Detección De Outliers En Grandes Bases De Datos

Total Page:16

File Type:pdf, Size:1020Kb

Detección De Outliers En Grandes Bases De Datos MAESTRÍA EN TECNOLOGÍA INFORMÁTICA Y DE COMUNICACIONES DETECCIÓN DE OUTLIERS EN GRANDES BASES DE DATOS ADRIÁN ALFREDO DE ARMAS – LU 101230 COHORTE: TIC 2012/2013 Director del Trabajo Final Dr. Horacio Kuna, Facultad de Ciencias Exactas. Universidad Nacional de Misiones Mag. Ing. Bibiana D. Rossi, Universidad Argentina de la Empresa 23 de Febrero del 2015 UNIVERSIDAD ARGENTINA DE LA EMPRESA FACULTAD DE INGENIERÍA Y CIENCIAS EXACTAS Dedicado a Maria José y Aimee. DETECCIÓN DE OUTLIERS EN GRANDES BASES DE DATOS Adrián Alfredo De Armas 1. AGRADECIMIENTOS Este trabajo final no hubiese sido posible sin la colaboración de mis dos tutores Bibiana Rossi y Horacio Kuna. Fue Bibiana –una gran amiga que es una de las grandes incorporaciones de mi reciente historia- que, a instancias de Horacio, me propuso un tema tan apasionante como la detección de outliers en grandes bases de datos. Con este trabajo final pude integrar mi interés natural por la programación y la investigación de un tema apasionante, del cual no tenía conocimiento previo, como es la detección de outliers. En mis dos tutores pude encontrar interlocutores que me permitieron compartir ideas para delinear las líneas de investigación, forma de trabajo y presentación de este documento. Quiero agradecerles a ambos su acompañamiento y buena predisposición constante, este trabajo no habría sido posible sin su guía. A mis padres, hermanos y amigos que me han acompañado toda la vida durante mi formación, todos son parte, todos merecen un “Gracias” A la Universidad Argentina de la Empresa le debo las gracias porque gracias a la institución tuve una experiencia muy enriquecedora cursando la maestría TIC. El roce con mis compañeros y docentes me ha brindado amigos que hoy son parte de mi vida, así como también anécdotas y experiencias que hoy me son útiles en mi vida profesional. P á g i n a 1 | 274 DETECCIÓN DE OUTLIERS EN GRANDES BASES DE DATOS Adrián Alfredo De Armas 2. RESUMEN Este trabajo final se trata sobre la detección de outliers en grandes bases de datos. Una de las definiciones más citadas en la bibliografía respecto a lo que es un outlier es la enunciada por David Hawkins en sus monografías sobre estadística y probabilidad aplicadas del año 1980: “Un outlier es una observación que se desvía tanto de otras observaciones que despierta la sospecha de haber sido generado por un mecanismo diferente” [Hawkings, 1980]. Con el objetivo de proponer un algoritmo que permita identificar eficaz y eficientemente outliers en grandes bases de datos se seleccionó la aproximación por celdas propuesta por Edwin Knorr y Raymond NG en 1998 en el trabajo “Algorithms for Mining Distance-Based Outliers in Large Datasets” [Knorr y otros, 1998]. Este método puede procesar de forma muy eficiente hasta 4 dimensiones (5 en algunos casos) pero luego decrece su rendimiento e incluso puede imposibilitarse su ejecución. Se implementaron distintas versiones del mismo algoritmo, cada una pensada para un escenario diferente, manteniendo la eficacia del 100% de detección de outliers basados en distancia. Con el fin de aumentar la eficiencia de la implementación del algoritmo, se propone la detección probabilística de outliers basada en la aproximación por celdas que mejora la eficiencia a costa de la reducción de la eficacia manifestada por la detección de falsos positivos. Los resultados de laboratorio arrojan que el porcentaje de disminución de la eficacia del algoritmo es siempre menor que el porcentaje de aumento de la eficiencia. Los experimentos se realizaron sobre datos sintéticos y, finalmente, se probó el algoritmo con datos reales de todos los vuelos de cabotaje en USA entre los años 1998 y 2003. P á g i n a 2 | 274 DETECCIÓN DE OUTLIERS EN GRANDES BASES DE DATOS Adrián Alfredo De Armas 3. ABSTRACT This final work deals with finding outliers in large, multidimensioanal datasets. Edwin Knorr and Raymong NG back in 1998 proposed a cell based algorithm for finding outliers in “Algorithms for Mining