Influence of Ph on the Activity of Finafloxacin Against Extracellular

Total Page:16

File Type:pdf, Size:1020Kb

Influence of Ph on the Activity of Finafloxacin Against Extracellular Clinical Microbiology and Infection 26 (2020) 1254.e1e1254.e8 Contents lists available at ScienceDirect Clinical Microbiology and Infection journal homepage: www.clinicalmicrobiologyandinfection.com Original article Influence of pH on the activity of finafloxacin against extracellular and intracellular Burkholderia thailandensis, Yersinia pseudotuberculosis and Francisella philomiragia and on its cellular pharmacokinetics in THP-1 monocytes * H. Chalhoub 1, S.V. Harding 2, P.M. Tulkens 1, F. Van Bambeke 1, 1) Pharmacologie cellulaire et moleculaire, Louvain Drug Research Institute, Universite catholique de Louvain (UCLouvain), Brussels, Belgium 2) CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK article info abstract Article history: Objectives: Burkholderia pseudomallei, Yersinia pestis and Francisella tularensis are facultative intracellular Received 25 May 2019 bacteria causing life-threatening infections. We have (a) compared the activity of finafloxacin (a fluo- Received in revised form roquinolone in development showing improved activity at acidic pH) with that of ciprofloxacin, levo- 11 July 2019 floxacin and imipenem against the extracellular and intracellular (THP-1 monocytes) forms of infection Accepted 25 July 2019 by attenuated surrogates of these species (B. thailandensis, Y. pseudotuberculosis, F. philomiragia) and (b) Available online 9 August 2019 assessed finafloxacin cellular pharmacokinetics (accumulation, distribution, efflux). Editor: W. Couet Methods: Bacteria in broth or in infected monocytes were exposed to antibiotics at pH 7.4 or 5.5 for 24 hr. Maximal relative efficacies (Emax) and static concentrations (Cs) were calculated using the Hill equation Keywords: (concentrationeresponse curves). Finafloxacin pharmacokinetics in cells at pH 7.4 or 5.5 was investigated Burkholderia thailandensis using 14C-labelled drug. Finafloxacin Results: Extracellularly, all drugs sterilized the cultures, with finafloxacin being two to six times more Fluoroquinolones potent at acidic pH. Intracellularly, Emax reached the limit of detection (4e5 log10 cfu decrease) for Francisella philomiragia finafloxacin against all species, but only against B. thailandensis and F. philomiragia for ciprofloxacin and Imipenem levofloxacin, while imipenem caused less than 2 log cfu decrease for all species. At acid pH, C shifted to Intracellular infection 10 s fi fi fl Yersinia pseudotuberculosis two to ve times lower values for na oxacin and to one to four times higher values for the other drugs. Finafloxacin accumulated in THP-1 cells by approximately fivefold at pH 7.4 but up to 20-fold at pH 5.5, and distributed in the cytosol. Conclusions: Fluoroquinolones have proven to be effective in reducing the intracellular reservoirs of B. thailandensis, Y. pseudotuberculosis and F. philomiragia, with finafloxacin demonstrating an additional advantage in acidic environments. H. Chalhoub, Clin Microbiol Infect 2020;26:1254.e1e1254.e8 © 2019 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved. Introduction tularaemia, and fluoroquinolones as alternatives for the last two diseases [1]. All three pathogens are facultative intracellular or- Burkholderia pseudomallei, Yersinia pestis and Francisella tular- ganisms, thriving in the cytosol [3], the phagolysosomes [4] or in ensis are potential biothreat agents [1,2] causing lethal infections both [5]. Validated in vitro pharmacodynamic models [6] have (melioidosis, plague and tularaemia) and requiring potent, rapidly demonstrated that b-lactams and aminoglycosides fail to eradicate effective antibiotics. First-line therapies include ceftazidime or intracellular bacteria, irrespective of their subcellular localization carbapenems for melioidosis [2], aminoglycosides for plague and [6e8]. Fluoroquinolones display better intracellular efficacy [7e10] but have not been evaluated in pharmacodynamic models against these biothreat agents. Here, we compare three fluo- roquinolones (finafloxacin, ciprofloxacin and levofloxacin) with * Corresponding author. F. Van Bambeke, Avenue Mounier 73, B1.73.05, 1200 Bruxelles, Belgium. imipenem for activity in human THP-1 monocytes [10] infected E-mail address: [email protected] (F. Van Bambeke). by