Birds of Waterloo and Cedar Falls a Beginner's Guide

Total Page:16

File Type:pdf, Size:1020Kb

Birds of Waterloo and Cedar Falls a Beginner's Guide Green Iowa AmeriCorps Birds of Waterloo and Cedar Falls A Beginner’s Guide Introduction For some people, the idea of learning different species of birds can feel intimidating. They may know a few of the most common, such as a robin, cardinal, or a blue jay, but not much else. However, like all hobbies, with some learning the rewards can be worth the effort. Knowing what birds live in your town can provide a better sense of place, and connection to the natural world. It can feel like knowing the names of your neighbors, even if you aren't able to spend time with them. It only takes learning about a dozen species to be able to identify most of the birds you will see any given day. This guide will be focusing on the birds most likely to be seen around the neighborhoods of Waterloo and Cedar Falls. It won’t cover all of the birds that show up in the area, though. It skips the migrants, that are only here a few weeks out of the year, and rarities, those that only show up occasionally. It is hard to draw a line on which to include and which to skip, but since this is for the absolute beginner, the list will be shorter. This is to prevent feeling overwhelmed with too much information and options. Another thing to keep in mind is that birds can change a lot from the fledgling stage to adult, so there might be some common birds that will look unfamiliar while they wait to grow adult plumage. When and how to watch birds Anyone who has heard the dawn chorus can attest that mornings are the best time to bird watch. This is especially true for song birds. They like to sing in the morning the most because the cooler temperatures and slightly higher humidity help their songs travel farther. That said, any time of day is a good time to watch birds. The more you observe them, the more you will learn about how they live. Aquatic birds, and raptors like hawks and eagles, are more active throughout the day than song birds, so any time during daylight is a good time to look for them. The key to seeing as many birds as possible at home, is to set up a backyard that is safe and inviting to them. Depending on time and budget, focus on landscaping with native plants, shrubs, and trees. This is the foundation of a food chain that not only feeds the birds directly with fruit and seeds, but also feeds the insects other birds depend on. This is 2 also why it is so important to avoid pesticides. More and more studies are showing that domestic cats are a much larger threat to songbird populations than was thought before. Keeping cats indoors protects the birds and is better for the health of the cats. Color is often the easiest way to describe a bird. In addition to overall color, markings are a key. When you are lucky enough to have a bird stay still, start with the head and work your way down. Is the head all one color? Are there stripes? Is there an eye ring or a line through the eye? Same thing with the throat and chest of the bird. They can be solid, striped, or spotted. Sometimes there are easy markings to see on the wings, even in flight. On the tail there can be details that are easier to see in flight, like when the outer feathers are a different color. Size can be hard to guess when the bird is far away, but it’s a quick way to narrow down the list of possibilities. Often bird sizes are compared to the most well known birds; sparrows, robins, crows, and hawks. The bane of all birders is when the subject at hand is backlit, and colors are impossible to see. Combined with size, the shape of the bird can be helpful. In particular, bill shape can narrow down which group the bird would be in. For example finches and woodpeckers have very distinctive beaks. Some birds have longer tails, like mockingbirds, and others have shorter tails, such as meadowlarks. 3 American Robin One of the most well known and readily recognized birds, the robin is an easy bird to start with. It has an all black head, red-orange breast and belly, and the rest of the bird is a grayish color. Closer up you can see the incomplete white eye-ring. After watching robins enough you might notice that some are brighter with stronger contrast between the head and body. Those are the males robins. Females are a bit more washed out. The mnemonic device to remember their song is “cheerio, cheery-up, cheerio, wot wot.” They also have a distinctive call when they take off. Look for them feeding on invertebrates, especially earthworms after the rain. Robins have rather limited migration ranges, so they can be found in Iowa all year round, though more difficult in winter. Fun fact: Robins are members of the Thrush family, which has some of the most admired songs of all the birds. 