Distance-Based Outliers in Large Datasets” [Knorr y otros, 1998]. The algorithm named FindAllOutsM showed to be by far the best for 푘 ≤ 4. Various improvements were made for different implementations of the algorithm such as virtual hypercube for cells processing, parallel processing and probabilistic outlier determination making FindAllOutsM suitable for large datasets with 푘 ≥ 4 attributes. Synthetic and real worl data were used to test the implementations of the algorithm with datasets containing from 100.000 to 30.000.000 tuples with 3 to 6 attributes showing good performance for heterogeneous domains. Dataset managed has determined which attributes were handled, however, more attributes can be included if they were available. Performance of FindAllOutsM is improved as object count increases. P á g i n a 3 | 274 DETECCIÓN DE OUTLIERS EN GRANDES BASES DE DATOS Adrián Alfredo De Armas 4. CONTENIDO 1. AGRADECIMIENTOS ..................................................................................................... 0 2. RESUMEN ...................................................................................................................... 2 3. ABSTRACT .................................................................................................................... 3 4. CONTENIDO .................................................................................................................. 4 5. INTRODUCCIÓN ............................................................................................................ 7 6. PROBLEMÁTICA ACTUAL ........................................................................................... 10 7. MARCO TEÓRICO ....................................................................................................... 11 7.1. DATA WAREHOUSE ............................................................................................. 11 7.1.1. DIFERENCIAS ENTRE SISTEMAS DE BASE DE DATOS OPERACIONALES Y DATA WAREHOUSES .............................................................................................. 12 7.2. DATA MINING ....................................................................................................... 14 7.2.1. PROCESO DE GENERACIÓN DE UN DATA MINING ................................... 16 7.2.2. FUNCIONALIDADES DEL DATA MINING ...................................................... 17 7.2.2.1. CONCEPTO/CLASE: CARACTERIZACIÓN Y DISCRIMINACIÓN ............. 18 7.2.2.2. PATRONES FRECUENTES, ASOCIACIÓN Y CORRELACIÓN ................. 19 7.2.2.3. CLASIFICACION Y PREDICCIÓN .............................................................. 19 7.2.2.4. ANÁLISIS DE CLUSTERS .......................................................................... 20 7.2.2.5. ANÁLISIS DE EVOLUCIÓN ........................................................................ 20 7.2.3. METODOLOGÍA DE DESARROLLO DE DATA MINING ................................ 21 7.2.3.1. SEMMA ....................................................................................................... 21 7.2.3.2. CRISP-DM .................................................................................................. 22 7.2.4. ALGORITMOS DE DATA MINING .................................................................. 24 7.2.5. HERRAMIENTAS DE DATA MINING ............................................................. 25 7.3. NOTACIÓN “O” GRANDE y Ω ............................................................................... 27 7.4. OUTLIERS............................................................................................................. 30 7.4.1. MODELOS BÁSICOS PARA OUTLIERS ........................................................ 31 7.4.1.1. ANÁLISIS DE VALORES EXTREMOS ....................................................... 32 7.4.1.2. ANÁLISIS DE VALORES EXTREMOS DE DATOS MULTIVARIADOS ....... 34 7.4.1.3. MODELOS ESTADÍSTICOS Y PROBABILÍSTICOS ................................... 35 7.4.1.4. MÉTODOS BASADOS EN PROFUNDIDAD ............................................... 35 7.4.1.5. MÉTODOS BASADOS EN DESVÍO............................................................ 