Increasing 3D Printer Throughput with Automated Part Removal IN PARTIAL FULFILLMENT OF A MAJOR QUALIFYING PROJECT WORCESTER POLYTECHNIC INSTITUTE Submitted by: Nicholas Colucci (ECE) Noah Donald (ECE/ME) Alexander Johnson (ME) Andrew Kacherski (ME) Dante Mauriello (ME) Owen Smallcomb (ME) Project Advisors: Prof. Pradeep Radhakrishnan (ME) Prof. Joseph Stabile (ECE) August 2019 – May 2020
[email protected] This report represents the work of WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review. For more information about the projects program at WPI, please see http://www.wpi.edu/academics/ugradstudies/project-learning.html Copyright Notice The work presented in this document is copyrighted by students Nicholas Colucci, Noah Donald, Alexander Johnson, Andrew Kacherski, Dante Mauriello, and Owen Smallcomb and Professors Pradeep Radhakrishnan and Joe Stabile (Department of Mechanical Engineering, Worcester Polytechnic Institute). 1 Abstract A 3D printer is a powerful machine that allows for rapid realization of designs. Reducing the downtime between print cycles is essential for use in mass production or when multiple users are using the same printer. Presently, an operator manually removes the print from the machine and starts a new print. This project is an improved system from a previous Major Qualifying Project (MQP) to automate this process and eliminate downtime. The system consists of modular sub-systems, making it compatible with any i3 style printer. In the case of a printer with a removable bed, our system removes parts by lifting the bed from the printer and feeding it through a curved track that causes the bed to bend.