4 American Crow This bird needs no introduction. Living in Iowa, it seems that every other bird you see is a crow. While easy to take for granted, they can be fascinating to watch, because they are intelligent and social. They are omnivores in the fullest meaning of the word. They are also scavengers, so they help fill in the cleaner role while vultures are down south. While we hear the “caw caw” sound the most, they are capable of dozens of other sounds. Fun Fact: Crows and ravens are part of the Corvid family. This is the most intelligent group of birds in North America. 5 Common Grackle Like starlings, common grackles like to flock in large groups. You will see them in areas along roadsides, or gathered together in trees. They don’t have a song as such, but make a lot of buzzy and wheezy sounds. A large flock of them can make quite a raucous noise. In the sun there is an iridescent sheen that distinguishes them from other blackbirds. In flight take note of the long, keeled tail. That fold in the center of the tail is unique to all species of grackle. Fun Fact: Grackles can be observed “anting.” This is when the grackles spread their wings by an ant nest and lets the ants climb all over them. This mutualistic relationship allows the ant to forage on the bird, and helps the grackles stay clean. 6 Northern Cardinal 7 Cardinals are dimorphic, which means the males and females have different plumage. It’s the bright red males that are usually featured in Christmas items. You can spot mating pairs as they chip back and forth to each other, as if saying “Here I am. Where are you?” They have several different whistle-like calls including “birdy-birdy-birdy-birdy,” “chew chew chew,” and “woit woit woit.” They have a finch like beak, that is used for crunching seeds. The crest goes up and down, depending on the cardinal’s mood. It can range from hard to see to full on mohawk. Note the black mask on the male. Fun fact: The cardinal is a very popular choice for state bird. Bird Feeders A little bit of research and planning can have a big impact on how many visitors your feeders attract. There are hundreds of helpful articles out there about the best way to select and set up bird feeders. A good thing to do first is to find out which birds are visiting your yard. From there you can choose the seed and feeders that are best suited for those birds. There are too many options to describe here, but you can put up one, several, or even set up a feeder right on your window. There are also a lot of make-at-home designs, ranging from simple enough for little kids to high quality works of art. 8 Blue Jay The Blue Jay earns its name from its color and its “jay jay” call. They also have a high whistle sound that can be confused for the call of a red-shouldered hawk. While a very pretty bird, they aren’t always admired. They sometimes bully smaller birds away from feeders, and the incessant jaying isn’t as pleasant to listen to as other songs. This bird is also here year round, and is a nice flash of color on a winter day. Fun fact: Jays are members of the Corvid family, which also includes crows and ravens. 9 European Starling This picture showcases an adult starling in full breeding plumage. From farther away though, it is much harder to see all these little details, so the birds could look all black. The rest of the year, the bill is dark, and the feathers aren’t as iridescent. Starlings travel in large flocks and you may have seen amoeba-like clouds of small black birds, called murmurations. In the air, their short tails and rounded bodies make them look like flying cigars. They are very noisy, with lots of different whistles, buzzes, and other chatter. The starling was introduced to Central Park by Shakespeare enthusiasts. While the other European birds died off, starlings thrived, and have been displacing natives birds as it works its way across the continent. Fun fact: Starlings can imitate sounds, so sometimes they sound like other birds.
