Identification of Species of Botryosphaeriaceae Causing Bot Gummosis in Citrus in California
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Botryosphaeriaceae: a Complex, Diverse and Cosmopolitan Family of Fungi
Revista Mexicana Ciencias Agrícolas volume 12 number 4 May 16 - June 29, 2021 Article Botryosphaeriaceae: a complex, diverse and cosmopolitan family of fungi Alejandra Mondragón-Flores1, 2 Gerardo Rodríguez-Alvarado2 Nuria Gómez-Dorantes2 Jesús Jaime Guerra-Santos3 Sylvia Patricia Fernández-Pavía2§ 1Valle de Apatzingán Experimental Field-INIFAP. Highway Apatzingán-Four roads km 17.5, Antúnez, Michoacán. CP. 60780. Tel. 800 0882222, ext. 84610. ([email protected]). 2Institute of Agricultural and Forestry Research-UMSNH. Highway Morelia-Zinapécuaro km 9.5, Tarímbaro, Michoacán. CP. 58880. Tel. 443 3223500, ext. 5226. ([email protected]; [email protected]; [email protected]). 3Autonomous University of Carmen-Faculty of Natural Sciences-Environmental Sciences Research Center. Laguna de Terms Street s/n, col. 2nd section renewal, Carmen City, Campeche, Mexico. CP. 24155. Tel. 938 1343965. ([email protected]). §Corresponding author: [email protected]. Abstract In the last decade, interest in studying the fungi belonging to the Botryosphaeriaceae family has increased due to the diseases that induce in economically important crops, their wide cosmopolitan distribution and the observed association between pathogenesis and host stress. More than ten species associated with symptoms in different parts of the same plant have been reported, indicating that a significant number of species of this family do not have specificity in host range. Besides, several studies have shown the ability of these fungi to ‘jump’ from their original native hosts to agricultural crops that are established in nearby areas, belonging to the same botanical family or to a different family. The objective of this research is to review morphological and molecular markers for taxonomic identification of species in the Botryosphaeriaceae family, their geographical distribution, range of agricultural host and developmental aspects for the disease including dispersal modes. -
Journal of Kerbala for Agricultural Sciences Vol.(6), No.(1) (2019)
Journal of Kerbala for Agricultural Sciences Vol.(6), No.(1) (2019) Efficacy of ecofriendly biocontrol Azotobacter chroococcum and Lac- tobacillus rhamnosus for enhancing plant growth and reducing infec- tion by Neoscytalidium spp. in fig (Ficus carica L.) saplings Sabah Lateef Alwan Hawraa N. Hussein Professor Assistant lecturer Plant Protection Department, Agriculture College, University of Kufa Email: [email protected] Abstract: The aim of the research was to use the environment-friendly agents to reduce the effect of Neoscytalidium dimidiatum and Neoscytalidium novaehollandiae, that cause dieback and blacking stem on several agricultural crops. This disease was the first record on fig trees in Iraq by this study and registered in GenBank under accession numbers : MF682357 , MF682358, in addition to its involvement in causing derma- tomycosis to human. In order to reduce environmental pollution due to chemical pes- ticides, two antagonistic bacteria Lactobacillus rhamnosus (isolated from yoghurt) and Azotobacter chroococcum (isolated from soil) were used to against pathogenic fungi N. dimidiatum and N. novahollandiae. The in vitro tests showed that both bio- agents bacteria were highly antagonistic to both pathogenic fungal reducing their ra- dial growth to 44 and 75% respectively . Results of greenhouse experiments in pot showed that both A. chroococcum and L.rhamnosus decreased severity of infection by pathogenic fungi and enhanced plant health and growth. All the growth parameters of fig trees including leaf area, content -
Differentiation of Two Botryosphaeriaceae Species