39 7.4.1.6. MÉTODOS BASADOS EN ÁNGULOS ........................................................ 39 P á g i n a 4 | 274 DETECCIÓN DE OUTLIERS EN GRANDES BASES DE DATOS Adrián Alfredo De Armas 7.4.1.7. MÉTODOS BASADOS EN DISTANCIA ...................................................... 41 7.4.1.7.1. DETERMINACIÓN DE LOS VALORES INICIALES PARA 푝 Y 퐷 ............ 43 7.4.1.8. MODELOS LINEALES ................................................................................ 44 7.4.1.9. MODELOS BASADOS EN PROXIMIDAD ................................................... 47 7.4.1.9.1. BASADOS EN CELDAS (DISTANCIA) ................................................... 48 7.4.1.9.2. BASADOS EN ÍNDICE (DISTANCIA) ...................................................... 50 7.4.1.9.3. LOF (DENSIDAD) .................................................................................... 51 7.4.1.9.4. LOCI (DENSIDAD) .................................................................................. 54 7.4.2. OUTLIERS Y MINERÍA DE DATOS ............................................................... 56 8. ESTADO DEL ARTE .................................................................................................... 57 8.1. DETECCIÓN DE OUTLIERS BASADA EN CELDAS ............................................. 61 8.1.1. ESTRUCTURA DE CELDAS Y PROPIEDADES EN DOS DIMENSIONES .... 62 8.1.2. ALGORITMO PARA CONJUNTO DE DATOS RESIDENTES
Recommended publications
  • 2009-2010 Colorado Avalanche Media Guide
    Qwest_AVS_MediaGuide.pdf 8/3/09 1:12:35 PM UCQRGQRFCDDGAG?J GEF³NCCB LRCPLCR PMTGBCPMDRFC Colorado MJMP?BMT?J?LAFCÍ Upgrade your speed. CUG@CP³NRGA?QR LRCPLCRDPMKUCQR®. Available only in select areas Choice of connection speeds up to: C M Y For always-on Internet households, wide-load CM Mbps data transfers and multi-HD video downloads. MY CY CMY For HD movies, video chat, content sharing K Mbps and frequent multi-tasking. For real-time movie streaming, Mbps gaming and fast music downloads. For basic Internet browsing, Mbps shopping and e-mail. ���.���.���� qwest.com/avs Qwest Connect: Service not available in all areas. Connection speeds are based on sync rates. Download speeds will be up to 15% lower due to network requirements and may vary for reasons such as customer location, websites accessed, Internet congestion and customer equipment. Fiber-optics exists from the neighborhood terminal to the Internet. Speed tiers of 7 Mbps and lower are provided over fiber optics in selected areas only. Requires compatible modem. Subject to additional restrictions and subscriber agreement. All trademarks are the property of their respective owners. Copyright © 2009 Qwest. All Rights Reserved. TABLE OF CONTENTS Joe Sakic ...........................................................................2-3 FRANCHISE RECORD BOOK Avalanche Directory ............................................................... 4 All-Time Record ..........................................................134-135 GM’s, Coaches .................................................................
    [Show full text]
  • 1988-1989 Panini Hockey Stickers Page 1 of 3 ‰ 1 Road to the Cup
    1988-1989 Panini Hockey Stickers Page 1 of 3 1 Road to the Cup Calgary Flames Edmonton Oilers St. Louis Blues 2 Flames logo 50 Oilers logo 98 Blues logo 3 Flames uniform 51 Oilers uniform 99 Blues uniform 4 Mike Vernon 52 Grant Fuhr 100 Greg Millen 5 Al MacInnis 53 Charlie Huddy 101 Brian Benning 6 Brad McCrimmon 54 Kevin Lowe 102 Gordie Roberts 7 Gary Suter 55 Steve Smith 103 Gino Cavallini 8 Mike Bullard 56 Jeff Beukeboom 104 Bernie Federko 9 Hakan Loob 57 Glenn Anderson 105 Doug Gilmour 10 Lanny McDonald 58 Wayne Gretzky 106 Tony Hrkac 11 Joe Mullen 59 Jari Kurri 107 Brett Hull 12 Joe Nieuwendyk 60 Craig MacTavish 108 Mark Hunter 13 Joel Otto 61 Mark Messier 109 Tony McKegney 14 Jim Peplinski 62 Craig Simpson 110 Rick Meagher 15 Gary Roberts 63 Esa Tikkanen 111 Brian Sutter 16 Flames team photo (left) 64 Oilers team photo (left) 112 Blues team photo (left) 17 Flames team photo (right) 65 Oilers team photo (right) 113 Blues team photo (right) Chicago Blackhawks Los Angeles Kings Toronto Maple Leafs 18 Blackhawks logo 66 Kings logo 114 Maple Leafs logo 19 Blackhawks uniform 67 Kings uniform 115 Maple Leafs uniform 20 Bob Mason 68 Glenn Healy 116 Alan Bester 21 Darren Pang 69 Rolie Melanson 117 Ken Wregget 22 Bob Murray 70 Steve Duchense 118 Al Iafrate 23 Gary Nylund 71 Tom Laidlaw 119 Luke Richardson 24 Doug Wilson 72 Jay Wells 120 Borje Salming 25 Dirk Graham 73 Mike Allison 121 Wendel Clark 26 Steve Larmer 74 Bobby Carpenter 122 Russ Courtnall 27 Troy Murray
