Taxonomy, Ecology, and Behavior of the Kleptoplastic Sea Slug Elysia Papillosa William Alan Gowacki University of South Florida, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomy, Ecology, and Behavior of the Kleptoplastic Sea Slug Elysia Papillosa William Alan Gowacki University of South Florida, Gowacki@Mail.Usf.Edu University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School March 2017 Taxonomy, Ecology, and Behavior of the Kleptoplastic Sea Slug Elysia papillosa William Alan Gowacki University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Other Education Commons Scholar Commons Citation Gowacki, William Alan, "Taxonomy, Ecology, and Behavior of the Kleptoplastic Sea Slug Elysia papillosa" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6848 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Taxonomy, Ecology, and Behavior of the Kleptoplastic Sea Slug Elysia papillosa by William Alan Gowacki A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Integrative Biology with a concentration in Ecology & Evolution Department of Integrative Biology College of Arts & Sciences University of South Florida Major Professor: Susan S. Bell, Ph.D. Michael L. Middlebrooks, Ph.D. Bradford J. Gemmell, Ph.D. Date of Approval: February 17, 2017 Keywords: Chloroplast sequestration, Sacoglossa, Rhizophytic algae, Host Preference, Phototaxy Copyright © 2017, William A. Gowacki DEDICATION This thesis is dedicated to my entire family, especially my parents, Alicia M. Gowacki and William C. Gowacki. Without their support, guidance, and love, I would not be where I am today. It is also dedicated to the many doctors and nurses responsible for me surviving two battles with cancer. Finally, I also dedicate this thesis to my bone marrow donor, George, whose selfless donation provided me with a second chance at life. ACKNOWLEDGMENTS I would like to thank my major professor, Dr. Susan S. Bell, for her guidance throughout my graduate career, and my committee members, Dr. Michael L. Middlebrooks and Dr. Bradford J. Gemmell, for their valued assistance and guidance. I am also greatly appreciative of Dr. Sidney K. Pierce for providing me with the means to conduct the research presented in this thesis, as well as his invaluable mentorship. My thanks to my labmates, Elizabeth A. Salewski, Shannon V. Grogan, Derrick S. Hudson, and Erin P. Kiskaddon for their support and friendship. I also wish thank Edward Haller for his assistance in obtaining scanning electron micrographs of radular teeth. Thanks also to Ashley K. Peiffer for her assistance in data collection and friendship. Finally, this research would not have been possible without the support of a private donor, who wishes to remain anonymous. TABLE OF CONTENTS List of Figures ............................................................................................................................ iii Abstract....................................................................................................................................... v Chapter One: Correcting Taxonomic Confusion for the Kleptoplastic Sea Slug Elysia papillosa Verrill (1901) ............................................................................................................................... 1 Introduction ..................................................................................................................... 1 Materials and Methods .................................................................................................... 3 Study Site ............................................................................................................ 3 Slug Collection and Maintenance ......................................................................... 3 Means of Comparison with Previous Descriptions ................................................ 4 Dorsal Surface Vessel Morphology ...................................................................... 4 Radular Tooth Morphology ................................................................................... 5 Egg Mass Morphology ......................................................................................... 5 Results ............................................................................................................................ 6 Gross Morphology ................................................................................................ 6 Dorsal Surface Vessel Morphology ...................................................................... 7 Gametolytic Vesicles ............................................................................................ 8 Radular Teeth ...................................................................................................... 8 Egg Mass Morphology and Development ............................................................. 9 Swimming Behavior ........................................................................................... 10 Discussion ..................................................................................................................... 10 References .................................................................................................................... 11 Chapter Two: Ecology and Behavior of Elysia papillosa ............................................................ 23 Introduction ................................................................................................................... 23 Materials and Methods .................................................................................................. 26 Seasonality and Abundance Collections ............................................................ 26 Host Preference Collections ............................................................................... 