Differentiation of two Botryosphaeriaceae species isolated from declining mango trees in Ghana Honger, J.O1*., Ablomerti F.K2., Coleman, S.R3., Cornelius, E.W2, Owusu, E3. and Odamtten G.T3. 1Soil and Irrigation Research Centre, College of Basic and Applied Sciences, University of Ghana. 2Department of Crop Science, College of Basic and Applied Sciences, University of Ghana 3Department of Plant and Environmental Biology, College of Basic and Applied Sciences, University of Ghana *Corresponding Author: [email protected] Abstract Lasiodiplodia theobromae is the only pathogen reported to cause mango tree decline disease in Ghana. In this study, several Botryosphaeriaceae isolates were obtained from mango tree decline disease symptoms and were identified using both phenotypic and genotypic characteristics and inoculation studies. The methods employed differentiated the isolates into two species, Lasiodiplodia theobromae and Neofussicoccum parvum. L. theobromae sporulated freely on media while N. parvum did not. Also, the species specific primer, Lt347-F/Lt347-R identified only L. theobromae while in the phylogenetic studies, L. theobromae and N. parvum clustered in different clades. L. theobromae caused dieback symptoms on inoculated mango seedlings while N. parvum did not. However, both species caused massive rot symptoms on inoculated fruits. L. theobromae was therefore confirmed as the causal agent of the tree decline disease in Ghana while N. parvum was reported for the first time as a potential pathogen of mango fruits in the country. Introduction and Lopez, 1971; Rawal, 1998; Schaffer et Mango (Mangifera indica L.) is one of the al., 1988). In India it has been reported that most important non-traditional export crops the disease had been a very significant one from Ghana, bringing in much needed foreign since 1940 (Khanzanda et al., 2004) with the exchange to the country. -
Phylogeny and Morphology of Four New Species of Lasiodiplodia from Iran
Persoonia 25, 2010: 1–10 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158510X524150 Phylogeny and morphology of four new species of Lasiodiplodia from Iran J. Abdollahzadeh 1,3, A. Javadi 2, E. Mohammadi Goltapeh3, R. Zare 2, A.J.L. Phillips 4 Key words Abstract Four new species of Lasiodiplodia; L. citricola, L. gilanensis, L. hormozganensis and L. iraniensis from various tree species in Iran are described and illustrated. The ITS and partial translation elongation factor-1 se- Botryosphaeriaceae α quence data were analysed to investigate their phylogenetic relationships with other closely related species and EF-1α genera. The four new species formed well-supported clades within Lasiodiplodia and were morphologically distinct ITS from all other known species. Lasiodiplodia phylogeny Article info Received: 11 March 2010; Accepted: 29 June 2010; Published: 27 July 2010. taxonomy INTRODUCTION as synonyms of L. theobromae since he could not separate them on morphological characters. However, on account of its Members of the Botryosphaeriaceae (Botryosphaeriales, morphological variability and wide host range it seems likely that Dothideomycetes, Ascomycota) are cosmopolitan and occur L. theobromae is a species complex. Recent studies based on on a wide range of monocotyledonous, dicotyledonous and sequence data have confirmed this and eight new species have gymnosperm hosts (von Arx & Müller 1954, Barr 1987). They been described since 2004 (Pavlic et al. 2004, 2008, Burgess are associated with various symptoms such as shoot blights, et al. 2006, Damm et al. 2007, Alves et al. 2008). stem cankers, fruit rots, dieback and gummosis (von Arx 1987) There have been no studies on the Lasiodiplodia species in and are also known as endophytes (Slippers & Wingfield Iran apart from a few reports of L. -
First Record of Neoscytalidium Dimidiatum and N. Novaehollandiae on Mangifera Indica and N