Recommended publications
  • Predation by Gray Catbird on Brown Thrasher Eggs
    March 2004 Notes 101 PREDATION BY GRAY CATBIRD ON BROWN THRASHER EGGS JAMES W. RIVERS* AND BRETT K. SANDERCOCK Kansas Cooperative Fish and Wildlife Research Unit, Division of Biology, Kansas State University, Manhattan, KS 66506 (JWR) Division of Biology, Kansas State University, Manhattan, KS 66506 (BKS) Present address of JWR: Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106 *Correspondent: [email protected] ABSTRACT The gray catbird (Dumetella carolinensis) has been documented visiting and breaking the eggs of arti®cial nests, but the implications of such observations are unclear because there is little cost in depredating an undefended nest. During the summer of 2001 at Konza Prairie Bio- logical Station, Kansas, we videotaped a gray catbird that broke and consumed at least 1 egg in a brown thrasher (Toxostoma rufum) nest. Our observation was consistent with egg predation because the catbird consumed the contents of the damaged egg after breaking it. The large difference in body mass suggests that a catbird (37 g) destroying eggs in a thrasher (69 g) nest might risk injury if caught in the act of predation and might explain why egg predation by catbirds has been poorly documented. Our observation indicated that the catbird should be considered as an egg predator of natural nests and that single-egg predation of songbird nests should not be attributed to egg removal by female brown-headed cowbirds (Molothrus ater) without additional evidence. RESUMEN El paÂjaro gato gris (Dumetella carolinensis) ha sido documentado visitando y rompien- do los huevos de nidos arti®ciales, pero las implicaciones de dichas observaciones no son claras porque hay poco costo por depredar un nido sin defensa.
    [Show full text]
  • Catbird, Gray
    Mockingbirds and Thrashers — Family Mimidae 449 Mockingbirds and Thrashers — Family Mimidae Gray Catbird Dumetella carolinensis Though the Gray Catbird breeds west almost to the coast of British Columbia, it is only a rare vagrant to California—the bulk of the population migrates east of the Rocky Mountains. But the species is on the increase: of 107 reports accepted by the California Bird Records Committee 1884–1999, one third were in just the last four years of this interval. Similarly, of the 20 records of the Gray Catbird in San Diego County, 10 have come since initiation of the field work for this atlas in 1997. Migration: Half of San Diego County’s known cat- Photo by Anthony Mercieca birds have been fall migrants, occurring as early as 24 September (1976, one at Point Loma, S7, K. van Vuren, Cabrillo National Monument, Point Loma 11–17 July 1988 Luther et al. 1979). Besides eight fall records from Point (B. and I. Mazin, Pyle and McCaskie 1992) certainly was. Loma, there is one from the Tijuana River valley 7–8 November 1964 (the only specimen, SDNHM 35095), Winter: Three wintering Gray Catbirds have been report- one from a boat 15 miles off Oceanside 26 October 1983 ed from San Diego County, from Balboa Park (R9) (M. W. Guest, Bevier 1990), and two from Paso Picacho 16 December 1972 (P. Unitt) and from Point Loma 7 Campground (M20) 29 October 1988 (D. W. Aguillard, November 1983–13 March 1984 (V. P. Johnson, Roberson Pyle and McCaskie 1992) and 17 November 2002 (T. 1986) and 31 October 1999–21 January 2000 (D.
    [Show full text]
  • Belize), and Distribution in Yucatan
    University of Neuchâtel, Switzerland Institut of Zoology Ecology of the Black Catbird, Melanoptila glabrirostris, at Shipstern Nature Reserve (Belize), and distribution in Yucatan. J.Laesser Annick Morgenthaler May 2003 Master thesis supervised by Prof. Claude Mermod and Dr. Louis-Félix Bersier CONTENTS INTRODUCTION 1. Aim and description of the study 2. Geographic setting 2.1. Yucatan peninsula 2.2. Belize 2.3. Shipstern Nature Reserve 2.3.1. History and previous studies 2.3.2. Climate 2.3.3. Geology and soils 2.3.4. Vegetation 2.3.5. Fauna 3. The Black Catbird 3.1. Taxonomy 3.2. Description 3.3. Breeding 3.4. Ecology and biology 3.5. Distribution and threats 3.6. Current protection measures FIRST PART: BIOLOGY, HABITAT AND DENSITY AT SHIPSTERN 4. Materials and methods 4.1. Census 4.1.1. Territory mapping 4.1.2. Transect point-count 4.2. Sizing and ringing 4.3. Nest survey (from hide) 5. Results 5.1. Biology 5.1.1. Morphometry 5.1.2. Nesting 5.1.3. Diet 5.1.4. Competition and predation 5.2. Habitat use and population density 5.2.1. Population density 5.2.2. Habitat use 5.2.3. Banded individuals monitoring 5.2.4. Distribution through the Reserve 6. Discussion 6.1. Biology 6.2. Habitat use and population density SECOND PART: DISTRIBUTION AND HABITATS THROUGHOUT THE RANGE 7. Materials and methods 7.1. Data collection 7.2. Visit to others sites 8. Results 8.1. Data compilation 8.2. Visited places 8.2.1. Corozalito (south of Shipstern lagoon) 8.2.2.
