Feature Mining: A Novel Training Strategy for Convolutional Neural Network Tianshu Xie1 Xuan Cheng1 Xiaomin Wang1
[email protected] [email protected] [email protected] Minghui Liu1 Jiali Deng1 Ming Liu1*
[email protected] [email protected] [email protected] Abstract In this paper, we propose a novel training strategy for convo- lutional neural network(CNN) named Feature Mining, that aims to strengthen the network’s learning of the local feature. Through experiments, we find that semantic contained in different parts of the feature is different, while the network will inevitably lose the local information during feedforward propagation. In order to enhance the learning of local feature, Feature Mining divides the complete feature into two com- plementary parts and reuse these divided feature to make the network learn more local information, we call the two steps as feature segmentation and feature reusing. Feature Mining is a parameter-free method and has plug-and-play nature, and can be applied to any CNN models. Extensive experiments demonstrate the wide applicability, versatility, and compatibility of our method. 1 Introduction Figure 1. Illustration of feature segmentation used in our method. In each iteration, we use a random binary mask to Convolution neural network (CNN) has made significant divide the feature into two parts. progress on various computer vision tasks, 4.6, image classi- fication10 [ , 17, 23, 25], object detection [7, 9, 22], and seg- mentation [3, 19]. However, the large scale and tremendous parameters of CNN may incur overfitting and reduce gener- training strategy for CNN for strengthening the network’s alizations, that bring challenges to the network training.