Burkholderia thailandensis, Yersinia pseudotuberculosis and https://doi.org/10.1016/j.cmi.2019.07.028 1198-743X/© 2019 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved. H. Chalhoub et al. / Clinical Microbiology and Infection 26 (2020) 1254.e1e1254.e8 1254.e2 Francisella philomiragia, which are appropriate surrogates for the pH 7.4 or 5.5, following which the cells were collected and their corresponding biothreat agents with regards to their intracellular integrity, protein content and cfu counts measured as described fate [11e13]. Finafloxacin has been shown to have enhanced ac- above. tivity at mild acidic pH [14,15], which could confer an advantage when considering bacteria sojourning in phagolysosomes and other acidic microenvironments [16]. We also studied the cellular Finafloxacin pharmacokinetics in THP-1 cells pharmacokinetics of finafloxacin. We used a published protocol [18] with media buffered at pH Materials and methods values ranging from 5.5 to 7.4 and 14C-labelled finafloxacin (mixed with unlabelled drug to achieve the desired total concentration). Antibiotics For influx studies, cells were incubated with finafloxacin at 37C, pelleted by centrifugation, washed in cold PBS, pelleted again (at Levofloxacin and imipenem were procured as TAVANIC® and 4C) and resuspended in distilled water. They were sonicated and TIENAM®, respectively. Finafloxacin HCl (potency, 84.19%) was used for radioactivity determination (by scintillation counting) and from MerLion Pharmaceuticals GmbH (Berlin, Germany), cipro- protein assay. For efflux studies, cells were first incubated with floxacin (potency, 98%) from Sigma-Aldrich (St Louis, MO, USA) and finafloxacin for 2 hr, pelleted by centrifugation, washed in ice-cold gentamicin sulphate (potency, 60.7%) from VWR, Radnor, PA. 14C- PBS, pelleted again at 4C, resuspended and then incubated at 37C labelled finafloxacin (specific activity 57 mCi/mmol) was produced in drug-free media (adjusted to the same pH as when studying by Pharmeron UK Ltd, Cardiff, UK. influx). They were finally collected and used as for the accumula- tion studies. Drug accumulation (apparent cellular to extracellular Bacteria and culture media concentration ratio) was calculated using a conversion factor of 5 mL of cell volume per mg of cell protein [7]. B. thailandensis ATCC 700388, Y. pseudotuberculosis ATCC 29833 and F. philomiragia ATCC 25015 were from the American Type Culture Collection (Manassas, VA, USA). B. thailandensis and F. philomiragia were grown on Schaedler agar (Sigma-Aldrich), and Finafloxacin subcellular distribution in uninfected and infected THP- Y. pseudotuberculosis on trypticase soy or MuellereHinton agar (BD 1 cells Life Sciences, Franklin Lakes, NJ, USA). MuellereHinton cation- adjusted broth (CA-MHB; BD Life Sciences) was used for the three Uninfected THP-1 cells were incubated with 14C-labelled fina- species. Cell culture media and sera were from Gibco/ThermoFisher floxacin for 30 min, washed and resuspended in ice-cold 0.25 M Scientific (Waltham, MA, USA). sucrose e 3 mM Na EDTA e 3 mM imidazole (pH 7.4). For infected cells, monocytes were first allowed to phagocytize bacteria (as MIC determination described above), washed, returned to fresh medium for 2 hr (to allow for complete bacteria internalization), and incubated for MICs were determined by broth microdilution in CA-MHB at pH 30 min with 14C-labelled finafloxacin at a sub-MIC concentration. 7.4 or adjusted to pH 6.5 or 5.5 by addition of HCl. After washing, they were resuspended in sucrose- eEDTAeimidazole for fractionation. The homogenization method, Extracellular antibiotic activity centrifugation conditions (to yield three fractions (N, nuclei and unbroken cells; MLP, mitochondria, lysosomes, membranes and Concentrationekill curves were determined after 24 hr of in- other organelles; and S, supernate (cytosol))), and assay techniques cubation in CA-MHB adjusted to pH 7.4 or 5.5 using a starting (radioactivity, protein, activity of marker enzymes (cytochrome c- inoculum of 106 cfu/mL (see Fig. S1) and antibiotic concentrations oxidase (mitochondria), N-acetyl-b-hexosaminidase (lysosomes), ranging from 0.003 to 100 Â MIC. Serially diluted aliquots were lactate dehydrogenase (cytosol)) were previously described [19]. plated on agar containing 0.4% activated charcoal to adsorb residual antibiotic. Finafloxacin accumulation in bacteria Intracellular