Report 2013–1230

Total Page:16

File Type:pdf, Size:1020Kb

Report 2013–1230 Prepared in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon Geomorphology and Groundwater Origin of Amphitheater- Shaped Gullies at Fort Gordon, Georgia, 2010–2012 Open-File Report 2013–1230 U.S. Department of the Interior U.S. Geological Survey Cover. One of the seven amphitheater-shaped gullies observed at Fort Gordon caused principally by groundwater sapping. To summarize, the sandy surficial sediments and shallow water table were recharged, groundwater flowed laterally along the contact with low permeability marl (yellow-red clay in middle of photograph), and seepage occurred where this geologic contact was exposed at land surface. As seepage continued, either in response to sporadic increases in recharge or con- tinuous, longer-term increases in recharge, sapping moved headward, induced landslides, and resulted in the amphitheater- shaped gully. Photograph by James E. Landmeyer, U.S. Geological Survey. Geomorphology and Groundwater Origin of Amphitheater-Shaped Gullies at Fort Gordon, Georgia, 2010–2012 By James E. Landmeyer and John B. Wellborn Prepared in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon Open-File Report 2013–1230 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Landmeyer, J.E., and Wellborn, J.B., 2013, Geomorphology and groundwater origin of amphitheater-shaped gullies at Fort Gordon, Georgia, 2010–2012: U.S. Geological Survey Open-File Report 2013–1230, 19 p. http://pubs.usgs.gov/ of/2013/1230/. iii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................1 Purpose and Scope ..............................................................................................................................5 Description of the Study Area ............................................................................................................5 Geology ..........................................................................................................................................5 Hydrogeology................................................................................................................................5 Study Design ...................................................................................................................................................5 Geomorphology of Amphitheater-Shaped Gullies at Fort Gordon .........................................................8 Range Road and 8th Street Gully .........................................................................................................8 9th Avenue and 10th Street Gullies .....................................................................................................10 13th Avenue and 15th Street Gully ......................................................................................................12 Range Road and North Range Road Gullies ...................................................................................12 Amphitheater-Shaped Gully Formation and Groundwater Sapping at Fort Gordon .........................14 Potential Preservation of Amphitheater-Shaped Gullies at Fort Gordon .................................................16 Assumptions and Limitations .....................................................................................................................17 Summary........................................................................................................................................................17 Acknowledgments .......................................................................................................................................17 References Cited..........................................................................................................................................17 Figures 1. Photograph showing erosion of surficial soil by rain-drop impact near the cantonment area, Fort Gordon, Georgia, 2012 .........................................................................2 2. Photograph showing amphitheater-shaped gullies caused by relic groundwater seepage, Colorado Plateau, United States ...............................................................................3 3. Photograph showing amphitheater-shaped gully caused by past groundwater seepage, Inner Coastal Plain sediments, Peachtree Rock Heritage Area, Lexington County, South Carolina .................................................................................................................4 4. Photograph showing amphitheater-shaped gully caused by past and current groundwater seepage, Inner Coastal Plain sediments, west of McBee, South Carolina ...............................................................................................................................4 5. Map showing location of Fort Gordon and the generalized locations of the amphitheater-shaped gullies, Richmond, Columbia, Jefferson, and McDuffie Counties, Georgia, 2012 ...............................................................................................................6 6. Generalized correlation of Coastal Plain geologic and hydrogeologic units in east-central Georgia ....................................................................................................................7 7. Map showing location of amphitheater-shaped gully (Gully 1) near Range Road and 8th Street, Fort Gordon, Georgia ..........................................................................................9 8. Aerial photograph showing the amphitheater-shaped gully (Gully 1) near Range Road and 8th Street, Fort Gordon, Georgia ..............................................................................10 9. Map showing location of amphitheater-shaped gullies (Gully 2) near 9th Avenue and 10th Street, Fort Gordon, Georgia ......................................................................................11 10. Aerial photograph showing the amphitheater-shaped gullies (Gully 2) near 9th Avenue and 10th Street, Fort Gordon, Georgia .......................................................................12 iv 11. Map showing location of amphitheater-shaped gully (Gully 3) near 13th Avenue and 15th Street, Fort Gordon, Georgia ................................................................13 12. Aerial photograph showing the amphitheater-shaped gully (Gully 3) near 13th Avenue and 15th Street, Fort Gordon, Georgia ................................................................14 13. Map showing location of amphitheater-shaped gullies (Gullies 4–7) near Range Road and North Range Road, Fort Gordon, Georgia ................................................15 14. Aerial photograph showing the amphitheater-shaped gullies (Gullies 4–7) near Range Road and North Range Road, Fort Gordon, Georgia .......................................16 Table 1. Identification, location, latitude, longitude, and measurement of topographic features related to erosion at each of seven amphitheater-shaped gullies, Fort Gordon, Georgia, 2010–2012. ...............................................................................................8 v Conversion Factors Inch/Pound to SI Multiply By To obtain Length inch (in.) 2.54 centimeter (cm) inch (in.) 25.4 millimeter (mm) foot (ft) 0.3048 meter (m) mile (mi) 1.609 kilometer (km) Area acre 4,047 square meter (m2) acre 43,560 square feet (ft2) Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83). Vertical coordinate information is referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29). Altitude, as used in this report, refers to distance above the vertical datum. Abbreviations BP Before present DOD Department of Defense DOI Department of the Interior GIS geographic information system GPS global positioning system LiDAR Light Detection and Ranging NRCS Natural Resources Conservation Service SC South Carolina SCS Soil Conservation Service SES Soil Erosion Service SWCD Soil and Water Conservation District U.S. United States USDA U.S. Department of Agriculture USGS U.S. Geological Survey Geomorphology and Groundwater Origin of Amphitheater- Shaped Gullies at Fort Gordon, Georgia, 2010–2012 By James E. Landmeyer
Recommended publications
  • Classifying Rivers - Three Stages of River Development
    Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion.
    [Show full text]
  • A Groundwater Sapping in Stream Piracy
    Darryll T. Pederson, Department of energy to the system as increased logic settings, such as in a delta, stream Geosciences, University of Nebraska, recharge causes groundwater levels to piracy is a cyclic event. The final act of Lincoln, NE 68588-0340, USA rise, accelerating stream piracy. stream piracy is likely a rapid event that should be reflected as such in the geo- INTRODUCTION logic record. Understanding the mecha- The term stream piracy brings to mind nisms for stream piracy can lead to bet- ABSTRACT an action of forcible taking, leaving the ter understanding of the geologic record. Stream piracy describes a water-diver- helpless and plundered river poorer for Recognition that stream piracy has sion event during which water from one the experience—a takeoff on stories of occurred in the past is commonly based stream is captured by another stream the pirates of old. In an ironic sense, on observations such as barbed tribu- with a lower base level. Its past occur- two schools of thought are claiming vil- taries, dry valleys, beheaded streams, rence is recognized by unusual patterns lain status. Lane (1899) thought the term and elbows of capture. A marked of drainage, changes in accumulating too violent and sudden, and he used change of composition of accumulating sediment, and cyclic patterns of sediment “stream capture” to describe a ground- sediment in deltas, sedimentary basins, deposition. Stream piracy has been re- water-sapping–driven event, which he terraces, and/or biotic distributions also ported on all time and size scales, but its envisioned to be less dramatic and to be may signify upstream piracy (Bishop, mechanisms are controversial.