27 Phototactic Behavior .......................................................................................... 29 Results .......................................................................................................................... 30 Seasonal Abundance ......................................................................................... 30 Algal Host Preference ........................................................................................ 31 Phototaxis .......................................................................................................... 32 Discussion ..................................................................................................................... 32 References .................................................................................................................... 35 Appendix A: Diagram of Phototaxis Chamber ........................................................................... 47 Appendix B: Abundance of Elysia papillosa as a Function of Sea Temperature ........................ 48 Appendix C: Permission to reproduce figures from Ortea et al. (2005) ...................................... 49 i Appendix D: Permission to reproduce figures from Marcus and Marcus (1967) and Marcus (1980) ...................................................................................................................................... 51 ii LIST OF FIGURES Figure 1.1: Tarpon Springs slug on the alga Penicillus lamourouxii ........................................... 14 Figure 1.2: Drawing of Elysia papillosa accompanying the original species description (Verrill 1901) ............................................................................................................ 15 Figure 1.3: Ortea et al.’s (2005) drawing of the head region of “Elysia patina” .......................... 16 Figure 1.4: Dorsal view drawings of (A) Elysia papillosa (Marcus 1980), and (B) Elysia patina (Marcus 1980) ............................................................................................... 17 Figure 1.5: DSVM of Tarpon Springs slug ................................................................................. 18 Figure 1.6: Dorsal view drawings of (A) “Elysia papillosa” and (B) “Elysia patina”, from Ortea et al. (2005).................................................................................................... 19 Figure 1.7: SEM images of (A) the entire radula of the Tarpon Springs slug (scale bar = 50 µm), and (B) a close up of a single radular tooth of the Tarpon Springs slug (scale bar = 15 µm) .......................................................................................... 20 Figure 1.8: Side-by-side comparison of the drawings of the radular teeth for (A) Elysia papillosa (Marcus and Marcus 1967), (B) “Elysia patina” (Ortea et al. 2005), (C) Elysia patina (Marcus 1980), and (D) “Elysia papillosa (Ortea et al. 2005) ......... 21 Figure 1.9: Newly deposited egg mass of Tarpon Springs slug ................................................. 22 Figure 2.1: Abundance of Elysia papillosa from October 2014 to September 2015 ................... 41 Figure 2.2: Mean algal biomass (g dry weight m-2) for the three algal species, Penicillus capitatus (solid line), Penicillus lamourouxii (dashed line), and Halimeda incrassata (dotted line) from October 2014 to September 2015 ............................... 42 Figure 2.3: Mean number of Elysia papillosa m-2 as a function of algal biomass (g dry weight m-2) for (A) total combined algae, (B) Penicillus capitatus, (C) Penicillus lamourouxii,
Recommended publications
  • Kleptoplast Photoacclimation State Modulates the Photobehaviour of the Solar-Powered Sea Slug Elysia Viridis
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb180463. doi:10.1242/jeb.180463 SHORT COMMUNICATION Kleptoplast photoacclimation state modulates the photobehaviour of the solar-powered sea slug Elysia viridis Paulo Cartaxana1, Luca Morelli1,2, Carla Quintaneiro1, Gonçalo Calado3, Ricardo Calado1 and Sónia Cruz1,* ABSTRACT light intensities, possibly as a strategy to prevent the premature loss Some sacoglossan sea slugs incorporate intracellular functional of kleptoplast photosynthetic function (Weaver and Clark, 1981; algal chloroplasts (kleptoplasty) for periods ranging from a few days Cruz et al., 2013). A distinguishable behaviour in response to light to several months. Whether this association modulates the has been recorded in Elysia timida: a change in the position of its photobehaviour of solar-powered sea slugs is unknown. In this lateral folds (parapodia) from a closed position to a spread, opened study, the long-term kleptoplast retention species Elysia viridis leaf-like posture under lower irradiance and the opposite behaviour showed avoidance of dark independently of light acclimation state. under high light levels (Rahat and Monselise, 1979; Jesus et al., In contrast, Placida dendritica, which shows non-functional retention 2010; Schmitt and Wägele, 2011). This behaviour in response to of kleptoplasts, showed no preference over dark, low or high light. light changes was only recorded for this species and has been assumed to be linked to long-term retention of kleptoplasts (Schmitt High light-acclimated (HLac) E. viridis showed a higher preference for and Wägele, 2011). high light than low light-acclimated (LLac) conspecifics. The position of the lateral folds (parapodia) was modulated by irradiance, with In this study, we determine whether the photobehaviour of increasing light levels leading to a closure of parapodia and protection the solar-powered sea slug Elysia viridis is linked to the of kleptoplasts from high light exposure.