    [Show full text]
  • 2011-12 Rochester Americans Media Guide (.Pdf)
    Rochester Americans Table of Contents Rochester Americans Personnel History Rochester Americans Staff Directory........................................................................................4 All-Time Records vs. Current AHL Clubs ..........................................................................203 Amerks 2011-12 Schedule ............................................................................................................5 All-Time Coaches .........................................................................................................................204 Amerks Executive Staff ....................................................................................................................6 Coaches Lifetime Records ......................................................................................................205 Amerks Hockey Department Staff ..........................................................................................10 Presidents & General Managers ...........................................................................................206 Amerks Front Office Personnel ................................................................................................ 17 All-Time Captains ..........................................................................................................................207 Affiliation Timeline ........................................................................................................................208 Players Amerks Firsts & Milestones
    [Show full text]
  • OPINION in REVIEW of ANTOINE VERMETTE SUSPENSION The
    OPINION IN REVIEW OF ANTOINE VERMETTE SUSPENSION The National Hockey League Players’ Association (“NHLPA”), on behalf of Antoine Vermette, has sought review of an automatic ten (10) game suspension issued pursuant to Rule 40.3 (“Automatic Suspension – Category II”) of the League’s Playing Rules as a result of an incident that occurred on February 14, 2017, during a game between the Anaheim Ducks and the Minnesota Wild. In accordance with my authority and responsibility under Playing Rule 40.5 and Article 18.17 of the CBA, I hereby determine that: 1. The On-Ice Officials appropriately determined that Mr. Vermette’s conduct constituted a Category II violation pursuant to the terms of Playing Rule 40.3 (“Automatic Suspension – Category II”). 2. Mr. Vermette shall be suspended for a total of ten (10) games, the minimum provided for under Playing Rule 40.3, inclusive of the four (4) games already missed as of the date of this decision. THE RULE AT ISSUE Rule 40 (Physical Abuse of Officials) provides in relevant part as follows: 40.1 Game Misconduct – Any player who deliberately applies physical force in any manner against an official, in any manner attempts to injure an official, physically demeans, or deliberately applies physical force to an official solely for the purpose of getting free of such an official during or immediately following an altercation shall receive a game misconduct penalty. In addition, the following (40.2, 40.3, 40.4) disciplinary penalties shall apply. * * * 1 40.3 Automatic Suspension – Category II - Any player who deliberately applies physical force to an official in any manner (excluding actions as set out in Category I), which physical force is applied without intent to injure, or who spits on an official, shall be automatically suspended for not less than ten (10) games.
    [Show full text]