    [Show full text]
  • Birds of the East Texas Baptist University Campus with Birds Observed Off-Campus During BIOL3400 Field Course
    Birds of the East Texas Baptist University Campus with birds observed off-campus during BIOL3400 Field course Photo Credit: Talton Cooper Species Descriptions and Photos by students of BIOL3400 Edited by Troy A. Ladine Photo Credit: Kenneth Anding Links to Tables, Figures, and Species accounts for birds observed during May-term course or winter bird counts. Figure 1. Location of Environmental Studies Area Table. 1. Number of species and number of days observing birds during the field course from 2005 to 2016 and annual statistics. Table 2. Compilation of species observed during May 2005 - 2016 on campus and off-campus. Table 3. Number of days, by year, species have been observed on the campus of ETBU. Table 4. Number of days, by year, species have been observed during the off-campus trips. Table 5. Number of days, by year, species have been observed during a winter count of birds on the Environmental Studies Area of ETBU. Table 6. Species observed from 1 September to 1 October 2009 on the Environmental Studies Area of ETBU. Alphabetical Listing of Birds with authors of accounts and photographers . A Acadian Flycatcher B Anhinga B Belted Kingfisher Alder Flycatcher Bald Eagle Travis W. Sammons American Bittern Shane Kelehan Bewick's Wren Lynlea Hansen Rusty Collier Black Phoebe American Coot Leslie Fletcher Black-throated Blue Warbler Jordan Bartlett Jovana Nieto Jacob Stone American Crow Baltimore Oriole Black Vulture Zane Gruznina Pete Fitzsimmons Jeremy Alexander Darius Roberts George Plumlee Blair Brown Rachel Hastie Janae Wineland Brent Lewis American Goldfinch Barn Swallow Keely Schlabs Kathleen Santanello Katy Gifford Black-and-white Warbler Matthew Armendarez Jordan Brewer Sheridan A.
    [Show full text]
  • Relationship of Anting and Sunbathing to Molting in Wild Birds
    RELATIONSHIP OF ANTING AND SUNBATHING TO MOLTING IN WILD BIRDS ELOISE F. lPOTTER AND DORIS C. HAUSER • AviAr• anting has generateda large and somewhatcontroversial body of literature, much of it based upon the behavior of captive or experi- mental birds (e.g. Ivor 1943, Whitaker 1957, Weisbrod 1971), birds treat- ing plumagewith substancesother than ants (recently with mothballs in Dubois 1969 and with lemon oil in Johnson 1971), or single oc- currencesfrom widely scatteredgeographical locations. McAtee (1954) advisedthat in searchingfor a reasonabletheory as to why birds ant only recordsfrom wild birds using ants should be examined. The authors agree with McAtee and further believe that data should be considered comparableonly when taken from a limited geographicalregion (e.g. temperateNorth America in Potter 1970). The literatureon antinghas beenreviewed several times (Groskin 1950, Whitaker 1957, Chisholm1959, Simmons1966, Potter 1970). Principal theoriesare (1) that anting birds "derive sensualpleasure from anting, possiblysexual stimulation" (Whitaker 1957); (2) that ant secretions prevent, remove, or otherwise control ectoparasiteinfestation (Groskin 1950, Dubinin in Kelso and Nice 1963, Simmons1966); (3) that ant secretionsmay be helpful in feather maintenanceby increasingflow of salivafor preening,removing stale preen oil and other lipids,or increasing feather wear resistance(Simmons 1966); and (4) that ant secretions sootheskin irritated by the emergenceof new feathers (Southern 1963, Potter 1970). Only four authors have publisheda dozen or more anting recordsinvolving wild birds usingants and takingplace in or near a single location in temperate North America. These are Brackbill (1948) from Maryland, Groskin(1950) from Pennsylvania,Potter (1970) from North Carolina, and Hauser (1973) also from North Carolina.