models of infection Bacterial suspensions (109 cfu/mL) were incubated with 14C- We adapted the protocol developed for P. aeruginosa and THP-1 labelled finafloxacin (1.4 mg/L; 0.2 mCi/L (required for accurate monocytes [10] (see Fig. S2 for details and model validation). Bac- radioactivity detection)), collected by centrifugation (4000 rpm; teria (opsonized with human serum) were added to monocytes to 7 min) at 4C and washed three times with cold PBS. Aliquots were obtain suitable bacteria/cell ratios, and incubated at 37Cin5%CO 2 taken for cfu counts and radioactivity measurement (after lysis by to allow for phagocytosis. Cells were pelleted by centrifugation, two cycles of freezing/thawing (e80C to room temperature). To washed and incubated for 1 hr with gentamicin at high concen- mitigate artefacts caused by drug
Recommended publications
  • The Role of Nanobiosensors in Therapeutic Drug Monitoring
    Journal of Personalized Medicine Review Personalized Medicine for Antibiotics: The Role of Nanobiosensors in Therapeutic Drug Monitoring Vivian Garzón 1, Rosa-Helena Bustos 2 and Daniel G. Pinacho 2,* 1 PhD Biosciences Program, Universidad de La Sabana, Chía 140013, Colombia; [email protected] 2 Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia; [email protected] * Correspondence: [email protected]; Tel.: +57-1-8615555 (ext. 23309) Received: 21 August 2020; Accepted: 7 September 2020; Published: 25 September 2020 Abstract: Due to the high bacterial resistance to antibiotics (AB), it has become necessary to adjust the dose aimed at personalized medicine by means of therapeutic drug monitoring (TDM). TDM is a fundamental tool for measuring the concentration of drugs that have a limited or highly toxic dose in different body fluids, such as blood, plasma, serum, and urine, among others. Using different techniques that allow for the pharmacokinetic (PK) and pharmacodynamic (PD) analysis of the drug, TDM can reduce the risks inherent in treatment. Among these techniques, nanotechnology focused on biosensors, which are relevant due to their versatility, sensitivity, specificity, and low cost. They provide results in real time, using an element for biological recognition coupled to a signal transducer. This review describes recent advances in the quantification of AB using biosensors with a focus on TDM as a fundamental aspect of personalized medicine. Keywords: biosensors; therapeutic drug monitoring (TDM), antibiotic; personalized medicine 1. Introduction The discovery of antibiotics (AB) ushered in a new era of progress in controlling bacterial infections in human health, agriculture, and livestock [1] However, the use of AB has been challenged due to the appearance of multi-resistant bacteria (MDR), which have increased significantly in recent years due to AB mismanagement and have become a global public health problem [2].
    [Show full text]
  • Overcoming Fluoroquinolone Resistance: Mechanistic Basis of Non- Quinolone Antibacterials Targeting Type Ii Topoisomerases
    OVERCOMING FLUOROQUINOLONE RESISTANCE: MECHANISTIC BASIS OF NON- QUINOLONE ANTIBACTERIALS TARGETING TYPE II TOPOISOMERASES By Elizabeth Grace Gibson Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Pharmacology May 10, 2019 Nashville, Tennessee Approved: Neil Osheroff, Ph.D. Joey Barnett, Ph.D. Wendell S. Akers, Pharm.D., Ph.D. Sean Davies, Ph.D. Benjamin Spiller, Ph.D. Timothy R. Sterling, M.D. DEDICATION To all my family and church family who have supported and encouraged me over all my years in school. To Him who I put all my trust. Commit your way to the Lord, trust also in Him and He shall bring it to pass. Psalm 37:5 ii ACKNOWLEDGEMENTS I want to first thank my Ph.D. advisor, Dr. Neil Osheroff, for allowing me to work in his laboratory. Thank you for all your support and encouragement and just being an overall great mentor. You really know how to bring us up when we need it or give us an ego check when we get a little high and mighty when things are going well. I appreciate your supportiveness to careers outside academia. I also appreciate that you always have our best interest at heart. To Dr. Joe Deweese, my first research mentor and the one who instilled the love of topoisomerase research. Without your guidance I would not be where I am today. Thank you for introducing me to Neil and his laboratory and helping with the transition from research in your lab to his.
