Game Heads List EN Alphabetical Aktuell
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mediterranean Forests Are Extraordinarily Beautiful, a Fascinating an Extraordinary Patrimony of Wealth Whose Conservation Can Be Highly Controversy
THE editerraneanFORESTS mA NEW CONSERVATION STRATEGY 1 3 2 4 5 6 the unveiled a meeting point the mediterranean: amazing plant an unknown millennia forests on the global 200 the terrestrial current a brand new the state of WWF a new approach wealth of the of nature a sea of forests diversity animal world of human the wane in the sub-ecoregions mediterranean tool: the gap mediterranean in action for forest mediterranean and civilisations interaction with mediterranean in the forest cover analysis forests protection forests forests mediterranean 23 46 81012141617 18 19 22 24 7 1 Argania spinosa fruits, Essaouira, Morocco. Credit: WWF/P. Regato 2 Reed-parasol maker, Tunisia. Credit: WWF-Canon/M. Gunther 3 Black-shouldered Kite. Credit: Francisco Márquez 4 Endemic mountain Aquilegia, Corsica. Credit: WWF/P. Regato 5 Sacred ibis. Credit: Alessandro Re 6 Joiner, Kure Mountains, Turkey. Credit: WWF/P. Regato 7 Barbary ape, Morocco. Credit: A. & J. Visage/Panda Photo It is like no other region on Earth. Exotic, diverse, roamed by mythical WWF Mediterranean Programme Office launched its campaign in 1999 creatures, deeply shaped by thousands of years of human intervention, the to protect 10 outstanding forest sites among the 300 identified through cradle of civilisations. a comprehensive study all over the region. When we talk about the Mediterranean region, you could be forgiven for The campaign has produced encouraging results in countries such as Spain, thinking of azure seas and golden beaches, sun and sand, a holidaymaker’s Turkey, Croatia and Lebanon. NATURE AND CULTURE, of forest environments in the region. But in recent times, the balance AN INTIMATE RELATIONSHIP Long periods of considerable forest between nature and humankind has paradise. -
Alpine Ibex, Capra Ibex
(CAPRA IBEX) ALPINE IBEX by: Braden Stremcha EVOLUTION Alpine ibex is part of the Bovidae family under the order Artiodactyla. The Capra genus signifies this species specifically as a wild goat, but this genus shares very similar evolutionary features as species we recognize in Montana like Oreamnos (mountain goat) and Ovis (sheep). Capra, Oreamnos, and Ovis most likely derived in evolution from each other due to glacial migration and failure to hybridize between genera and species.Capra ibex was first historically observed throughout the central Alpine Range of Europe, then was decreased to Grand Paradiso National Park in Italy and the Maurienne Valley in France but has since been reintroduced in multiple other countries across the Alps. FORM AND FUNCTION Capra ibex shares a typical hoofed unguligrade foot posture, a cannon bone with raised calcaneus, and the common cursorial locomotion associated with species in Artiodactyla. These features allow the alpine ibex to maneuver through the steep terrain in which they reside. Specifically, for alpine ungulates and the alpine ibex, more energy is put into balance and strength to stay on uneven terrain than moving long distances. Alpine ibexes are often observed climbing artificial dams that are almost vertical to lick mineral deposits! This example shows how efficient Capra ibex is at navigating steep and dangerous terrain. The most visual distinction that sets the Capra genus apart from others is the large, elongated semicircular horns. Alpine ibex specifically has horns that grow throughout their life span at an average of 80mm per year in males. When winter comes around this growth is stunted until spring and creates an obvious ring on the horn that signifies that year’s overall growth. -
Carnivores of Syria 229 Doi: 10.3897/Zookeys.31.170 RESEARCH ARTICLE Launched to Accelerate Biodiversity Research
A peer-reviewed open-access journal ZooKeys 31: 229–252 (2009) Carnivores of Syria 229 doi: 10.3897/zookeys.31.170 RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research Carnivores of Syria Marco Masseti Department of Evolutionistic Biology “Leo Pardi” of the University of Florence, Italy Corresponding author: Marco Masseti (marco.masseti@unifi .it) Academic editors: E. Neubert, Z. Amr | Received 14 April 2009 | Accepted 29 July 2009 | Published 28 December 2009 Citation: Masseti, M (2009) Carnivores of Syria. In: Neubert E, Amr Z, Taiti S, Gümüs B (Eds) Animal Biodiversity in the Middle East. Proceedings of the First Middle Eastern Biodiversity Congress, Aqaba, Jordan, 20–23 October 2008. ZooKeys 31: 229–252. doi: 10.3897/zookeys.31.170 Abstract Th e aim of this research is to outline the local occurrence and recent distribution of carnivores in Syria (Syrian Arab Republic) in order to off er a starting point for future studies. The species of large dimensions, such as the Asiatic lion, the Caspian tiger, the Asiatic cheetah, and the Syrian brown bear, became extinct in historical times, the last leopard being reputed to have been killed in 1963 on the Alauwit Mountains (Al Nusyriain Mountains). Th e checklist of the extant Syrian carnivores amounts to 15 species, which are essentially referable to 4 canids, 5 mustelids, 4 felids – the sand cat having been reported only recently for the fi rst time – one hyaenid, and one herpestid. Th e occurrence of the Blandford fox has yet to be con- fi rmed. Th is paper is almost entirely the result of a series of fi eld surveys carried out by the author mainly between 1989 and 1995, integrated by data from several subsequent reports and sightings by other authors. -
The Taxonomic Status of Badgers (Mammalia, Mustelidae) from Southwest Asia Based on Cranial Morphometrics, with the Redescription of Meles Canescens
Zootaxa 3681 (1): 044–058 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3681.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:035D976E-D497-4708-B001-9F8DC03816EE The taxonomic status of badgers (Mammalia, Mustelidae) from Southwest Asia based on cranial morphometrics, with the redescription of Meles canescens ALEXEI V. ABRAMOV1 & ANDREY YU. PUZACHENKO2 1Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia. E-mail: [email protected] 2Institute of Geography, Russian Academy of Sciences, Staromonetnyi per. 22, 109017 Moscow, Russia. E-mail: [email protected] Abstract The Eurasian badgers (Meles spp.) are widespread in the Palaearctic Region, occurring from the British Islands in the west to the Japanese Islands in the east, including the Scandinavia, Southwest Asia and southern China. The morphometric vari- ation in 30 cranial characters of 692 skulls of Meles from across the Palaearctic was here analyzed. This craniometric anal- ysis revealed a significant difference between the European and Asian badger phylogenetic lineages, which can be further split in two pairs of taxa: meles – canescens and leucurus – anakuma. Overall, European badger populations are very sim- ilar morphologically, particularly with regards to the skull shape, but differ notably from those from Asia Minor, the Mid- dle East and Transcaucasia. Based on the current survey of badger specimens available in main world museums, we have recognized four distinctive, parapatric species: Meles meles, found in most of Europe; Meles leucurus from continental Asia; M. -
Chromosomal Evolution in Raphicerus Antelope Suggests Divergent X
www.nature.com/scientificreports OPEN Chromosomal evolution in Raphicerus antelope suggests divergent X chromosomes may drive speciation through females, rather than males, contrary to Haldane’s rule Terence J. Robinson1*, Halina Cernohorska2, Svatava Kubickova2, Miluse Vozdova2, Petra Musilova2 & Aurora Ruiz‑Herrera3,4 Chromosome structural change has long been considered important in the evolution of post‑zygotic reproductive isolation. The premise that karyotypic variation can serve as a possible barrier to gene fow is founded on the expectation that heterozygotes for structurally distinct chromosomal forms would be partially sterile (negatively heterotic) or show reduced recombination. We report the outcome of a detailed comparative molecular cytogenetic study of three antelope species, genus Raphicerus, that have undergone a rapid radiation. The species are largely conserved with respect to their euchromatic regions but the X chromosomes, in marked contrast, show distinct patterns of heterochromatic amplifcation and localization of repeats that have occurred independently in each lineage. We argue a novel hypothesis that postulates that the expansion of heterochromatic blocks in the homogametic sex can, with certain conditions, contribute to post‑ zygotic isolation. i.e., female hybrid incompatibility, the converse of Haldane’s rule. This is based on the expectation that hybrids incur a selective disadvantage due to impaired meiosis resulting from the meiotic checkpoint network’s surveillance of the asymmetric expansions of heterochromatic blocks in the homogametic sex. Asynapsis of these heterochromatic regions would result in meiotic silencing of unsynapsed chromatin and, if this persists, germline apoptosis and female infertility. Te chromosomal speciation theory 1,2 also referred to as the “Hybrid dysfunction model”3, has been one of the most intriguing questions in biology for decades. -
Rewilding Watersheds: Using Nature's Algorithms to Fix Our Broken Rivers