    [Show full text]
  • Wildland Fire in Ecosystems: Effects of Fire on Fauna
    United States Department of Agriculture Wildland Fire in Forest Service Rocky Mountain Ecosystems Research Station General Technical Report RMRS-GTR-42- volume 1 Effects of Fire on Fauna January 2000 Abstract _____________________________________ Smith, Jane Kapler, ed. 2000. Wildland fire in ecosystems: effects of fire on fauna. Gen. Tech. Rep. RMRS-GTR-42-vol. 1. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 83 p. Fires affect animals mainly through effects on their habitat. Fires often cause short-term increases in wildlife foods that contribute to increases in populations of some animals. These increases are moderated by the animals’ ability to thrive in the altered, often simplified, structure of the postfire environment. The extent of fire effects on animal communities generally depends on the extent of change in habitat structure and species composition caused by fire. Stand-replacement fires usually cause greater changes in the faunal communities of forests than in those of grasslands. Within forests, stand- replacement fires usually alter the animal community more dramatically than understory fires. Animal species are adapted to survive the pattern of fire frequency, season, size, severity, and uniformity that characterized their habitat in presettlement times. When fire frequency increases or decreases substantially or fire severity changes from presettlement patterns, habitat for many animal species declines. Keywords: fire effects, fire management, fire regime, habitat, succession, wildlife The volumes in “The Rainbow Series” will be published during the year 2000. To order, check the box or boxes below, fill in the address form, and send to the mailing address listed below.
    [Show full text]
  • GRAY CATBIRDS by Mike Scully
    GRAY CATBIRDS By Mike Scully (This article first appeared in the August 2010 SAAS newsletter.) It is interesting how different cultures can evolve quite different perceptions of the same bird. The Gray Catbird (Dumetella carolinensis), for example, is seemingly one of our more descriptively named species. Their common call does indeed bring to mind the mewing of a domestic cat, but only to those familiar with cats. Arthur C. Bent, in his epochal work, “Life Histories of North American Birds,” states that the Chippewa people of the American Midwest called this species “the bird that cries with grief.” Bent puzzled in print how the Chippewa could find the pleasant song of the catbird mournful. I believe they were referring not to the song, but to the distinctive call. It can come as a minor paradigm shift when one realizes that the plaintive call of this species does indeed possess a dirge-like quality. Gray Catbird perched on American Beautyberry. Photo by Lora Reynolds. Certainly the catbird was familiar to many of the original inhabitants of North America, much as it remains today; an attractive gray bird, slipping low between brush tangles, the frequency of its songs and calls belying any impression of secrecy. The Gray Catbird possesses two attributes that doubtless help it succeed in human-altered landscapes; it prefers dense edge and early successional habitats, and it possesses a faculty for recognizing and rejecting the eggs of the Brown-headed Cowbird. The present breeding range includes the majority of North America, but they are absent from the Far North, the Florida Peninsula, much of the Southwest, the Great Basin and our Pacific Coast.