  • 1989-90 O-Pee-Chee Hockey Card Set Checklist
    1 989-90 O-PEE-CHEE HOCKEY CARD SET CHECKLI ST 1 Mario Lemieux 2 Ulf Dahlen 3 Terry Carkner RC 4 Tony McKegney 5 Denis Savard 6 Derek King RC 7 Lanny McDonald 8 John Tonelli 9 Tom Kurvers 10 Dave Archibald 11 Peter Sidorkiewicz RC 12 Esa Tikkanen 13 Dave Barr 14 Brent Sutter 15 Cam Neely 16 Calle Johansson RC 17 Patrick Roy 18 Dale DeGray RC 19 Phil Bourque RC 20 Kevin Dineen 21 Mike Bullard 22 Gary Leeman 23 Greg Stefan 24 Brian Mullen 25 Pierre Turgeon 26 Bob Rouse RC 27 Peter Zezel 28 Jeff Brown 29 Andy Brickley RC 30 Mike Gartner 31 Darren Pang 32 Pat Verbeek 33 Petri Skriko 34 Tom Laidlaw 35 Randy Wood 36 Tom Barrasso 37 John Tucker 38 Andrew McBain 39 David Shaw 40 Reggie Lemelin 41 Dino Ciccarelli 42 Jeff Sharples Compliments of BaseballCardBinders.com© 2019 1 43 Jari Kurri 44 Murray Craven 45 Cliff Ronning RC 46 Dave Babych 47 Bernie Nicholls 48 Jon Casey RC 49 Al MacInnis 50 Bob Errey RC 51 Glen Wesley 52 Dirk Graham 53 Guy Carbonneau 54 Tomas Sandstrom 55 Rod Langway 56 Patrik Sundstrom 57 Michel Goulet 58 Dave Taylor 59 Phil Housley 60 Pat LaFontaine 61 Kirk McLean RC 62 Ken Linseman 63 Randy Cunneyworth 64 Tony Hrkac 65 Mark Messier 66 Carey Wilson 67 Steve Leach RC 68 Christian Ruuttu 69 Dave Ellett 70 Ray Ferraro 71 Colin Patterson RC 72 Tim Kerr 73 Bob Joyce 74 Doug Gilmour 75 Lee Norwood 76 Dale Hunter 77 Jim Johnson 78 Mike Foligno 79 Al Iafrate 80 Rick Tocchet 81 Greg Hawgood RC 82 Steve Thomas 83 Steve Yzerman 84 Mike McPhee 85 David Volek RC 86 Brian Benning 87 Neal Broten 88 Luc Robitaille 89 Trevor Linden RC Compliments
    [Show full text]
  • COLORADO AVALANCHE VS. MIGHTY DUCKS of ANAHEIM Special Teams Avs’ Best Bet by ADRIAN DATER | the DENVER POST
    8D The Denver Post g Friday, May 5, 2006 AVALANCHE COLORADO AVALANCHE VS. MIGHTY DUCKS OF ANAHEIM Special teams Avs’ best bet BY ADRIAN DATER | THE DENVER POST The Avalanche gets the edge in almost every category here, so it’ll be a blowout, right? Wrong. The Ducks showed they are a formidable team in knocking off Northwest Division champion Calgary in the first round. They also have the home-ice advantage in the series. But we saw how much home ice was worth to Western teams in the first round — zip. The Avs look a little deeper and a little more talented overall than the Mighty Ducks. It’ll be a close series, but the bet here is the Avs will find a way to win again. PREDICTION: AVALANCHE IN SIX GAMES THE AVS ADVANTAGE OFFENSE THE DUCKS Who would have believed the Avalanche of and balanced Mighty Ducks, Colorado needs 2006 would be a more potent offensive team another good series from usual suspects Joe than the one of 2003-04 that included Peter Sakic, Milan Hejduk and — maybe even more Forsberg, Paul Kariya and Teemu Selanne? than in the first round — Alex Tanguay. Alex Tanguay The new NHL rules are partly responsible The Ducks are led by, surprise, surprise: Jeff Vinnick for that, but these Avs are a deeper, more Selanne. The friendly Finn was awful for the Getty Images balanced offensive team than that so-called Avs in his one season here, but surgery to his “superstar” team. The addition of Steve knee helped him regain his speed.
    [Show full text]
  • 2015 Playoff Guide Table of Contents
    2015 PLAYOFF GUIDE TABLE OF CONTENTS Company Directory ......................................................2 Brad Richardson. 60 Luca Sbisa ..............................................................62 PLAYOFF SCHEDULE ..................................................4 Daniel Sedin ............................................................ 64 MEDIA INFORMATION. 5 Henrik Sedin ............................................................ 66 Ryan Stanton ........................................................... 68 CANUCKS HOCKEY OPS EXECUTIVE Chris Tanev . 70 Trevor Linden, Jim Benning ................................................6 Linden Vey .............................................................72 Victor de Bonis, Laurence Gilman, Lorne Henning, Stan Smyl, Radim Vrbata ...........................................................74 John Weisbrod, TC Carling, Eric Crawford, Ron Delorme, Thomas Gradin . 