    [Show full text]
  • Drainage Basin Morphology in the Central Coast Range of Oregon
    AN ABSTRACT OF THE THESIS OF WENDY ADAMS NIEM for the degree of MASTER OF SCIENCE in GEOGRAPHY presented on July 21, 1976 Title: DRAINAGE BASIN MORPHOLOGY IN THE CENTRAL COAST RANGE OF OREGON Abstract approved: Redacted for privacy Dr. James F. Lahey / The four major streams of the central Coast Range of Oregon are: the westward-flowing Siletz and Yaquina Rivers and the eastward-flowing Luckiamute and Marys Rivers. These fifth- and sixth-order streams conform to the laws of drain- age composition of R. E. Horton. The drainage densities and texture ratios calculated for these streams indicate coarse to medium texture compa- rable to basins in the Carboniferous sandstones of the Appalachian Plateau in Pennsylvania. Little variation in the values of these parameters occurs between basins on igneous rook and basins on sedimentary rock. The length of overland flow ranges from approximately i mile to i mile. Two thousand eight hundred twenty-five to 6,140 square feet are necessary to support one foot of channel in the central Coast Range. Maximum elevation in the area is 4,097 feet at Marys Peak which is the highest point in the Oregon Coast Range. The average elevation of summits in the thesis area is ap- proximately 1500 feet. The calculated relief ratios for the Siletz, Yaquina, Marys, and Luckiamute Rivers are compara- ble to relief ratios of streams on the Gulf and Atlantic coastal plains and on the Appalachian Piedmont. Coast Range streams respond quickly to increased rain- fall, and runoff is rapid. The Siletz has the largest an- nual discharge and the highest sustained discharge during the dry summer months.
    [Show full text]
  • THE EVOLUTION of KNICK-POINT BELT in a RIVER SECTION in HUANGGUOSHU Yang Hankui Li Po Karst Research Office of Guizhou Academy O
    IAH 21st Congress XARST HYOROGEOLOGY AND KARST ENVIRONMENT PROTECTION 10-15 October 1988 0U1LIN.CH1NA THE EVOLUTION OF KNICK-POINT BELT IN A RIVER SECTION IN HUANGGUOSHU Yang Hankui Li Po Karst Research Office of Guizhou Academy of Sciences, Guiyang, China THE NATURAL ENVIRONMENTAL FEATURES OF THE REGION This river section is part of the Dabang River which is a first-order tributary of the North Panjiang River. It is 8 km long, with the north end in Doupo and the south end in Hezuilai. There are 5 knick-points. Their total drop of water is 343 meters high. The whole area of Huangguoshu scenic spot is 600 km2. The regional topography spreads down from north to south, and at the same time becomes lower from its east and west sides to the river valley. The river section is located 685-102 3 m above the sea level, lowering down at a rate of 4.3% . Taking Huangguoshu knick-point as the dividing line, its upper reaches are in the géomorphologie form of shallowly-cut hilly valley, while its lower reaches take the shape of deeply-cut mountainous valley-. The top of each knick-point is a rather wide terrace from which waterfalls drop down, and the bottom is a valley. The géomorphologie form of the upper and lower parts of the Huangguoshu knick-point is entirely different from each other, and is regarded as a local datum plane of. erosion in a certain region. Generally, the present average annual temperature is 17 °C and the annual rain­ fall is mere than 1200 mm, and even reaches 1500 mm in its upper part of Luobie.
    [Show full text]
  • River Piracy Saraswati That Disappeared
    GENERAL I ARTICLE River Piracy Saraswati that Disappeared K S Valdiya The legendary river Saraswati, which flowed from the KSValdiya Himalaya and emptied finally into the Gulf of Kachchh, has is at Jawahadal Nehru vanished. Tectonic movements change river courses, behead Centre for Advanced streams and sometimes even make large rivers such as the Scientific Research, Bangalore. Saraswati disappear. Mighty River of Vedic Time There was this highly venerated river Saraswati flowing through Haryana, Marwar and Bahawalpur in Uttarapath and emptying itself in the GulfofKachchh, which has been described in glowing terms by the Rigveda. "Breaking through the mountain barrier", this "swift-flowing tempestuous river surpasses in majesty and might all other rivers" of the land of the pre-Mahabharat Vedic - Channel in Vedic time ---- Present channel Figure 1 (bottom leftJ ,­ Legendary Saraswati of the I I Vedic times was formed by ," ,I joining together of the \ Shatadru (SatlujJ and what \ I is today known as the \'" J Yamuna. The Aravall was r) ,..r not a highland but a thickly forested terrain sloping 150 km southwestwards. --------~-------- RESONANCE I May 1996 19 GENERAL I ARTICLE Figure 2 (bottom) Satel­ period. More than 1200 settlements, including many prosperous lite picture of the Haryana­ towns of the Harappan culture (4600 to 4100 years Before Pres ent Pun/ab region, showing the - BP) and ashrams ofrishis (sages) lay on the banks of this life-line disproportionately wide of the Vedic time. channels (with little or no water) abandoned by big rivers which have migrated Where has that great river gone? It is today represented by the to the east or west.