Marine and Freshwater Research © CSIRO 2021 https://doi.org/10.1071/MF20335_AC Supplementary material Rewilding watersheds: using nature’s algorithms to fix our broken rivers Natalie K. RideoutA,G,1, Bernhard WegscheiderB,1, Matilda KattilakoskiA, Katie M. McGeeC,D, Wendy A. MonkE, and Donald J. BairdF ACanadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada. BCanadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, 2 Bailey Drive, Fredericton, NB, E3B 5A3, Canada. CEnvironment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, ON, L7R 4A6, Canada. DCentre for Biodiversity Genomics and Department of Integrative Biology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada. EEnvironment and Climate Change Canada @ Canadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, 2 Bailey Drive, Fredericton, NB, E3B 5A3, Canada. FEnvironment and Climate Change Canada @ Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada. GCorresponding author. Email: [email protected] 1These authors contributed equally to the work. Page 1 of 49 Table S1. References linking ecosystem functions with rewilding goals, providing supporting evidence for Fig. 1 Restore natural flow Mitigate climate Restore riparian Re-introduce Improve water quality Reduce habitat and sediment regime warming vegetation extirpated species fragmentation 1 Metabolism Aristi et al. 2014 Song et al. 2008 Wassenaar et al. 2010 Huang et al. 2018 Jankowski and Schindler 2019 2 Decomposition Delong 2010 Perry et al. 2011 Delong 2010 Wenisch et al. -
Fitzhenry Yields 2016.Pdf
Stellenbosch University https://scholar.sun.ac.za ii DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: March 2016 Copyright © 2016 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za iii GENERAL ABSTRACT Fallow deer (Dama dama), although not native to South Africa, are abundant in the country and could contribute to domestic food security and economic stability. Nonetheless, this wild ungulate remains overlooked as a protein source and no information exists on their production potential and meat quality in South Africa. The aim of this study was thus to determine the carcass characteristics, meat- and offal-yields, and the physical- and chemical-meat quality attributes of wild fallow deer harvested in South Africa. Gender was considered as a main effect when determining carcass characteristics and yields, while both gender and muscle were considered as main effects in the determination of physical and chemical meat quality attributes. Live weights, warm carcass weights and cold carcass weights were higher (p < 0.05) in male fallow deer (47.4 kg, 29.6 kg, 29.2 kg, respectively) compared with females (41.9 kg, 25.2 kg, 24.7 kg, respectively), as well as in pregnant females (47.5 kg, 28.7 kg, 28.2 kg, respectively) compared with non- pregnant females (32.5 kg, 19.7 kg, 19.3 kg, respectively). -
Effectiveness of African Protected Areas for the Conservation of Large Mammals
Carlo Rondinini Effectiveness of African protected areas for the conservation of large mammals Remote Sensing and Conservation, Zological Society of London, 22-23 May 2014 Increase of large mammal extinction risk 1975-2008 Di Marco et al. (2014) A retrospective evaluation of the global decline of carnivores and ungulates. Cons. Biol. doi 10.1111/cobi.12249. Change in large mammal extinction risk 1975-2008 From Di Marco et al. (2014) A retrospective evaluation of the global decline of carnivores and ungulates. Cons. Biol. doi 10.1111/cobi.12249. African large mammals moving towards extinction Hirola (Beatragus hunteri) LC (1975) → CR (2008) From Di Marco et al. (2014) A retrospective evaluation of the global decline of carnivores and ungulates. Cons. Biol. doi 10.1111/cobi.12249. African large mammals moving towards extinction Ader's duiker (Cephalophus adersi) NT (1975) → CR (2008) Hirola (Beatragus hunteri) LC (1975) → CR (2008) From Di Marco et al. (2014) A retrospective evaluation of the global decline of carnivores and ungulates. Cons. Biol. doi 10.1111/cobi.12249. African large mammals moving towards extinction Ader's duiker (Cephalophus adersi) Dama gazelle (Nanger dama) NT (1975) → CR (2008) VU (1975) → CR (2008) Hirola (Beatragus hunteri) LC (1975) → CR (2008) From Di Marco et al. (2014) A retrospective evaluation of the global decline of carnivores and ungulates. Cons. Biol. doi 10.1111/cobi.12249. African large mammals moving towards extinction Ader's duiker (Cephalophus adersi) Dama gazelle (Nanger dama) NT (1975) → CR (2008) VU (1975) → CR (2008) Caracal (Caracal caracal) LC (1975) → NT (2008) Hirola (Beatragus hunteri) LC (1975) → CR (2008) From Di Marco et al. -
African Mammals (Tracks)