    [Show full text]
  • Opisthobranchia : Sacoglossa)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository A NEW SPECIES OF CYERCE BERGH, 1871, C. Title KIKUTAROBABAI, FROM YORON ISLAND (OPISTHOBRANCHIA : SACOGLOSSA) Author(s) Hamatani, Iwao PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1976), 23(3-5): 283-288 Issue Date 1976-10-30 URL http://hdl.handle.net/2433/175935 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University A NEW SPECIES OF CYERCE BERGH, 1871, C. KIKUTAROBABAI, FROM YORON ISLAND (OPISTHOBRANCHIA: SACOGLOSSA) l) IwAo HAMATANI Tennoji Senior High School of Osaka Kyoiku University With Text-figures 1-2 and Plate I While sacoglossan opisthobranchs inhabiting caulerpan colonies were searched for in Yoron Island (27°1 'Nand 128°24'E) of the Amami Islands from March 28 to AprilS, 1975, a pretty species, but unknown to the author at that time, was discovered. Later, the detailed examination of this animal revealed that it represented clearly a new species of the genus Cyerce Bergh, 1871 (=Lobiancoia Trinchese, 1881) of the family Caliphyllidae. As only a single species of this genus, C. nigricans (Pease, 1866), has been known so far in Japan from Ishigaki Island of the Ryukyu Archipelago by Baba (1936), this finding seems noteworthy. This new species is here named after the author's teacher, Dr. Kikutaro Baba, as it was dedicated to him in cele­ bration ofhis 70th birthday, July 11 of 1975. Family Caliphyllidae Thiele, 1931 Cyerce Bergh, 1871 = Lobiancoia Trinchese, 1881 Cyerce kikutarobabai Hamatani, spec. nov. (Japanese name: Kanoko-urokoumiushi, nov.) Holotype: The animal collected on thalli of Caulerpa racemosa Weber van Bosse, var.
    [Show full text]
  • Frontiers in Zoology Biomed Central
    Frontiers in Zoology BioMed Central Research Open Access Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life Katharina Händeler*1, Yvonne P Grzymbowski1, Patrick J Krug2 and Heike Wägele1 Address: 1Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany and 2Department of Biological Sciences, California State University, Los Angeles, California, 90032-8201, USA Email: Katharina Händeler* - [email protected]; Yvonne P Grzymbowski - [email protected]; Patrick J Krug - [email protected]; Heike Wägele - [email protected] * Corresponding author Published: 1 December 2009 Received: 26 June 2009 Accepted: 1 December 2009 Frontiers in Zoology 2009, 6:28 doi:10.1186/1742-9994-6-28 This article is available from: http://www.frontiersinzoology.com/content/6/1/28 © 2009 Händeler et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Among metazoans, retention of functional diet-derived chloroplasts (kleptoplasty) is known only from the sea slug taxon Sacoglossa (Gastropoda: Opisthobranchia). Intracellular maintenance of plastids in the slug's digestive epithelium has long attracted interest given its implications for understanding the evolution of endosymbiosis. However, photosynthetic ability varies widely among sacoglossans; some species have no plastid retention while others survive for months solely on photosynthesis. We present a molecular phylogenetic hypothesis for the Sacoglossa and a survey of kleptoplasty from representatives of all major clades. We sought to quantify variation in photosynthetic ability among lineages, identify phylogenetic origins of plastid retention, and assess whether kleptoplasty was a key character in the radiation of the Sacoglossa.
    [Show full text]
  • Wild About Learning
    WILD ABOUT LEARNING An Interdisciplinary Unit Fostering Discovery Learning Written on a 4th grade reading level, Wild Discoveries: Wacky New Animals, is perfect for every kid who loves wacky animals! With engaging full-color photos throughout, the book draws readers right into the animal action! Wild Discoveries features newly discovered species from around the world--such as the Shocking Pink Dragon and the Green Bomber. These wacky species are organized by region with fun facts about each one's amazing abilities and traits. The book concludes with a special section featuring new species discovered by kids! Heather L. Montgomery writes about science and nature for kids. Her subject matter ranges from snake tongues to snail poop. Heather is an award-winning teacher who uses yuck appeal to engage young minds. During a typical school visit, petrified parts and tree guts inspire reluctant writers and encourage scientific thinking. Heather has a B.S. in Biology and a M.S. in Environmental Education. When she is not writing, you can find her painting her face with mud at the McDowell Environmental Center where she is the Education Coordinator. Heather resides on the Tennessee/Alabama border. Learn more about her ten books at www.HeatherLMontgomery.com. Dear Teachers, Photo by Sonya Sones As I wrote Wild Discoveries: Wacky New Animals, I was astounded by how much I learned. As expected, I learned amazing facts about animals and the process of scientifically describing new species, but my knowledge also grew in subjects such as geography, math and language arts. I have developed this unit to share that learning growth with children.