    [Show full text]
  • Gonorrhea, Chlamydia, and Syphilis
    2019 GONORRHEA, CHLAMYDIA, AND SYPHILIS AND CHLAMYDIA, GONORRHEA, Dedication TAG would like to thank the National Coalition of STD Directors for funding and input on the report. THE PIPELINE REPORT Pipeline for Gonorrhea, Chlamydia, and Syphilis By Jeremiah Johnson Introduction The current toolbox for addressing gonorrhea, chlamydia, and syphilis is inadequate. At a time where all three epidemics are dramatically expanding in locations all around the globe, including record-breaking rates of new infections in the United States, stakeholders must make do with old tools, inadequate systems for addressing sexual health, and a sparse research pipeline of new treatment, prevention, and diagnostic options. Lack of investment in sexual health research has left the field with inadequate prevention options, and limited access to infrastructure for testing and treatment have allowed sexually transmitted infections (STIs) to flourish. The consequences of this underinvestment are large: according to the World Health Organization (WHO), in 2012 there were an estimated 357 million new infections (roughly 1 million per day) of the four curable STIs: gonorrhea, chlamydia, syphilis, and trichomoniasis.1 In the United States, the three reportable STIs that are the focus of this report—gonorrhea, chlamydia, and syphilis—are growing at record paces. In 2017, a total of 30,644 cases of primary and secondary (P&S) syphilis—the most infectious stages of the disease—were reported in the United States. Since reaching a historic low in 2000 and 2001, the rate of P&S syphilis has increased almost every year, increasing 10.5% during 2016–2017. Also in 2017, 555,608 cases of gonorrhea were reported to the U.S.
    [Show full text]
  • Activity of the Investigational Fluoroquinolone Finafloxacin and Seven Other PD Dr
    Contact information: CORRESPONDING AUTHOR Activity of the Investigational Fluoroquinolone Finafloxacin and Seven Other PD Dr. Reiner Schaumann 49 th ICAAC Institute for Medical Microbiology and Epidemiology of Infectious Diseases San Francisco 2009 Antimicrobial Agents Against 83 Obligately Anaerobic Bacteria. University of Leipzig Liebigstr. 24 1 1 2 1 2 1 D-04103 Leipzig R. SCHAUMANN , G. H. GENZEL , W. STUBBINGS , C. S. STINGU , H. LABISCHINSKI , A. C. RODLOFF Germany E - 1973 Phone +49 341 97 15 200 1Inst. f. Med. Microbiology and Epidemiology of Infectious Diseases, Univ. of Leipzig, Leipzig, Germany; 2MerLion Pharmaceuticals GmbH, Berlin, Germany. Fax +49 341 97 15 209 E-Mail: [email protected] AbstractAbstract MethodsMethods ResultsResults andand DiscussionDiscussion Background: Finafloxacin (FIN) is a novel Bacterial Strains The Figures 2 and 3 show the scatter fluoroquinolone belonging to a 8-cyano subclass 83 obligately anaerobes including reference strains were taken from the histograms of MIC values obtained for FIN culture collection from the Institute for Medical Microbiology and and exhibits enhanced activity at slightly acidic and the seven other antimicrobial agents pH. FIN exhibited superior activity to comparator Epidemiology of Infectious Diseases, University of Leipzig, Germany. The fluoroquinolones in a wide range of rodent strains were collected from clinical specimens at the Institute and from against 83 obligately anaerobic bacteria infection models. With the present study the national and international studies and obtained in part from other included in this study. activity of FIN against 83 recently isolated strains laboratories. The following strains were used: Bacteroides fragils group of obligately anaerobic bacteria including (n=62): B.
