Refrigeration Playbook
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Solar Heating and Cooling & Solar Air-Conditioning Position Paper
Task 53 New Generation Solar Cooling & Heating Systems (PV or solar thermally driven systems) Solar Heating and Cooling & Solar Air-Conditioning Position Paper November 2018 Contents Executive Summary ............................................................. 3 Introduction and Relevance ................................................ 4 Status of the Technology/Industry ...................................... 5 Technical maturity and basic successful rules for design .............. 7 Energy performance for PV and Solar thermally driven systems ... 8 Economic viability and environmental benefits .............................. 9 Market status .................................................................................... 9 Potential ............................................................................. 10 Technical potential ......................................................................... 10 Costs and economics ..................................................................... 11 Market opportunities ...................................................................... 12 Current Barriers ................................................................. 12 Actions Needed .................................................................. 13 This document was prepared by Daniel Neyer1,2 and Daniel Mugnier3 with support by Alexander Thür2, Roberto Fedrizzi4 and Pedro G. Vicente Quiles5. 1 daniel neyer brainworks, Oberradin 50, 6700 Bludenz, Austria 2 University of Innsbruck, Technikerstr. 13, 6020 Innsbruck, Austria -
Ammonia As a Refrigerant
1791 Tullie Circle, NE. Atlanta, Georgia 30329-2305, USA www.ashrae.org ASHRAE Position Document on Ammonia as a Refrigerant Approved by ASHRAE Board of Directors February 1, 2017 Expires February 1, 2020 ASHRAE S H A P I N G T O M O R R O W ’ S B U I L T E N V I R O N M E N T T O D A Y © 2017 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. COMMITTEE ROSTER The ASHRAE Position Document on “Ammonia as a Refrigerant” was developed by the Society’s Refrigeration Committee. Position Document Committee formed on January 8, 2016 with Dave Rule as its chair. Dave Rule, Chair Georgi Kazachki IIAR Dayton Phoenix Group Alexandria, VA, USA Dayton, OH, USA Ray Cole Richard Royal Axiom Engineers, Inc. Walmart Monterey, CA, USA Bentonville, Arkansas, USA Dan Dettmers Greg Scrivener IRC, University of Wisconsin Cold Dynamics Madison, WI, USA Meadow Lake, SK, Canada Derek Hamilton Azane Inc. San Francisco, CA, USA Other contributors: M. Kent Anderson Caleb Nelson Consultant Azane, Inc. Bethesda, MD, USA Missoula, MT, USA Cognizant Committees The chairperson of Refrigerant Committee also served as ex-officio members: Karim Amrane REF Committee AHRI Bethesda, MD, USA i © 2017 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. HISTORY of REVISION / REAFFIRMATION / WITHDRAWAL -
Investigating Absorption Refrigerator Fires (Part I)
Orion P. Keifer Peter D. Layson Charles A. Wensley Investigating Absorption Refrigerator Fires (Part I) ATLANTIC BEACH, FLORIDA—In today’s recreational vehicles (RV), the then expels it when perco- most common refrigerator uses absorption refrigeration technology, lated in the boiler. It is this primarily because this type of system can operate on multiple sources action of the water which of power, including propane when electrical power is unavailable. makes the ammonia flow. These refrigerators have been under intense scrutiny in recent years The hydrogen in the re- due to numerous reported fires, apparently starting in the area of the frigeration coil maintains absorption refrigerator. Both the Dometic Corporation and Norcold a positive pressure of ap- Incorporated, two manufacturers of RV refrigerators, have been re- proximately 300-375 PSI quired by the National Highway and Traffic Safety Administration (2.07-2.59 MPa) when (NHTSA) to recall certain models of refrigerators which have been not in operation and, due identified as capable of failing in a fire mode. In summary, the three to its low partial pressure, NHTSA recalls indicate a fatigue crack may develop in the boiler tube promotes the evaporation of the cooling unit which may release sufficient pressurized flammable of the liquid ammonia. It coolant solution into an area where an ignition source is present. The should be noted that unlike NHTSA Recall Campaign ID Numbers are 06E076000 for Dometic conventional refrigeration (926,877 affected units), and 02E019000 (28,144 affected units) and systems which extensively 02E045000 (8,419 affected units) for Norcold. use copper due to its high thermal conductivity, the Applications Engineering Group, Inc. -
Solar Air-Conditioning and Refrigeration - Achievements and Challenges
Solar air-conditioning and refrigeration - achievements and challenges Hans-Martin Henning Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg/Germany EuroSun 2010 September 28 – October 2, 2010 Graz - AUSTRIA © Fraunhofer ISE Outline Components and systems Achievements Solar thermal versus PV? Challenges and conclusion © Fraunhofer ISE Components and systems Achievements Solar thermal versus PV? Challenges and conclusion © Fraunhofer ISE Overall approach to energy efficient buildings Assure indoor comfort with a minimum energy demand 1. Reduction of energy demand Building envelope; ventilation 2. Use of heat sinks (sources) in Ground; outside air (T, x) the environment directly or indirectly; storage mass 3. Efficient conversion chains HVAC; combined heat, (minimize exergy losses) (cooling) & power (CH(C)P); networks; auxiliary energy 4. (Fractional) covering of the Solar thermal; PV; (biomass) remaining demand using renewable energies © Fraunhofer ISE Solar thermal cooling - basic