    [Show full text]
  • (Gastropoda: Eupulmonata: Onchidiidae) from Iran, Persian Gulf
    Zootaxa 4758 (3): 501–531 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4758.3.5 http://zoobank.org/urn:lsid:zoobank.org:pub:2F2B0734-03E2-4D94-A72D-9E43A132D1DE Description of a new Peronia species (Gastropoda: Eupulmonata: Onchidiidae) from Iran, Persian Gulf FATEMEH MANIEI1,3, MARIANNE ESPELAND1, MOHAMMAD MOVAHEDI2 & HEIKE WÄGELE1 1Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany. E-mail: [email protected] 2Iranian Fisheries Science Research Institute (IFRO), 1588733111, Tehran, Iran. E-mail: [email protected] 3Corresponding author Abstract Peronia J. Fleming, 1822 is an eupulmonate slug genus with a wide distribution in the Indo-Pacific Ocean. Currently, nine species are considered as valid. However, molecular data indicate cryptic speciation and more species involved. Here, we present results on a new species found in the Persian Gulf, a subtropical region with harsh conditions such as elevated salinity and high temperature compared to the Indian Ocean. Peronia persiae sp. nov. is described based on molecular, histological, anatomical, micro-computer tomography and scanning electron microscopy data. ABGD, GMYC and bPTP analyses based on 16S rDNA and cytochrome oxidase I (COI) sequences of Peronia confirm the delimitation of the new species. Moreover, our 14 specimens were carefully compared with available information of other described Peronia species. Peronia persiae sp. nov. is distinct in a combination of characters, including differences in the genital (ampulla, prostate, penial hooks, penial needle) and digestive systems (lack of pharyngeal wall teeth, tooth shape in radula, intestine of type II).
    [Show full text]
  • Phylum MOLLUSCA
    285 MOLLUSCA: SOLENOGASTRES-POLYPLACOPHORA Phylum MOLLUSCA Class SOLENOGASTRES Family Lepidomeniidae NEMATOMENIA BANYULENSIS (Pruvot, 1891, p. 715, as Dondersia) Occasionally on Lafoea dumosa (R.A.T., S.P., E.J.A.): at 4 positions S.W. of Eddystone, 42-49 fm., on Lafoea dumosa (Crawshay, 1912, p. 368): Eddystone, 29 fm., 1920 (R.W.): 7, 3, 1 and 1 in 4 hauls N.E. of Eddystone, 1948 (V.F.) Breeding: gonads ripe in Aug. (R.A.T.) Family Neomeniidae NEOMENIA CARINATA Tullberg, 1875, p. 1 One specimen Rame-Eddystone Grounds, 29.12.49 (V.F.) Family Proneomeniidae PRONEOMENIA AGLAOPHENIAE Kovalevsky and Marion [Pruvot, 1891, p. 720] Common on Thecocarpus myriophyllum, generally coiled around the base of the stem of the hydroid (S.P., E.J.A.): at 4 positions S.W. of Eddystone, 43-49 fm. (Crawshay, 1912, p. 367): S. of Rame Head, 27 fm., 1920 (R.W.): N. of Eddystone, 29.3.33 (A.J.S.) Class POLYPLACOPHORA (=LORICATA) Family Lepidopleuridae LEPIDOPLEURUS ASELLUS (Gmelin) [Forbes and Hanley, 1849, II, p. 407, as Chiton; Matthews, 1953, p. 246] Abundant, 15-30 fm., especially on muddy gravel (S.P.): at 9 positions S.W. of Eddystone, 40-43 fm. (Crawshay, 1912, p. 368, as Craspedochilus onyx) SALCOMBE. Common in dredge material (Allen and Todd, 1900, p. 210) LEPIDOPLEURUS, CANCELLATUS (Sowerby) [Forbes and Hanley, 1849, II, p. 410, as Chiton; Matthews. 1953, p. 246] Wembury West Reef, three specimens at E.L.W.S.T. by J. Brady, 28.3.56 (G.M.S.) Family Lepidochitonidae TONICELLA RUBRA (L.) [Forbes and Hanley, 1849, II, p.
    [Show full text]
  • Solar-Powered Sea Slug (Elysia Viridis)
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Solar-powered sea slug (Elysia viridis) MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Sonia Rowley 2006-09-19 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/2130]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Rowley, S.J. 2006. Elysia viridis Solar-powered sea slug. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.2130.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2006-09-19 Solar-powered sea slug (Elysia viridis) - Marine Life Information Network See online review for distribution map Elysia viridis.