    [Show full text]
  • Paper I and II)
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1335 Constraints on up-regulation of drug efflux in the evolution of ciprofloxacin resistance LISA PRASKI ALZRIGAT ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-554-9923-5 UPPSALA urn:nbn:se:uu:diva-320580 2017 Dissertation presented at Uppsala University to be publicly examined in B22, BMC, Husargatan 3, Uppsala, Friday, 9 June 2017 at 09:00 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Professor Fernando Baquero (Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain). Abstract Praski Alzrigat, L. 2017. Constraints on up-regulation of drug efflux in the evolution of ciprofloxacin resistance. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1335. 48 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9923-5. The crucial role of antibiotics in modern medicine, in curing infections and enabling advanced medical procedures, is being threatened by the increasing frequency of resistant bacteria. Better understanding of the forces selecting resistance mutations could help develop strategies to optimize the use of antibiotics and slow the spread of resistance. Resistance to ciprofloxacin, a clinically important antibiotic, almost always involves target mutations in DNA gyrase and Topoisomerase IV. Because ciprofloxacin is a substrate of the AcrAB-TolC efflux pump, mutations causing pump up-regulation are also common. Studying the role of efflux pump-regulatory mutations in the development of ciprofloxacin resistance, we found a strong bias against gene-inactivating mutations in marR and acrR in clinical isolates.
    [Show full text]
  • Against Helicobacter Pylori in Vitro and in Vivo Merlion Pharmaceuticals Pte Ltd, Washington DC 2008 05-01 the Capricorn, 1 2 1 1 3 3 1 Science Park 2, A
    Contact information: 48th ICAAC / 46th IDSA, WILL STUBBINGS Antimicrobial Activity of Finafloxacin (FIN) against Helicobacter pylori In Vitro and In Vivo MerLion Pharmaceuticals Pte Ltd, Washington DC 2008 05-01 The Capricorn, 1 2 1 1 3 3 1 Science Park 2, A. BUISSONNIÈRE , H-O. WERLING B. BERGEY , P. LEHOURS , W. STUBBINGS , H. LABISCHINSKI , F. MEGRAUD . Singapore 117528 F1-2038 Phone +65 6829 5600 1INSERM U853, Bordeaux, France, 2Bayer HealthCare AG, Elberfeld, Germany, 3MerLion Pharmaceuticals Pte Ltd, Singapore. [email protected] RevisedRevised abstractabstract MethodsMethods ResultsResults andand DiscussionDiscussion Introduction: FIN is a novel fluoroquinolone (FQ) belonging to a new 8- Minimum inhibitory concentration (MIC) determination Murine model of H. felis infection cyano subclass. FIN exhibits optimal efficacy at slightly acidic pH (5.0 - 6.0), Finafloxacin Levofloxacin Clearance % under which other FQs lose activity. FIN is intended for therapeutic use MICs were determined for FIN and LVX against H. pylori strains (n= 55) that were MIC MIC MIC MIC W 8801, X 7328, 17-8299, H. felis was passaged in mice to achieve a persistent infection that pH 50 90 50 90 X 2752, X 9181, Y 1304 against bacterial infections associated with an acidic environment such as H. obtained from patients gastroscoped in the Southwest of France. MICs were 100 [mg/L] [mg/L] [mg/L] [mg/L] 34-6601 exhibited a similar response to therapy as H. pylori in humans. Triple pylori eradication. The antibacterial activity of FIN, was determined against performed by agar dilution at 3 different pHs: 7.3, 6.3 and 5.3. An inoculum FIN FQ RES and susceptible strains at acidic pH, and against H.
