Species in order they are discussed and comparison of names used in the current paper with names used by Hall (1948). Whitworth (2006) Hall (1948) Page Number Calliphorinae (18 species) .......................................................................................... 16 Bellardia bayeri Onesia townsendi ................................................... 18 Bellardia vulgaris Onesia bisetosa ..................................................... -
Dating Pupae of the Blow Fly Calliphora Vicina Robineau
G C A T T A C G G C A T genes Article Dating Pupae of the Blow Fly Calliphora vicina Robineau–Desvoidy 1830 (Diptera: Calliphoridae) for Post Mortem Interval—Estimation: Validation of Molecular Age Markers Barbara K. Zajac *, Jens Amendt, Marcel A. Verhoff and Richard Zehner Institute of Legal Medicine, Goethe University, 60596 Frankfurt, Germany; [email protected] (J.A.); [email protected] (M.A.V.); [email protected] (R.Z.) * Correspondence: [email protected]; Tel.: +49-163-865-3366 Received: 31 December 2017; Accepted: 5 March 2018; Published: 9 March 2018 Abstract: Determining the age of juvenile blow flies is one of the key tasks of forensic entomology when providing evidence for the minimum post mortem interval. While the age determination of blow fly larvae is well established using morphological parameters, the current study focuses on molecular methods for estimating the age of blow flies during the metamorphosis in the pupal stage, which lasts about half the total juvenile development. It has already been demonstrated in several studies that the intraspecific variance in expression of so far used genes in blow flies is often too high to assign a certain expression level to a distinct age, leading to an inaccurate prediction. To overcome this problem, we previously identified new markers, which show a very sharp age dependent expression course during pupal development of the forensically-important blow fly Calliphora vicina Robineau–Desvoidy 1830 (Diptera: Calliphoridae) by analyzing massive parallel sequencing (MPS) generated transcriptome data. We initially designed and validated two quantitative polymerase chain reaction (qPCR) assays for each of 15 defined pupal ages representing a daily progress during the total pupal development if grown at 17 ◦C. -
Taxonomy and Systematics of the Australian Sarcophaga S.L. (Diptera: Sarcophagidae) Kelly Ann Meiklejohn University of Wollongong
University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2012 Taxonomy and systematics of the Australian Sarcophaga s.l. (Diptera: Sarcophagidae) Kelly Ann Meiklejohn University of Wollongong Recommended Citation Meiklejohn, Kelly Ann, Taxonomy and systematics of the Australian Sarcophaga s.l. (Diptera: Sarcophagidae), Doctor of Philosophy thesis, School of Biological Sciences, University of Wollongong, 2012. http://ro.uow.edu.au/theses/3729 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Taxonomy and systematics of the Australian Sarcophaga s.l. (Diptera: Sarcophagidae) A thesis submitted in fulfillment of the requirements for the award of the degree Doctor of Philosophy from University of Wollongong by Kelly Ann Meiklejohn BBiotech (Adv, Hons) School of Biological Sciences 2012 Thesis Certification I, Kelly Ann Meiklejohn declare that this thesis, submitted in fulfillment of the requirements for the award of Doctor of Philosophy, in the School of Biological Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution. Kelly Ann Meiklejohn 31st of August 2012 ii Table of Contents List of Figures .................................................................................................................................................. -
Taxonomic Studies on Ravinia Pernix, Boettcherisca Peregrina and Seniorwhitea Reciproca (Diptera: Sarcophagidae) of Indian Origin