    [Show full text]
  • Groundwater Processes in Saharan Africa: Implications for Landscape Evolu- Tion in Arid Environments
    ÔØ ÅÒÙ×Ö ÔØ Groundwater processes in Saharan Africa: Implications for landscape evolu- tion in arid environments Abotalib Z. Abotalib, Mohamed Sultan, Racha Elkadiri PII: S0012-8252(16)30049-6 DOI: doi: 10.1016/j.earscirev.2016.03.004 Reference: EARTH 2237 To appear in: Earth Science Reviews Received date: 18 September 2015 Revised date: 3 February 2016 Accepted date: 11 March 2016 Please cite this article as: Abotalib, Abotalib Z., Sultan, Mohamed, Elkadiri, Racha, Groundwater processes in Saharan Africa: Implications for landscape evolution in arid environments, Earth Science Reviews (2016), doi: 10.1016/j.earscirev.2016.03.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Table 1 Groundwater processes in Saharan Africa: Implications for landscape evolution in arid environments Abotalib Z. Abotalib,a, b Mohamed Sultan,a Racha Elkadiria,c (a) Department of Geosciences, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, Michigan 4900 8, USA. (b) Department of Geology, National Authority for Remote Sensing and Space Sciences, Cairo 1564, Egypt. (c) Department of Geosciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA. Corresponding Author: Mohamed Sultan, Department of Geosciences, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, Michigan 49008, USA.
    [Show full text]
  • Formation of Waterfalls |​​Sample Answer
    Formation of Waterfalls | Sample answer ​ ​ 2017 Q3.B Examine the impact of the processes of erosion on the formation of one fluvial landform A fluvial landform of erosion is a waterfall. A waterfall is a vertical drip in the youthful stage of a river over which a river falls, usually where a band of soft rock e.g limestone lies downstream from a band of hard rock e.g granite. The process of hydraulic action is very active in forming a waterfall. This is the sheer force of the moving water against the land. It begins as rapids on the river floor which erodes the river’s banks and bed to give rise to the vertical descent of the river’s course. As the river erodes vertically it erodes the soft rock much quicker than the harder rock which leads to differential erosion. The water in the youthful stage is very fast flowing due to the steeper gradient which then allows the water to carry rocks. This makes the process of abrasion active, as the moving rocks scrape and smoothe the river channel. The leads to the increase in the depth of the rapids and the erosive power of hydraulic action. As differential erosion continues, a small waterfall may be formed and seen within the river. The falling water then erodes a deep hole called a plunge pool at the base of the river, as the water is fast flowing and erosive because it is not hindered by friction. The river’s load is word down itself within the plunge pool due to the process of attrition, as the river’s load hits of each other, the riverbed and the back wall.