    [Show full text]
  • Nudibranchia from the Clarence River Heads, North Coast, New South Wales
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Allan, Joyce K., 1947. Nudibranchia from the Clarence River Heads, north coast, New South Wales. Records of the Australian Museum 21(8): 433–463, plates xli–xliii and map. [9 May 1947]. doi:10.3853/j.0067-1975.21.1947.561 ISSN 0067-1975 Published by the Australian Museum, Sydney nature culture discover Australian Museum science is freely accessible online at http://publications.australianmuseum.net.au 6 College Street, Sydney NSW 2010, Australia NUDIBRANCHIA FROM THE CLARENCE RIVER HEADS, NORTH COAST, NEW SOUTH WALES. By .T OYCE ALLAN. The Australian Museum. Sydney. (Plates xli-xliii and ~Iap.) Intr'oduction. In June, 1941, the Clarence River Heads, north coast of New South Wales, were visited for the purpose of collecting certain marine molluscan material, in particular, Nudibranchia. For some time Mr. A. A. Cameron, of Harwood Island, Clarence River, had forwarded to the Museum marine specimens from this locality, a considerable proportion of which had indicated the presence there of a strong, extra-Australian ·tropical influence of ecological and zoo-geographical importance. The nudibranch material was particularly interesting in this respect, since the majority of the rare species he had forwarded were collected in a restricted area, the Angourie Pool, a z ~ oU ANGOURIE PT 434 RECORDS OF T.RE AUSTRALIAN MUSEUM. small excavation in the rocky shore shelf at Angourie, a popular fishing spot. The trip was therefore undertaken to investigate the molluscan fauna in that locality, with special attention to the preparation of field notes and colour sketches of the Nudibranchia encountered. A considerable variety of both tropical and temperate rocky shore shells was present in all areas visited-in one locality alone, Shelly Beach, no less than eleven species of cowries were noticed in an hour or so.
    [Show full text]
  • An Established Population of the Alien Sea Slug Elysia Grandifolia Kelaart, 1858 (Mollusca, Opisthobranchia, Elysiidae) Off the Mediterranean Coast of Israel
    BioInvasions Records (2012) Volume 1, Issue 3: 221–223 Open Access doi: http://dx.doi.org/10.3391/bir.2012.1.3.08 © 2012 The Author(s). Journal compilation © 2012 REABIC Short Communication An established population of the alien sea slug Elysia grandifolia Kelaart, 1858 (Mollusca, Opisthobranchia, Elysiidae) off the Mediterranean coast of Israel Galia Pasternak¹ and Bella S. Galil²* 1 Marine and Coastal Environment Division, Ministry of Environmental Protection, POB 811, Haifa 31007, Israel 2 National Institute of Oceanography, Israel Oceanographic & Limnological Research, POB 8030, Haifa 31080, Israel E-mail: [email protected] (GP), [email protected] (BSG) *Corresponding author Received: 13 August 2012 / Accepted: 12 September 2012 / Published online: 15 September 2012 Abstract The alien sacoglossan opisthobranch Elysia grandifolia, first recorded in the Levantine basin, eastern Mediterranean Sea, in 2001, has established a flourishing population along the Mediterranean coast of Israel. In August 2012 large numbers were observed on bryopsidacean- covered rocky outcrops off the central Mediterranean coast of Israel. Pairs of specimens and clusters of several individuals with extended penes may be copulatory aggregations. Key words: Elysia grandifolia; Mollusca; Opisthobranchia; Bryopsidaceae; Mediterranean; invasive alien Introduction Material and methods Elysia grandifolia Kelaart, 1858 has a wide Large numbers of E. grandifolia were noted by distribution in the Indo-West Pacific Ocean, the senior author (GP) on rocky outcrops 200
    [Show full text]
  • On the Distribution and Food Preferences of Arion Subfuscus (Draparnaud, 1805)
    Vol. 16(2): 61–67 ON THE DISTRIBUTION AND FOOD PREFERENCES OF ARION SUBFUSCUS (DRAPARNAUD, 1805) JAN KOZ£OWSKI Institute of Plant Protection, National Research Institute, W³adys³awa Wêgorka 20, 60-318 Poznañ, Poland (e-mail: [email protected]) ABSTRACT: In recent years Arion subfuscus (Drap.) is increasingly often observed in agricultural crops. Its abun- dance and effect on winter oilseed rape crops were studied. Its abundance was found to be much lower than that of Deroceras reticulatum (O. F. Müll.). Preferences of A. subfuscus to oilseed rape and 19 other herbaceous plants were determined based on multiple choice tests in the laboratory. Indices of acceptance (A.I.), palat- ability (P.I.) and consumption (C.I.) were calculated for the studied plant species; accepted and not accepted plant species were identified. A. subfuscus was found to prefer seedlings of Brassica napus, while Chelidonium maius, Euphorbia helioscopia and Plantago lanceolata were not accepted. KEY WORDS: Arion subfuscus, abundance, oilseed rape seedlings, herbaceous plants, acceptance of plants INTRODUCTION Pulmonate slugs are seroius pests of plants culti- common (RIEDEL 1988, WIKTOR 2004). It lives in low- vated in Poland and in other parts of western and cen- land and montane forests, shrubs, on meadows, tral Europe (GLEN et al. 1993, MESCH 1996, FRANK montane glades and sometimes even in peat bogs. Re- 1998, MOENS &GLEN 2002, PORT &ESTER 2002, cently it has been observed to occur synanthropically KOZ£OWSKI 2003). The most important pest species in such habitats as ruins, parks, cemeteries, gardens include Deroceras reticulatum (O. F. Müller, 1774), and and margins of cultivated fields.