    [Show full text]
  • Anting Behavior by the White-Bearded Manakin (Manacus Manacus, Pipridae): an Example of Functional Interaction in a Frugivorous Lekking Bird
    Biota Neotrop., vol. 10, no. 4 Anting behavior by the White-bearded Manakin (Manacus manacus, Pipridae): an example of functional interaction in a frugivorous lekking bird César Cestari1,2 1Departamento de Zoologia, Programa de Pós-graduação em Zoologia, Universidade Estadual Paulista “Júlio de Mesquita Filho” – UNESP, Campus de Rio Claro, CEP 13506-900, Rio Claro, SP, Brasil 2Corresponding author: César Cestari, e-mail: [email protected] CESTARI, C. Anting behavior by the White-bearded Manakin (Manacus manacus, Pipridae): an example of functional interaction in a frugivorous lekking bird. Biota Neotrop. 10(4): http://www.biotaneotropica.org. br/v10n4/en/abstract?short-communication+bn02110042010. Abstract: Behavioral studies of birds have reported several functions for active anting. Maintenance of plumage and prevention from ectoparasites are some examples. In this context, anting by males may be of particular importance in a classical lek mating system, where male-male competition is common and individuals with higher fitness may be more successful at attracting of females. In the present note, I describe the anting behavior of White-bearded Manakin (Manacus manacus) and I relate it to lek breeding and feeding (frugivory) habits of the species. Males used up to seven Solenopsis sp. ants. They rubbed each small ant from 4 to 31 times on undertail feathers until the ants were degraded; ants were not eaten. Males then searched for a new ant in the court. Seeds discarded by males on their individual display courts attract herbivorous ants that are used for anting as a way to maintain feathers and fitness. I hypothesize that anting in White-bearded Manakin may increase the probability of males to attract females to their display courts.
    [Show full text]
  • Records of Anting in Washington and Oregon
    28Washington Birds 11:28-34 (2011)Wiles and McAllister RECORDS Of anting by biRDS in WaShingtOn anD OREgOn Gary J. Wiles Washington Department of Fish and Wildlife 600 Capitol Way North, Olympia, Washington 98501 [email protected] Kelly R. McAllister 3903 Foxhall Drive NE, Olympia, Washington 98516 [email protected] Anting is a widespread but infrequently observed stereotypic behavior noted in more than 200 bird species, the vast majority of which are pas- serines (Chisholm 1959, Simmons 1966, 1985, Craig 1999). The behavior occurs in passive and active forms (Simmons 1985). In passive anting, birds spread themselves over an ant source and allow ants to crawl through their plumage. During active anting, ants are gathered and crushed in the bill and deliberately rubbed through the plumage using preening- like motions. In this form, other objects such as millipedes, other insects, snails, fruit, flowers, other plant materials, and mothballs are occasionally substituted for ants (Whitaker 1957, Simmons 1966, Clark et al. 1990, VanderWerf 2005). Anting involves the application of the defensive secre- tions (i.e., formic acid or repugnant anal fluid) of worker ants or other aromatic chemical compounds to the feathers or skin of a bird. The purpose of anting remains unclear. Hypothesized functions include soothing irritated skin associated with feather emergence during molt, general feather maintenance, repelling ectoparasites, inhibiting fungal or bacterial growth, food preparation by removing distasteful sub- stances from prey, and pleasurable sensory stimulation (Simmons 1966, 1985, Potter and Hauser 1974, Ehrlich et al. 1986). Experimental evidence from a few species supports that anting is conducted most often during molting (Lunt et al.