CSIRO PUBLISHING www.publish.csiro.au/journals/apdn Australasian Plant Disease Notes, 2010, 5,48–50 First record of Neoscytalidium dimidiatum and N. novaehollandiae on Mangifera indica and N. dimidiatum on Ficus carica in Australia J. D. Ray A,D, T. Burgess B and V. M. Lanoiselet C AAustralian Quarantine and Inspection Service, NAQS/OSP, 1 Pederson Road, Marrara, NT 0812, Australia. BSchool of Biological Sciences and Biotechnology, Murdoch University, Murdoch, WA 6150, Australia. CDepartment of Agriculture and Food, Baron-Hay Court, South Perth, WA 6151, Australia. DCorresponding author. Email: [email protected] Abstract. Neoscytalidium dimidiatum is reported for the first time in Australia associated with dieback of mango and common fig. Neoscytalidium novaehollandiae is reported for the first time associated with dieback of mango. Neoscytalidium dimidiatum has a wide geographical and host range. For example, it has been reported on Albizia lebbeck, Delonix regia, Ficus carica, Ficus spp., Peltophorum petrocarpum and Thespesia populena in Oman (Elshafie and Ba-Omar 2001); on Arbutus, Castanea, Citrus, Ficus, Juglans, Musa, Populus, Prunus, Rhus, Sequoiadendron in the USA (Farr et al. 1989); and on Mangifera indica in Niger (Reckhaus 1987). Stress factors such as water stress enhance the severity of disease caused by this fungus and symptoms include branch wilt, dieback, canker, gummosis and tree death (Punithalingam and Waterson 1970; Reckhaus 1987; Elshafie and Ba-Omar 2001). Neoscytalidium novaehollandiae was recently described from north-western Australia as an endophyte of Adansonia gibbosa, Acacia synchronica, Crotalaria medicaginea and Grevillia agrifolia (Pavlic et al. 2008). A joint Plant Health Survey was carried out by the Australian Quarantine and Inspection Service (AQIS) and the Department of Agriculture and Food Western Australia (DAFWA) in the Ord River Irrigation Area (ORIA) of Western Australia (WA) during August 2008. -
Three Species of Neofusicoccum (Botryosphaeriaceae, Botryosphaeriales) Associated with Woody Plants from Southern China
Mycosphere 8(2): 797–808 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/2/4 Copyright © Guizhou Academy of Agricultural Sciences Three species of Neofusicoccum (Botryosphaeriaceae, Botryosphaeriales) associated with woody plants from southern China Zhang M1,2, Lin S1,2, He W2, * and Zhang Y1, * 1Institute of Microbiology, P.O. Box 61, Beijing Forestry University, Beijing 100083, PR China. 2Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, PR China. Zhang M, Lin S, He W, Zhang Y 2017 – Three species of Neofusicoccum (Botryosphaeriaceae, Botryosphaeriales) associated with woody plants from Southern China. Mycosphere 8(2), 797–808, Doi 10.5943/mycosphere/8/2/4 Abstract Two new species, namely N. sinense and N. illicii, collected from Guizhou and Guangxi provinces in China, are described and illustrated. Phylogenetic analysis based on combined ITS, tef1-α and TUB loci supported their separation from other reported species of Neofusicoccum. Morphologically, the relatively large conidia of N. illicii, which become 1–3-septate and pale yellow when aged, can be distinguishable from all other reported species of Neofusicoccum. Phylogenetically, N. sinense is closely related to N. brasiliense, N. grevilleae and N. kwambonambiense. The smaller conidia of N. sinense, which have lower L/W ratio and become 1– 2-septate when aged, differ from the other three species. Neofusicoccum mangiferae was isolated from the dieback symptoms of mango in Guangdong Province. Key words – Asia – endophytes – Morphology– Taxonomy Introduction Neofusicoccum Crous, Slippers & A.J.L. Phillips was introduced by Crous et al. (2006) for species that are morphologically similar to, but phylogenetically distinct from Botryosphaeria species, which are commonly associated with numerous woody hosts world-wide (Arx 1987, Phillips et al. -
Transcriptome Analysis and Cell Morphology of Vitis Rupestris Cells to Botryosphaeria Dieback Pathogen Diplodia Seriata