L Gi'. M MM S C A POCKET NATURALISru GUIDE HOOFED MAMMALS Dik-Dik Madoqua spp . To 17 in. (43 cm) H Small antelope has a long, flexible snout. .,9-10 in. Common Hippopotamus Klipspringer Hippopotamus amphibius Oreatragus oreotroqus To 5 ft. (1.5 m) H To 2 ft. (60 cm) H Has dark 'tear stains' at the corner of the eyes. Downward-pointing hooves give the impression it walks on 'tiptoe'. Found in rocky habitats. White Black Steenbok Raphieerus eampestris 1 in. White Rhinoceros To 2 ft. (60 cm) H Large ears are striped inside. Ceratotherium simum Muzzle has a dark stripe. To 6 ft. (l.B m) H 9-10 in. t Has a square upper lip. The similar black rhinoceros has a , pointed, prehensile upper lip. t . eWhite '~'rBlack . Common Duiker " . Sylvieapra grimmia ". To 28 in. (70 cm) t1 t Has a prominent black 1 in. 'a: stripe on its snout. Inhabits woodlands Hyena lion and shrubby areas. t Forefoot , e+ Oribi 24-28 in. Ourebia ourebi African Elephant To 2 ft. (60 em) H Note short tail and black 1.5 in. Loxodonto africana Hind foot spot below ears. Inhabits To 14 ft. (4.2 m) H grassland savannas. Hind print is oval-shaped. t This guide provides simplified field reference to familiar animal tracks. It is important to note that tracks change depending on their age, the surface Hippopotamus they are made on, and the animal's gait (e.g., toes are often splayed when Springbok running). Track illustrations are ordered by size in each section and are not Antidorcas marsupialis To 30 in. -
Mammals of Jordan
© Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Mammals of Jordan Z. AMR, M. ABU BAKER & L. RIFAI Abstract: A total of 78 species of mammals belonging to seven orders (Insectivora, Chiroptera, Carni- vora, Hyracoidea, Artiodactyla, Lagomorpha and Rodentia) have been recorded from Jordan. Bats and rodents represent the highest diversity of recorded species. Notes on systematics and ecology for the re- corded species were given. Key words: Mammals, Jordan, ecology, systematics, zoogeography, arid environment. Introduction In this account we list the surviving mammals of Jordan, including some reintro- The mammalian diversity of Jordan is duced species. remarkable considering its location at the meeting point of three different faunal ele- Table 1: Summary to the mammalian taxa occurring ments; the African, Oriental and Palaearc- in Jordan tic. This diversity is a combination of these Order No. of Families No. of Species elements in addition to the occurrence of Insectivora 2 5 few endemic forms. Jordan's location result- Chiroptera 8 24 ed in a huge faunal diversity compared to Carnivora 5 16 the surrounding countries. It shelters a huge Hyracoidea >1 1 assembly of mammals of different zoogeo- Artiodactyla 2 5 graphical affinities. Most remarkably, Jordan Lagomorpha 1 1 represents biogeographic boundaries for the Rodentia 7 26 extreme distribution limit of several African Total 26 78 (e.g. Procavia capensis and Rousettus aegypti- acus) and Palaearctic mammals (e. g. Eri- Order Insectivora naceus concolor, Sciurus anomalus, Apodemus Order Insectivora contains the most mystacinus, Lutra lutra and Meles meles). primitive placental mammals. A pointed snout and a small brain case characterises Our knowledge on the diversity and members of this order. -
Status and Protection of Globally Threatened Species in the Caucasus
STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N. -
Central Eurasian Aridland Mammals Action Plan
CMS CONVENTION ON Distr. General MIGRATORY UNEP/CMS/ScC17/Doc.13 SPECIES 8 November 2011 Original: English 17 th MEETING OF THE SCIENTIFIC COUNCIL Bergen, 17-18 November 2011 Agenda Item 17.3.6 CENTRAL EURASIAN ARIDLAND MAMMALS ACTION PLAN (Prepared by the Secretariat) Following COP Recommendation 9.1 the Secretariat has prepared a draft Action Plan to complement the Concerted and Cooperative Action for Central Eurasian Aridland Mammals. The document is a first draft, intended to stimulate discussion and identify further action needed to finalize the document in consultation with the Range States and other stakeholders, and to agree on next steps towards its implementation. Action requested: The 17 th Meeting of the Scientific Council is invited to: a. Take note of the document and provide guidance on its further development and implementation; b. Review and advise in particular on the definition of the geographic scope, including the range states, and the target species (listed in table 1); and c. Provide guidance on the terminology currently used for the Action Plan, agree on a definition of the term aridlands and/or consider using the term drylands instead. Central Eurasian Aridland Mammals Draft Action Plan Produced by the UNEP/CMS Secretariat November 2011 1 Content 1. Introduction ................................................................................................................... 3 1.1 Vision and Main Priority Directions ...................................................................................................