7 Yannick Weber. 76 Jonathan Wall, Dan Cloutier, Ryan Johnson, Dr. Mike Wilkinson, Players in the System ....................................................78 Roger Takahashi, Eric Reneghan. 8 2014.15 Canucks Prospects Scoring ........................................ 84 COACHING STAFF Willie Desjardins .........................................................9 OPPONENTS Doug Lidster, Glen Gulutzan, Perry Pearn, Chicago Blackhawks ..................................................... 85 Roland Melanson, Ben Cooper, Glenn Carnegie. 10 St. Louis Blues .......................................................... 86 Anaheim Ducks
    [Show full text]
  • Sport-Scan Daily Brief
    SPORT-SCAN DAILY BRIEF NHL 10/05/17 Anaheim Ducks Calgary Flames 1076358 Ducks need Rickard Rakell to take center stage as team 1076394 Smith solid, but McDavid leads Oilers past Flames in opens season without Ryan Kesler opener 1076359 Ducks sign Josh Manson to a four-year extension 1076395 Breaking down the deal for Jaromir Jagr 1076360 5 things we learned about the Ducks in training camp 1076396 Flames make it official: Jaromir Jagr will play his 25th 1076361 Miller: Ducks’ Francois Beauchemin hopes to prove it’s season in Calgary worth three-peating 1076397 Francis: Flames hope history doesn't repeat at Rogers 1076362 Ducks ink Josh Manson to four-year extension, add two Place veterans to injured reserve 1076398 Goalie Smith to help Flames stick it to foes 1076399 Flames' Backlund turning heads as one of NHL's best Arizona Coyotes two-way players 1076363 Arizona Coyotes' Rick Tocchet set to lead as the guy he's 1076400 Western Canadian Hamonic fitting in well in Calgary always been 1076401 Francis: Flames season revolves around goaltender Smith 1076364 Coyotes name Ekman-Larsson, Hjalmarsson alternate 1076402 Q & A with Flames star Sean Monahan captains 1076365 What’s new with Coyotes? Coaches, players & Dunkin’ Chicago Blackhawks Donuts 1076403 Blackhawks broadcaster Judd Sirott leaves for Bruins job; 1076366 Questions abound as new era of Coyotes hockey debuts Chris Boden takes over 1076404 I had Blackhawks questions, Stan Bowman had answers, I Boston Bruins still have questions 1076367 Bruins counting on youngsters to play key
    [Show full text]
  • March 4Th 2002
    California State University, San Bernardino CSUSB ScholarWorks Coyote Chronicle (1984-) Arthur E. Nelson University Archives 3-4-2002 March 4th 2002 CSUSB Follow this and additional works at: https://scholarworks.lib.csusb.edu/coyote-chronicle Recommended Citation CSUSB, "March 4th 2002" (2002). Coyote Chronicle (1984-). 540. https://scholarworks.lib.csusb.edu/coyote-chronicle/540 This Newspaper is brought to you for free and open access by the Arthur E. Nelson University Archives at CSUSB ScholarWorks. It has been accepted for inclusion in Coyote Chronicle (1984-) by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. March 4, 2(K)2 Serving the Students of CSUSB for 35 Years Volume 35, Issue 15 hllp://chroiiicle.csiisl).cdu (Irciilation: 5,000 Karnig Offers a Slice of Reality question and answer session would to organizations such as sororities by Audrey Burrows be loaded down with questions and fraternities because of their age. Staff Writer towards this issue, but the students He wanted to know if the school ers were posted and passed out that attended had different questions would consider doing something campus informing students on their minds. Students had more to gel housing for the non- might have any questions on questions pertaining to parking, traditional students that may be minds for President Karnig, to funding for the recent construction, married and have children. down to the Events Center, have caps on enrollment, differences President Karnig told the audience it^ pizza and join the forum. between traditional and non- that he was 23 when he was married Wyou have a tough question, my traditional students, and information and had his first child, he understood let begins to fade..." was the about the university in general.