G C A T T A C G G C A T genes Article Transcriptome Analysis and Cell Morphology of Vitis rupestris Cells to Botryosphaeria Dieback Pathogen Diplodia seriata Liang Zhao 1,2,†,‡ , Shuangmei You 1,2,†, Hui Zou 1,‡ and Xin Guan 1,2,* 1 College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; [email protected] (L.Z.); [email protected] (S.Y.); [email protected] (H.Z.) 2 Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400716, China * Correspondence: [email protected]; Tel.: +86-(0)23-6825-0483 † These authors contributed equally to the experimental part of this work. ‡ Current address: College of Horticulture, Northwest A&F University, Yangling 712100, China. Abstract: Diplodia seriata, one of the major causal agents of Botryosphaeria dieback, spreads world- wide, causing cankers, leaf spots and fruit black rot in grapevine. Vitis rupestris is an American wild grapevine widely used for resistance and rootstock breeding and was found to be highly resistant to Botryosphaeria dieback. The defense responses of V. rupestris to D. seriata 98.1 were analyzed by RNA-seq in this study. There were 1365 differentially expressed genes (DEGs) annotated with Gene Ontology (GO) and enriched by the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The DEGs could be allocated to the flavonoid biosynthesis pathway and the plant–pathogen in- teraction pathway. Among them, 53 DEGs were transcription factors (TFs). The expression levels of 12 genes were further verified by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). -
Enzymatic Differences Between the Endophyte Guignardia Mangiferae (Botryosphaeriaceae) and the Citrus Pathogen G
Enzymatic differences between the endophyte Guignardia mangiferae (Botryosphaeriaceae) and the citrus pathogen G. citricarpa A.S. Romão1, M.B. Spósito2, F.D. Andreote1, J.L. Azevedo1 and W.L. Araújo3 1Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP, Brasil 2Fundecitrus, Departamento Científico, Araraquara, SP, Brasil 3Laboratório de Biologia Molecular e Ecologia Microbiana, NIB, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brasil Corresponding author: W.L. Araújo E-mail: [email protected] Genet. Mol. Res. 10 (1): 243-252 (2011) Received July 27, 2010 Accepted November 11, 2010 Published February 15, 2011 DOI 10.4238/vol10-1gmr952 ABSTRACT. The endophyte Guignardia mangiferae is closely related to G. citricarpa, the causal agent of citrus black spot; for many years these species had been confused with each other. The development of molecular analytical methods has allowed differentiation of the pathogen G. citricarpa from the endophyte G. mangiferae, but the physiological traits associated with pathogenicity were not described. We examined genetic and enzymatic characteristics of Guignardia spp strains; G. citricarpa produces significantly greater amounts of amylases, endoglucanases and pectinases, compared to G. mangiferae, suggesting that these enzymes could be key in the development of citrus black spot. Principal component analysis revealed pectinase production as the main enzymatic characteristic that distinguishes these Guignardia species. We quantified the activities of pectin lyase, pectin methylesterase and endopolygalacturonase; G. citricarpa and G. mangiferae were found to have significantly different pectin lyase and endopolygalacturonase activities. The pathogen G. citricarpa is more effective in pectin degradation. We concluded that Genetics and Molecular Research 10 (1): 243-252 (2011) ©FUNPEC-RP www.funpecrp.com.br A.S. -
A Survey of Trunk Disease Pathogens Within Citrus Trees in Iran
plants Article A Survey of Trunk Disease Pathogens within Citrus Trees in Iran Nahid Esparham 1, Hamid Mohammadi 1,* and David Gramaje 2,* 1 Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran; [email protected] 2 Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas, Universidad de la Rioja, Gobierno de La Rioja, 26007 Logroño, Spain * Correspondence: [email protected] (H.M.); [email protected] (D.G.); Tel.: +98-34-3132-2682 (H.M.); +34-94-1899-4980 (D.G.) Received: 4 May 2020; Accepted: 12 June 2020; Published: 16 June 2020 Abstract: Citrus trees with cankers and dieback symptoms were observed in Bushehr (Bushehr province, Iran). Isolations were made from diseased cankers and branches. Recovered