International Journal of Zoology Studies ISSN: 2455-7269 Impact Factor: RJIF 5.14 www.zoologyjournals.com Volume 2; Issue 5; September 2017; Page No. 81-88 Taxonomic studies on Ravinia pernix, Boettcherisca peregrina and Seniorwhitea reciproca (Diptera: Sarcophagidae) of Indian origin *1 Manish Sharma, 2 Palwinder Singh, 3 Devinder Singh 2, 3 Department of Zoology and Environmental Sciences, Punjabi University, Patiala, Panjab, India 1 PG Department of Agriculture, GSSDGS Khalsa College, Patiala, Panjab, India Abstract The male genitalia of three species Ravinia pernix (Harris), Seniorwhitea reciproca (Walker) and Boettcherisca peregrina (Robineau-Desvoidy) have been studied in detail. The present work includes the descriptions and detailed illustrations of external male genitalic structures which have not been published so far these three species. A key to the studied species is also given. Keywords: diptera, key, male genitalia, oestroidea, Parasarcophaga, sarcophagidae 1. Introduction 2. Materials and Methods Sarcophagidae is one of six recognized families in the Collections and Preservation superfamily Oestroidea, which is generally regarded as sister Adult flies were collected from localities falling in the states to the superfamily Muscoidea (McAlpine, 1989, Yeates et al., comprising the North Indian states i.e., Punjab, Jammu & 2007) [17, 38]. A full revision of the family was given by Aldrich Kashmir, Himachal Pradesh, Uttara Khand and Rajasthan. The (1916), although more restricted revisionary works have been collected specimens were killed by putting them in a killing published recently focusing on particular subgroups and/or jar charged with ethyl acetate. The dead specimens were genera (Pape, 1994; Dahlem and Downes, 1996) [22, 4]. A pinned using standard entomological pins piercing the right recent and authoritative list of names and synonymies has side of the mesothorax. -
Insect Timing and Succession on Buried Carrion in East Lansing, Michigan
INSECT TIMING AND SUCCESSION ON BURIED CARRION IN EAST LANSING, MICHIGAN By Emily Christine Pastula A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTERS OF SCIENCE Entomology 2012 ABSTRACT INSECT TIMING AND SUCCESSION ON BURIED CARRION IN EAST LANSING, MICHIGAN By Emily Christine Pastula This study examined pig carcasses buried at two different depths, 30 and 60 cm, to determine if insects are able to colonize buried carcasses, when they arrive at each depth, and what fauna are present over seven sampling dates to establish an insect succession database on buried carrion in East Lansing, Michigan. Thirty-eight pigs were buried, 18 at 30 cm and 20 at 60 cm. Four control carcasses were placed on the soil surface. Three replicates at each depth were exhumed after 3 days, 7 days, 14 days, 21 days, 30 days, and 60 days. One pig was also exhumed from 60 cm after 90 days and another after 120 days. Sarcophaga bullata (Diptera: Sarcophagidae) and Hydrotaea sp. (Diptera: Muscidae) were found colonizing buried carrion 5 days after burial at 30 cm. Insect succession at 30 cm proceeded with flesh and muscid flies being the first to colonize, followed by blow flies. Insects were able to colonize carcasses at 60 cm and Hydrotaea sp. and Megaselia scalaris (Diptera: Phoridae), were collected 7 days after burial. Insect succession at 60 cm did not proceed similarly as predicted, instead muscid and coffin flies were the only larvae collected. Overall these results reveal post-burial interval (PBI) estimates for forensic investigations in mid-Michigan during the summer, depending on climatic and soil conditions. -
Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results .............................................................................................................. -
Evaluating the Effects of Temperature on Larval Calliphora Vomitoria (Diptera: Calliphoridae) Consumption
Evaluating the effects of temperature on larval Calliphora vomitoria (Diptera: Calliphoridae) consumption Kadeja Evans and Kaleigh Aaron Edited by Steven J. Richardson Abstract: Calliphora vomitoria (Diptera: Calliphoridae) are responsible for more cases of myiasis than any other arthropods. Several species of blowfly, including Cochliomyia hominivorax and Cocholiomya macellaria, parasitize living organisms by feeding on healthy tissues. Medical professionals have taken advantage of myiatic flies, Lucillia sericata, through debridement or maggot therapy in patients with necrotic tissue. This experiment analyzes how temperature influences blue bottle fly, Calliphora vomitoria. consumption of beef liver. After rearing an egg mass into first larval instars, ten maggots were placed into four containers making a total of forty maggots. One container was exposed to a range of temperatures between 18°C and 25°C at varying intervals. The remaining three containers were placed into homemade incubators at constant temperatures of 21°C, 27°C and 33°C