    [Show full text]
  • The Identification of Functional, Sequestered, Symbiotic Chloroplasts
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2006 The identification of functional, sequestered, symbiotic chloroplasts in Elysia clarki: A crucial step in the study of horizontally transferred, nuclear algal genes Nicholas E. Curtis University of South Florida Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Curtis, Nicholas E., "The identification of functional, sequestered, symbiotic chloroplasts in Elysia clarki: A crucial step in the study of horizontally transferred, nuclear algal genes" (2006). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/2496 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. The Identification of Functional, Sequestered, Symbiotic Chloroplasts in Elysia clarki: A Crucial Step in the Study of Horizontally Transferred, Nuclear Algal Genes by Nicholas E. Curtis A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Biology College of Arts and Sciences University of South Florida Major Professor: Sidney K. Pierce, Jr., Ph.D. Clinton J. Dawes, Ph.D. Kathleen M. Scott, Ph.D. Brian T. Livingston, Ph.D. Date of Approval: June 15, 2006 Keywords: Bryopsidales, kleptoplasty, sacoglossan, rbcL, chloroplast symbiosis Penicillus, Halimeda, Bryopsis, Derbesia © Copyright 2006, Nicholas E. Curtis Note to Reader The original of this document contains color that is necessary for understanding the data. The original dissertation is on file with the USF library in Tampa, Florida.
    [Show full text]
  • Nudibranch Range Shifts Associated with the 2014 Warm Anomaly in the Northeast Pacific
    Bulletin of the Southern California Academy of Sciences Volume 115 | Issue 1 Article 2 4-26-2016 Nudibranch Range Shifts associated with the 2014 Warm Anomaly in the Northeast Pacific Jeffrey HR Goddard University of California, Santa Barbara, [email protected] Nancy Treneman University of Oregon William E. Pence Douglas E. Mason California High School Phillip M. Dobry See next page for additional authors Follow this and additional works at: https://scholar.oxy.edu/scas Part of the Marine Biology Commons, Population Biology Commons, and the Zoology Commons Recommended Citation Goddard, Jeffrey HR; Treneman, Nancy; Pence, William E.; Mason, Douglas E.; Dobry, Phillip M.; Green, Brenna; and Hoover, Craig (2016) "Nudibranch Range Shifts associated with the 2014 Warm Anomaly in the Northeast Pacific," Bulletin of the Southern California Academy of Sciences: Vol. 115: Iss. 1. Available at: https://scholar.oxy.edu/scas/vol115/iss1/2 This Article is brought to you for free and open access by OxyScholar. It has been accepted for inclusion in Bulletin of the Southern California Academy of Sciences by an authorized editor of OxyScholar. For more information, please contact [email protected]. Nudibranch Range Shifts associated with the 2014 Warm Anomaly in the Northeast Pacific Cover Page Footnote We thank Will and Ziggy Goddard for their expert assistance in the field, Jackie Sones and Eric Sanford of the Bodega Marine Laboratory for sharing their observations and knowledge of the intertidal fauna of Bodega Head and Sonoma County, and David Anderson of the National Park Service and Richard Emlet of the University of Oregon for sharing their respective observations of Okenia rosacea in northern California and southern Oregon.
    [Show full text]