fungal isolates were identified using cultural and morphological characteristics, as well as comparisons of DNA sequence data of the nuclear ribosomal DNA-internal transcribed spacer region, translation elongation factor 1α, β-tubulin, and actin gene regions. Dothiorella viticola, Lasiodiplodia theobromae, Neoscytalidium hyalinum, Phaeoacremonium (P.) parasiticum, P. italicum, P. iranianum, P. rubrigenum, P. minimum, P. croatiense, P. fraxinopensylvanicum, Phaeoacremonium sp., Cadophora luteo-olivacea, Biscogniauxia (B.) mediterranea, Colletotrichum gloeosporioides, C. boninense, Peyronellaea (Pa.) pinodella, Stilbocrea (S.) walteri, and several isolates of Phoma, Pestalotiopsis, and Fusarium species were obtained from diseased trees. The pathogenicity tests were conducted by artificial inoculation of excised shoots of healthy acid lime trees (Citrus aurantifolia) under controlled conditions. Lasiodiplodia theobromae was the most virulent and caused the longest lesions within 40 days of inoculation. According to literature reviews, this is the first report of L. -
Pathogen Identification and Management of Pityaya Canker and Soft Rot in Taiwan
Improving Pitaya Production and Marketing PATHOGEN IDENTIFICATION AND MANAGEMENT OF PITYAYA CANKER AND SOFT ROT IN TAIWAN Chu-Ping Lin1, Hui-Fang Ni2, Pao-Jen Ann1, Hong-Ren Yang2, Jiao-Wen Huang2, Ming-Fuh Chuang2, S.L. Shu 2, S.Y. Lai, Yi-Lu Jiang3, and Jyh-Nong Tsai1 1 Plant Pathology Division, Taiwan Agricultural Research Institute, Taichung, Taiwan 2 Department of Plant Protection, Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Chiayi, Taiwan 3 Department of Horticulture, National Taiwan University, Taipei, Taiwan E-mail: [email protected] INTRODUCTION Pitaya (Hylocereus spp.) is one of the important newly emerging fruit crops in Taiwan. However, the fruit production is limited by pitaya canker and wet rot, which were found in 2009 and 2012, respectively. The pathogen identification and management of these two diseases are introduced in this paper. PITAYA CANKER Pitaya canker is now considered to be the most severe disease of pitaya in Taiwan in recent years. The disease could be found in nearly 80% of the commercial planting areas. At the early stage of the disease, the symptoms on the stem are small, circular, orange sunken spots, and then develop into cankers. At the late disease stage, stems subsequently rot, and pycnidia could be observed on the surface of the cankers (Figure 1A-C). The similar symptoms were also visible on the infected fruits (Figure 1D-F).The pathogen could also infect the fruits after harvest. The infected fruits showed brown to black water-soaked rot symptom (Figure 1G), and eventually dried with numerous pycnidia erumpenting from the surface. -
Lasiodiplodia Species Associated with Dying Euphorbia Ingens in South
This article was downloaded by: [University of Pretoria] On: 20 October 2012, At: 06:21 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Southern Forests: a Journal of Forest Science Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tsfs20 Lasiodiplodia species associated with dying Euphorbia ingens in South Africa J A van der Linde a , D L Six b , M J Wingfield a & J Roux a a Department of Microbiology and Plant Pathology, DST/NRF Centre of Excellence in Tree Health Biotechnology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa b College of Forestry and Conservation, Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA Version of record first published: 11 Jan 2012. To cite this article: J A van der Linde, D L Six, M J Wingfield & J Roux (2011): Lasiodiplodia species associated with dying Euphorbia ingens in South Africa, Southern Forests: a Journal of Forest Science, 73:3-4, 165-173 To link to this article: http://dx.doi.org/10.2989/20702620.2011.639499 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. -
EU Project Number 613678
EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ .......................................................................