    [Show full text]
  • New York Rangers: Why Jason York Is Wrong About Henrik Lundqvist
    12/7/2018 New York Rangers: Why Jason York is wrong about Henrik Lundqvist (https york- range goals Blue Line Station make playof (https://imagesvc.timeincapp.com/v3/fan/image?url=https%3A%2F%2Fbluelinestation.com%2Fwp-content%2Fuploads%2Fgetty- images%2F2016%2F04%2F1073227946.jpeg&c=sc&w=850&h=560) NEW YORK, NEW YORK - NOVEMBER 26: Henrik Lundqvist #30 of the New York Rangers skates against the Ottawa Senators at Madison Square Garden on November 26, 2018 in New York City. The Rangers defeated the Senators 4-2. (Photo by Bruce Bennett/Getty Images) EDITORIALS (HTTPS://BLUELINESTATION.COM/NEW-YORK-RANGERS-EDITORIALS/) New York Rangers: Why Jason York is wrong about Henrik Lundqvist by Nicholas Zararis 1 week ago Edit (https://bluelinestation.com/wp-admin/post.php?post=76112&action=edit) Follow @NickZararis (https://twitter.com/NickZararis) TWEET SHARE COMMENT Sports talk radio is a breeding ground for hot takes designed to draw outrage. Jason York of Sportsnet Canada said he “wasn’t sure that Henrik Lundqvist was a Hall of Famer.” Anytime someone on sports talk radio opines about the validity of a player’s credentials for the Hall of Fame, lunacy is sure to follow. When it comes to hot takes, telling a team’s fan base that the best player in the history of the franchise is on the nuclear level. It’s no exaggeration to say that Henrik Lundqvist has had the greatest impact in New York Rangers’ history. Ever since the Swede won the starting goaltender job from Kevin Weekes back in 2005, the Rangers were immediately given an air of legitimacy.
    [Show full text]
  • Final Amerks-Section 2013 14.Pdf
    Rochester Americans Directory > > > > Rochester Americans | Executives | | Ticket Sales & Operations | Owner .................................................................... Terrence M. Pegula Manager of Ticket Sales ....................................................... Cailin O’Hara President ................................................................. Theodore N. Black Ticket Sales Associate .............................................................Chris LaFlair General Manager .............................................................Darcy Regier Ticket Sales Associate ...............................................................Lee Maslyn Vice President of Business Operations .............................Rob Kopacz Ticket Sales Associate ........................................................... Greg Metzen Director of Strategic Planning ............................................ Jody Gage Receptionist ............................................................................Cindy Barber | Coaching & Support Staff | | Merchandise | Head Coach...........................................................................Chadd Cassidy Merchandising .............................................................Amerks Team Store Assistant Coach .......................................................................... Chris Taylor Assistant Coach ................................................................John Wroblewski | General Information | Goaltending Coach ..................................................................
    [Show full text]
  • Vegas Hockey History
    2017-18 SCHEDULE INAUGURAL SEASON P PRESEASON NBCSN BROADCAST HOME HOME AWAY OPENER 7:00 5:00 5:30 P 2:00 P 6:00 P 7:30 6:30 7:00 P 5:00 P 7:00 P 7:00 5:00 4:30 4:30 3:00 7:00 7:00 6:00 P 5:00 5:30 6:00 7:00 7:30 4:00 7:00 7:30 5:00 5:00 7:00 3:00 9:30AM 4:00 7:30 4:00 4:00 5:00 7:00 7:00 4:00 7:00 7:30 7:30 4:00 11:00AM 7:30 7:30 4:00 4:30 7:30 6:00 7:00 7:00 5:00 7:30 3:00 5:00 2:00 4:00 4:30 10:00AM 7:00 5:00 4:00 7:00 7:30 1:00 7:00 7:00 12:00 5:00 7:00 7:00 7:30 7:30 5:00 7:00 5:00 5:00 7:00 7:00 7:00 6:00 7:00 ALL REGULAR SEASON GAMES CAN BE SEEN ON AT&T SPORTSNET AND 5:00 7:00 5:00 HEARD ON FOX SPORTS 98.9FM & 1340AM UNLESS OTHERWISE NOTED, WITH SELECT GAMES AVAILABLE ON ESPN DEPORTES. 7:00 7:00 *DATES AND TIMES ARE SUBJECT TO CHANGE. ALL TIMES ARE IN PT 12:30 TABLE OF CONTENTS Table of Contents �������������������������������� 1 Teemu Pulkkinen ������������������������� 68-69 Chicago Blackhawks ����������������������������� 150 Staff Directory ���������������������������������� 2-3 Griffn Reinhart ���������������������������� 70-71 Colorado Avalanche ������������������������������ 151 Team Management ����������������������������� 4 Luca Sbisa ����������������������������������� 72-73 Columbus Blue Jackets ������������������������ 152 Bill Foley ��������������������������������������������� 5 Nate Schmidt ������������������������������� 74-75 Dallas Stars �������������������������������������������� 153 George McPhee ��������������������������������� 6 Vadim Shipachyov ����������������������� 76-77 Detroit Red Wings����������������������������������
    [Show full text]