    [Show full text]
  • 200 and 800 Mg) in Healthy Volunteers Receiving a Single Oral Dose
    Pharmacology Chemotherapy 2011;57:97–107 Received: June 9, 2010 DOI: 10.1159/000321028 Accepted after revision: August 30, 2010 Published online: February 28, 2011 Urinary Pharmacokinetics and Bactericidal Activity of Finafloxacin (200 and 800 mg) in Healthy Volunteers Receiving a Single Oral Dose a b d Florian M.E. Wagenlehner Christine M. Wagenlehner Birgit Blenk d e e c Holger Blenk Sabine Schubert Axel Dalhoff Kurt G. Naber a Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, and b c Department of Anesthesia, Evangelisches Krankenhaus, Giessen , Technical University of Munich, Straubing , d e Department of Microbiology, Nürnberg , and University Hospital Schleswig-Holstein, Campus Kiel, Kiel , Germany Key Words Introduction ؒ Finafloxacin ؒ Urine pharmacokinetics ؒ Pharmacodynamics Urinary bactericidal titers Urinary tract infection (UTI) is one of the most com- mon reasons for medical consultation. Uncomplicated UTI are predominantly caused by Escherichia coli, but Abstract also by Proteus mirabilis and occasionally Klebsiella spp., Background: Finafloxacin is a novel 8-cyano-fluoroquino- other Enterobacteriaceae and Staphylococcus saprophyti- lone under investigation for treatment of urinary tract infec- cus ( ! 5% each) [1–3] . Infections with P. mirabilis are sig- tion. Methods: Urinary concentrations and urinary bacteri- nificantly more common in patients over 50 years, where- cidal titers (UBT) of finafloxacin 200- and 800-mg single dos- as infections with S. saprophyticus are more common in es in 6 healthy volunteers were measured up to 48 h. UBT younger patients. Nosocomial UTI, almost always com- were determined for a reference strain and 9 selected clin- plicated, are caused by a wide range of pathogens, most ical uropathogens at the pH of native, acidified (pH 5.5) frequently E.
    [Show full text]
  • Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
    www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful.
    [Show full text]
  • The Study Listed May Include Approved and Non-Approved Uses, Formulations Or Treatment Regimens
    The study listed may include approved and non-approved uses, formulations or treatment regimens. The results reported in any single study may not reflect the overall results obtained on studies of a product. Before prescribing any product mentioned in this Register, healthcare professionals should consult prescribing information for the product approved in their country. GSK Medicine: Gepotidacin Study Number: 207625 Title: Meta-analysis to estimate the microbiological treatment effect of nitrofurantoin for determination of the non-inferiority margin in a phase 3 clinical trial of uncomplicated urinary tract infection (uUTI). Rationale: Active-comparator, non-inferiority study designs are generally used in uUTI trials, given the ethical implications of placebo treatment. In order to design, execute, and analyze a non-inferiority trial, an estimate of the treatment effect (M1) of the planned active comparator (nitrofurantoin), must be obtained from historical randomized or open label studies. Once an estimate of M1 (nitrofurantoin treatment effect) is obtained, a non-inferiority margin (M2) or the largest clinically acceptable difference of the test drug compared to the active comparator must be determined. Determination of M1 and M2 is critical to the design, analysis and interpretation of a non-inferiority trial. The rationale for this study was to estimate the treatment effect of an active comparator (nitrofurantoin) in order to determine the non-inferiority margin for a Phase III study, which will demonstrate the efficacy of a new
    [Show full text]
  • The Grohe Method and Quinolone Antibiotics
    The Grohe method and quinolone antibiotics Antibiotics are medicines that are used to treat bacterial for modern fluoroquinolones. The Grohe process and the infections. They contain active ingredients belonging to var- synthesis of ciprofloxacin sparked Bayer AG’s extensive ious substance classes, with modern fluoroquinolones one research on fluoroquinolones and the global competition of the most important and an indispensable part of both that produced additional potent antibiotics. human and veterinary medicine. It is largely thanks to Klaus Grohe – the “father of Bayer quinolones” – that this entirely In chemical terms, the antibiotics referred to for simplicity synthetic class of antibiotics now plays such a vital role for as quinolones are derived from 1,4-dihydro-4-oxo-3-quin- medical practitioners. From 1965 to 1997, Grohe worked oline carboxylic acid (1) substituted in position 1. as a chemist, carrying out basic research at Bayer AG’s Fluoroquinolones possess a fluorine atom in position 6. In main research laboratory (WHL) in Leverkusen. During this addition, ciprofloxacin (2) has a cyclopropyl group in posi- period, in 1975, he developed the Grohe process – a new tion 1 and also a piperazine group in position 7 (Figure A). multi-stage synthesis method for quinolones. It was this This substituent pattern plays a key role in its excellent achievement that first enabled him to synthesize active an- antibacterial efficacy. tibacterial substances such as ciprofloxacin – the prototype O 5 O 4 3 6 COOH F COOH 7 2 N N N 8 1 H N R (1) (2) Figure A: Basic structure of quinolone (1) (R = various substituents) and ciprofloxacin (2) Quinolones owe their antibacterial efficacy to their inhibition This unique mode of action also makes fluoroquinolones of essential bacterial enzymes – DNA gyrase (topoisomer- highly effective against a large number of pathogenic ase II) and topoisomerase IV.