    [Show full text]
  • Component – I (A) Personal Details Role Name Affiliation Principal
    Component – I (A) Personal Details Role Name Affiliation Principal Investigator Prof. Masood Ahsan Jamia Millia Islamia, New Siddiqui Delhi Paper Coordinator, if any Dr.Sayed Zaheen Alam Department of Geography Dyal Singh College University of Delhi Content Writer/Author (CW) Dr. Anshu Department of Geography Kirori Mal College University of Delhi Content Reviewer (CR) Dr.Sayed Zaheen Alam Department of Geography Dyal Singh College University of Delhi Language Editor (LE) Component-I (B) - Description of Module Items Description of Module Subject Name Geography Paper Name Geomorphology Module Name/Title Drainage Pattern Module Id Geo-20 Pre-requisites Objectives To comprehend the concept of Drainage Basin; Drainage patterns on basis of Empirical and Genetic classification; Channel Patterns Keywords Watershed, Basin, Antecedent, Superposed, Meander, Braid DRAINAGE PATTERN Dr. Anshu, Associate Professor, Department of Geography, Kirori Mal College, University of Delhi. 1. Drainage Basin The entire area that provides overland flow, stream flow and ground water flow to a particular stream is identified as the Drainage Basin or watershed of that stream. The basin consists of the streams’valley bottom, valley sides and interfluves that drain towards the valley. Drainage basin terminates at a drainage divide that is the line of separation between run off that flows in direction of one drainage basin and runoff that goes towards the adjoining basin. Drainage basin of the principal river will comprise smaller drainage basins with all its tributary streams and therefore the larger basins include hierarch of smaller tributary basins. 2. Drainage Pattern and Structural Relationship In a particular drainage basin, the streams may flow in a specific arrangement which is termed as drainage pattern.
    [Show full text]
  • Melynda K. May. PATTERN and PROCESS of HEADWARD EROSION in SALT MARSH TIDAL CREEKS
    Melynda K. May. PATTERN AND PROCESS OF HEADWARD EROSION IN SALT MARSH TIDAL CREEKS. (Under the direction of Mark M. Brinson) Department of Biology. December 2002. Under conditions of rising sea level and low sedimentation rates, tidal creeks erode headward. I described the physical, soil, and vegetation characteristics from tidal creek channels to the upland boundary of marshes. Based on the variability in this pattern, I identified three tidal creek classes that were statistically verified using discriminant function analysis. Creek class appears to be determined by the presence and thickness of an organic rich layer in the marsh. Creeks eroding into thick organic rich deposits were classified as strong wasting terrace (ST) creeks. ST creeks were generally found in marshes with poor drainage due to the low slope of the marsh surface. The low slope may have allowed water to pond on the surface of the marsh creating the persistent anoxic conditions needed to accumulate organic matter. ST creeks probably erode headward at a relatively high rate. Creeks eroding into thin organic rich deposits were classified as weak wasting terrace (WT) creeks, and were generally found in marshes with an intermediate slope and likely an intermediate drainage regime. WT creeks probably erode headward at an intermediate rate. Creeks eroding into marshes with no organic rich deposits were classified as no wasting terrace (NT) creeks. NT creeks were generally found in marshes with relatively good drainage due to the high slope of the marsh surface. NT creeks probably erode headward at a relatively slow rate. Slope appears to be the master variable in control of the pattern and process of headwater erosion.
    [Show full text]
  • Importance of Groundwater in Propagating
    CRevolution 2: Origin and Evolution of the Colorado River System II themed issue Crossey et al. Importance of groundwater in propagating downward integration of the 6–5 Ma Colorado River system: Geochemistry of springs, travertines, and lacustrine carbonates of the Grand Canyon region over the past 12 Ma L.C. Crossey1, K.E. Karlstrom1, R. Dorsey2, J. Pearce3, E. Wan4, L.S. Beard5, Y. Asmerom1, V. Polyak1, R.S. Crow1, A. Cohen6, J. Bright6, and M.E. Pecha6 1Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, 87131, USA 2Department of Geological Sciences, 1272 University of Oregon, Eugene, Oregon 97403-1272, USA 3U.S. Forest Service, Grand Mesa, Uncompahgre and Gunnison National Forests, Paonia Ranger District, 403 North Rio Grande Avenue, P.O. Box 1030, Paonia, Colorado 81428, USA 4U.S. Geological Survey, 345 Middlefield Road, MS977, Menlo Park, California 94025, USA 5U.S. Geological Survey, 2255 North Gemini Drive, Flagstaff, Arizona 86001, USA 6Department of Geosciences, The University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721, USA ABSTRACT travertines, suggesting a long-lived spring- basins. Bouse carbonates display a southward fed lake/marsh system sourced from western trend toward less radiogenic 87Sr/86Sr values, We applied multiple geochemical tracers Colorado Plateau groundwater. Progressive higher [Sr], and heavier d18O that we attribute (87Sr/86Sr, [Sr], d13C, and d18O) to waters and up-section decrease in 87Sr/86Sr and d13C and to an increased proportion of Colorado River carbonates of the lower Colorado River sys- increase in d18O in the uppermost 50 m of the water through time plus increased evapora- tem to evaluate its paleohydrology over the Hualapai Limestone indicate an increase in tion from north to south.