respectively. Beef liver was placed into each container and weighed after each group pupation. The mass of liver consumed and the time until pupation was recorded. Three trials revealed that as temperature increased, the average rate of consumption per larva also increased. The larval group maintained at 33°C had the highest consumption with the shortest feeding duration, while the group at 21°C had lower liver consumption in the longest feeding period. Research in this experiment was conducted to understand the optimal temperature at which larval consumption is maximized whether in clinical instances for debridement or in myiasis cases. Keywords: Calliphora vomitoria, Calliphoridae, myiasis, consumption, debridement As an organism begins to decompose, target open wounds or necrotic tissue. -
INSECTS of MICRONESIA Diptera: Sarcophagidae1
INSECTS OF MICRONESIA Diptera: Sarcophagidae 1 By H. DE SOUZA LOPES INSTITUTO OSWl\LDO CRUZ, RIO DE JANEIRO INTRODUCTION The United States Office of Naval Research, the Pacific Science Board (National Research Council), the National Science Foundation, Chicago Natural History Museum, and Bernice P. Bishop Museum have made this survey and publication of the results possible. Field research was aided by a contract between the Office of Naval Research, Department of the Navy, and the National Academy of Sciences, NR 160-175. The following symbols indicate the museums in which specimens are stored: US (United States National Museum), HSPA (Hawaiian Sugar Planters' Association), CM (Chicago Museum of Natural History), KU (Kyushu University), and BISHOP (Bernice P. Bishop Museum). Throughout this report, the Bohart referred to as an author of species is George E. Bohart. DISTRIBUTION Among the Micronesian Sarcophagidae, I have found 14 species belonging to eight different genera, which are listed in the table. Six of these species have been recorded formerly from Guam by Hall and Bohart (1948): Phytosar cophaga gressitti (Hall and Bohart), Bezziola stricklandi (Hall and Bohart), Boettcherisca karnyi (Hardy), Parasarcophaga knabi (Parker), P. misera (Walker), and P. ruficornis (Fabricius). Later the same species were studied by Bohart and Gressitt (1951) when they published descriptions of the larvae and pupae of all of them. Only Bezziola stricklandi (Hall and Bohart) and Phytosarcophaga gressitti (Hall and Bohart) seemed to be restricted to Micro nesia; the latter has now been found also in the Hawaiian Islands [Dodge, 1953, Hawaiian Ent. Soc., Proc. 15(1): 131, figs. 5-12]. -
Antibacterial Activities of Multi Drug Resistant Myroides Odoratimimus
Brazilian Journal of Microbiology (2008) 39:397-404 ISSN 1517-8382 ANTIBACTERIAL ACTIVITIES OF MULTI DRUG RESISTANT MYROIDES ODORATIMIMUS BACTERIA ISOLATED FROM ADULT FLESH FLIES (DIPTERA: SARCOPHAGIDAE) ARE INDEPENDENT OF METALLO BETA-LACTAMASE GENE M.S. Dharne1,3; A.K. Gupta1; A.Y. Rangrez1; H.V. Ghate2; M.S. Patole1; Y.S. Shouche1* 1Molecular Biology Unit, National Centre for Cell Science, Ganeshkhind, Pune-411 007, Maharashtra, India; 2Department of Zoology, Modern College of Arts, Science and Commerce, Shivajinagar, Pune-411 005, Maharashtra, India; 3Present address: Produce and Quality and Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, Maryland 20705, United States Submitted: August 21, 2007; Returned to authors for corrections: December 07, 2007; Approved: May 04, 2008. ABSTRACT Flesh flies (Diptera: Sarcophagidae) are well known cause of myiasis and their gut bacteria have never been studied for antimicrobial activity against bacteria. Antimicrobial studies of Myroides spp. are restricted to nosocomial strains. A Gram-negative bacterium, Myroides sp., was isolated from the gut of adult flesh flies (Sarcophaga sp.) and submitted to evaluation of nutritional parameters using Biolog GN, 16S rRNA gene sequencing, susceptibility to various antimicrobials by disc diffusion method and detection of metallo β- lactamase genes (TUS/MUS). The antagonistic effects were tested on Gram-negative and Gram-positive bacteria isolated from human clinical specimens, environmental samples and insect mid gut. Bacterial species included were Aeromonas hydrophila, A. culicicola, Morganella morganii subsp. sibonii, Ochrobactrum anthropi, Weissella confusa, Escherichia coli, Ochrobactrum sp., Serratia sp., Kestersia sp., Ignatzschineria sp., Bacillus sp. The Myroides sp.