    [Show full text]
  • 206307Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 206307Orig1s000 OTHER REVIEW(S) NDA 206-307 PMC Development: Product Quality (CMC-Biopharmaceutics) This template should be completed by ONDQA’s Biopharmaceutics or CMC reviewer. For each type of CMC or Biopharmaceutics PMC in the Action Package (See #4 for a list of PMC types). NDA NDA 206-307 Finafloxacin Otic Suspension Product Name: The dissolution method development report with the complete data should be PMC # 1 submitted within 6 months from NDA’s action date. Description: The report should include the following information: a. Solubility and pH data for the drug substance in the proposed dissolution medium; b. Detailed description of the dissolution test being proposed for the evaluation of the proposed drug product and the developmental parameters used to select the proposed dissolution method as the optimal test for the proposed product (i.e., selection of the equipment/ apparatus, in vitro dissolution media, agitation/rotation speed, pH, assay, sink conditions, etc.). The dissolution profile should be complete (i.e., 10, 15, 20, 30, 45, & (b) 60 minutes) and cover at least(4) % of drug release of the label amount or whenever a plateau (i.e., no increase over 3 consecutive time-points) is reached. The use of USP Apparatus 2 with mini-vessels (50-200 ml volume) should be considered for the dissolution testing of this otic suspension drug product. c. Provide the complete dissolution profile data (individual, mean, SD, profiles) for the proposed drug product. The dissolution data should be reported as the cumulative percentage of drug dissolved with time (the percentage is based on the product’s label claim); and d.
    [Show full text]
  • Analysis of the Clinical Antibacterial and Antituberculosis Pipeline
    Review Analysis of the clinical antibacterial and antituberculosis pipeline Ursula Theuretzbacher, Simon Gottwalt, Peter Beyer, Mark Butler, Lloyd Czaplewski, Christian Lienhardt, Lorenzo Moja, Mical Paul, Sarah Paulin, John H Rex, Lynn L Silver, Melvin Spigelman, Guy E Thwaites, Jean-Pierre Paccaud, Stephan Harbarth This analysis of the global clinical antibacterial pipeline was done in support of the Global Action Plan on Antimicrobial Lancet Infect Dis 2018 Resistance. The study analysed to what extent antibacterial and antimycobacterial drugs for systemic human use as Published Online well as oral non-systemic antibacterial drugs for Clostridium difficile infections were active against pathogens included October 15, 2018 in the WHO priority pathogen list and their innovativeness measured by their absence of cross-resistance (new class, http://dx.doi.org/10.1016/ S1473-3099(18)30513-9 target, mode of action). As of July 1, 2018, 30 new chemical entity (NCE) antibacterial drugs, ten biologics, ten NCEs Center for Anti-Infective against Mycobacterium tuberculosis, and four NCEs against C difficile were identified. Of the 30 NCEs, 11 are expected Agents, Vienna, Austria to have some activity against at least one critical priority pathogen expressing carbapenem resistance. The clinical (U Theuretzbacher PhD); pipeline is dominated by derivatives of established classes and most development candidates display limited Biovision Foundation for innovation. New antibacterial drugs without pre-existing cross-resistance are under-represented and are urgently Ecological Development, Zurich, Switzerland (S Gottwalt); needed, especially for geographical regions with high resistance rates among Gram-negative bacteria and Essential Medicines and Health M tuberculosis. Products, WHO, Geneva, Switzerland (P Beyer PhD); Background potential inno vation, and clinical value globally.
    [Show full text]