    [Show full text]
  • How Rivers Get Across Mountains: Transverse Drainages
    How Rivers Get Across Mountains: Transverse Drainages Phillip H. Larson,* Norman Meek,y John Douglass,z Ronald I. Dorn,x and Yeong Bae Seong{ *Department of Geography, Minnesota State University yDepartment of Geography and Environmental Studies, California State University, San Bernardino zDepartment of Geography, Paradise Valley Community College xSchool of Geographical Sciences and Urban Planning, Arizona State University {Department of Geography Education, Korea University Although mountains represent a barrier to the flow of liquid water across our planet and an Earth of impenetra- ble mountains would have produced a very different geography, many rivers do cross mountain ranges. These transverse drainages cross mountains through one of four general mechanisms: antecedence—the river maintains its course during mountain building (orogeny); superimposition—a river erodes across buried bedrock atop erod- ible sediment or sedimentary rock, providing a route across what later becomes an exhumed mountain range; piracy or capture—where a steeper gradient path captures a lower gradient drainage across a low relief interfluve; and overflow—a basin fills with sediment and water, ultimately breaching the lowest sill to create a new river. This article reviews research that aids in identifying the mechanism responsible for a transverse drainage, notes a major misconception about the power of headward eroding streams that has dogged scholarship, and examines the transverse drainage at the Grand Canyon in Arizona. Key Words: antecedence, overflow,
    [Show full text]
  • The Role of Weathering in the Formation of Bedrock Valleys on Earth and Mars: a Numerical Modeling Investigation Jon D
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, E11007, doi:10.1029/2011JE003821, 2011 The role of weathering in the formation of bedrock valleys on Earth and Mars: A numerical modeling investigation Jon D. Pelletier1 and Victor R. Baker1 Received 23 February 2011; revised 15 August 2011; accepted 8 September 2011; published 19 November 2011. [1] Numerical models of bedrock valley development generally do not include weathering explicitly. Nevertheless, weathering is an essential process that acts in concert with the transport of loose debris by seepage and runoff to form many bedrock valleys. Here we propose a numerical model for bedrock valley development that explicitly distinguishes weathering and the transport of loose debris and is capable of forming bedrock valleys similar to those observed in nature. In the model, weathering rates are assumed to increase with increasing water availability, a relationship that data suggest likely applies in many water‐limited environments. We compare and contrast the model results for cases in which weathering is the result of runoff‐induced infiltration versus cases in which it is the result of seepage‐ or subsurface‐driven flow. The surface flow–driven version of our model represents an alternative to the stream‐power model that explicitly shows how rates of both weathering and the transport of loose debris are related to topography or water flow. The subsurface flow–driven version of our model can be solved analytically using the linearized Boussinesq approximation. In such cases the model predicts theater‐headed valleys that are parabolic in planform, a prediction broadly consistent with the observed shapes of theater‐headed bedrock valleys on Mars that have been attributed to a combination of seepage weathering and episodic removal of weathered debris by runoff, seepage, and/or spring discharge.
    [Show full text]