    [Show full text]
  • Pre-Lesson Plan
    Pre-Lesson Plan Prior to taking part in the Winged Migration program at Tommy Thompson Park it is recommended that you complete the following lessons to familiarize your students with some of the birds they might see and some of the concepts they will learn during their field trip. The lessons can easily be integrated into your Science, Language Arts, Social Studies and Physical Education programs. Part 1: Amazing Birds As a class, read the provided “Wanted” posters. The posters depict a very small sampling of some of the amazing feats and features of birds. To complement these readings, display the following websites so that students can see some of these birds “up close.” Common Loon http://www.schollphoto.com/gallery/thumbnails.php?album=1 Black-Capped Chickadee http://sdakotabirds.com/species_photos/black_capped_chickadee.htm Ruby-Throated Hummingbird http://www.surfbirds.com/cgi-bin/gallery/search2.cgi?species=Ruby- throated%20Hummingbird Downy Woodpecker http://www.pbase.com/billko/downy_woodpecker Great Horned Owl www.owling.com/Great_Horned.htm When you visit Tommy Thompson Park, you may see chickadees, hummingbirds, and woodpeckers. These birds all breed in southern Ontario. However, you probably will not see a Great Horned Owl, because this specific bird is usually flying around at night. Below is a list of some other birds students might see when they visit Tommy Thompson Park. Have them chose one bird each and write a “Wanted” poster for it, focusing on a cool fact about that bird. Some web sites that will help them get started
    [Show full text]
  • How Birds Combat Ectoparasites
    The Open Ornithology Journal, 2010, 3, 41-71 41 Open Access How Birds Combat Ectoparasites Dale H. Clayton*,1, Jennifer A. H. Koop1, Christopher W. Harbison1,2, Brett R. Moyer1,3 and Sarah E. Bush1,4 1Department of Biology, University of Utah, Salt Lake City, UT 84112, USA; 2Current address: Biology Department, Siena College, Loudonville, NY, 12211, USA; 3Current address: Providence Day School, Charlotte, NC, 28270, USA; 4Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, Kansas 66045, USA Abstract: Birds are plagued by an impressive diversity of ectoparasites, ranging from feather-feeding lice, to feather- degrading bacteria. Many of these ectoparasites have severe negative effects on host fitness. It is therefore not surprising that selection on birds has favored a variety of possible adaptations for dealing with ectoparasites. The functional signifi- cance of some of these defenses has been well documented. Others have barely been studied, much less tested rigorously. In this article we review the evidence - or lack thereof - for many of the purported mechanisms birds have for dealing with ectoparasites. We concentrate on features of the plumage and its components, as well as anti-parasite behaviors. In some cases, we present original data from our own recent work. We make recommendations for future studies that could im- prove our understanding of this poorly known aspect of avian biology. Keywords: Grooming, preening, dusting, sunning, molt, oil, anting, fumigation. INTRODUCTION 2) Mites and ticks (Acari): many families [6-9]. As a class, birds (Aves) are the most thoroughly studied 3) Leeches: four families [10]. group of organisms on earth.
    [Show full text]
  • A Resume of Anting, with Particular Reference to A
    A RESUMI? OF ANTING, WITH PARTICULAR REFERENCE TO A CAPTIVE ORCHARD ORIOLE BY LOVIE M. WHITAKER INCE Audubon (1831:7) wrote of Wild Turkeys (Meleugris gallopuvo) S rolling in “deserted” ants ’ nests (Allen, 1946)) and Gosse (1847:225) reported Tinkling Grackles (Q uiscalus niger) in nature anointing themselves with lime fruits (Chisholm, 1944), an extensive literature on the anting ac- tivities of birds has slowly evolved. The complete bibliography of anting probably would approximate 250 items, yet the purpose of the behavior re- mains unexplained. Anting may be defined as the application of foreign substances to the plum- age and possibly to the skin. These substances may be applied with the bill, or the bird may “bathe” or posture among thronging ants which invest its plumage. Among numerous explanations for the use of ants are these: (1) the bird wipes off ant acid, preparatory to eating the ant; (2) ants prey upon, and their acids repel, ectoparasites; (3) ant acids have tonic or medicinal effects on the skin of birds; (4) odor of ants attracts birds, much as dogs are drawn to ordure or cats to catnip; (5) an t s intoxicate the bird or give it unique pleasurable effects; (6) ant substances on the plumage, irradiated by sun- light, produce vitamin D, which the bird ingests during preening; (7) the bird enjoys the movement of insects in its plumage; (8) ant substances pre- vent over-drying of feather oils or give a proper surface film condition to the feathers. For discussions of these possibilities, see Chisholm (1944, 1948: 163-175)) Adlersparre (1936)) IJ zen d oorn (1952~)) Eichler (1936~)) Klein- Schmidt (in Stresemann, 1935b), L ane (1951:163-177)) Kelso (1946, 1949, 1950a, 19506, 1955 :37-39)) Brackbill (1948)) G6roudet (1948), Groskin (1950)) and McAtee (1938).
    [Show full text]