principle Basic systems categories Closed cycles (chillers): chilled water Open sorption cycles: direct treatment of fresh air (temperature, humidity) © Fraunhofer ISE Open cycles – desiccant air handling units Solid sorption Liquid sorption Desiccant wheels Packed bed Coated heat exchangers Plate heat exchanger Silica gel or LiCl-matrix, future zeolite LiCl-solution: Thermochemical storage possible ECOS (Fraunhofer ISE) in TASK 38 © Fraunhofer ISE Closed cycles – water chillers or ice production Liquid sorption: Ammonia-water or Water-LiBr (single-effect or double-effect) Solid sorption: silica gel – water, zeolite-water Ejector systems Thermo-mechanical systems Turbo Expander/Compressor AC-Sun, Denmark in TASK 38 © Fraunhofer ISE System overview Driving Collector type System type temperature Low Open cycle: direct air treatment (60-90°C) Closed cycle: high temperature cooling system (e.g. -
A Review on Solar Powered Refrigeration and the Various Cooling Thermal Energy Storage (CTES) Systems
International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 2 Issue 2, February- 2013 A review on Solar Powered Refrigeration and the Various Cooling Thermal Energy Storage (CTES) Systems 1*Abhishek Sinha and 2 S. R Karale rd 1* Student, III Semester, M.Tech.Heat Power Engineering, 2 Professor Mechanical Engineering Department, G.H Raisoni College of Engineering, Nagpur-440016, India Abstract In this paper, a review has been conducted on various types of methods which are available for utilizing solar energy for refrigeration purposes. Solar refrigeration methods such as Solar Electric Method, Solar Mechanical Method and Solar Thermal Methods have been discussed. In solar thermal methods, various methods like Desiccant Refrigeration, Absorption Refrigeration and Adsorption Refrigeration has been discussed. All the methods have been assesed economically and environmentally and their operating characteristics have been compared to establish the best possible method for solar refrigeration. Also, the various available technologies for Cooling Thermal Energy Storage (CTES) have been discussed in this paper. Methods like Chilled Water Storage (CWS) and Ice Thermal Storage (ITS) have been compared and their advantages and disadvantages have been IJERTdiscussed.IJERT The results of the review reveal Solar Electric Method as the most promising method for solar refrigeration over the other methods. As far as CTES systems are concerned, ITS has advantage over other methods based on storage volume capability, but it has a comparatively lower COP than other available techniques. Keywords: Solar powered refrigeration, Solar Electric Method, Solar Mechanical Method, Solar Thermal Method, CTES system, Chilled Water Storage (CWS) system, ice TES systems, etc. -
LIFE Country Overview Italy 2021
Italy Overview This document provides an overview of LIFE in Italy. It showcases key data and some of the latest LIFE projects. You will also find contact details and other useful resources and a full list of current and recently-finished LIFE projects. Every year calls for project proposals are launched covering the LIFE programme’s priority areas. ABOUT LIFE The LIFE programme is the EU's funding instrument for the environment and climate action. It has been running since 1992 and has co-financed more than 5 400 projects across the EU and in third countries, mobilising over €12 billion and contributing more than €5.64 billion to the protection of the environment and climate. Types of LIFE project: Other types of LIFE funding: Traditional (Environment and Resource Efficiency; Nature NGO operating grants and Biodiversity; Environmental Governance and Natural Capital Financing Facility (NCFF) Information; Climate Change Mitigation; Climate Change Private Finance for Energy Efficiency (PF4EE) Adaptation; Climate Governance and Information). Integrated (Environment, Nature or Climate Action) NCFF and PF4EE are joint initiatives with the European Preparatory Investment Bank, which manages the two funds. Capacity-building For more information visit: https://cinea.ec.europa.eu/life_en Last update: 28/05/21 European Commission/CINEA (https://cinea.ec.europa.eu/life_en) – Page 1 – LIFE Environment and Resource Efficiency This LIFE priority area is aimed at developing, testing and demonstrating best practices, solutions and integrated approaches to environmental challenges, as well as improving the related knowledge base. To date, the LIFE Environment and Resource Efficiency strand (formerly the LIFE Environment Policy and Governance component) has co-financed 530 projects in Italy, representing a total investment of €964 million, of which €415 million has been provided by the EU. -
Guide for Air Conditioning, Refrigeration, and Help the Student
DOCUMENT RESUME ED 251 645 CE 040 232 AUTHOR Henderson, William Edward, Jr., Ed. TITLE Art::culated, Performance-Based Instruction Objectives Guide for Air Conditioning, Refrigeration, and Heating. Volume II(Second Year). INSTITUTION Greenville County School District, Greenville, S.C.; Greenville Technical Coll., S. PUB DATE Oct 84 NOTE 374p.; Prepared by the Articulation Program Task Force Committee for Air Conditioning, Refrigeration, and Heating. PUB TYPE Guides Clasrroom Use Guides (For Teachers) (052) EDRS PRICE MF01/PC15 Plus Postage. DESCRIPTO. *Air Conditioning; Behavioral Objectives; Competency Based Education; Curriculum Guides; *Equipment Maintenance; Fuels; Jrade 12; *Heating; High Schools; Job Skills; Le.,zning Activities; *Refrigeration; Secondary Education; Solar Energy; Trade and Industrial Education; Units of Study; *Ventilation ABSTRACT This articulation guide contains 17 units of instruction for the second year of a two-year vocational program designed to prepare the high school graduate to install, maintain, and repair various types of residential and commercial heating, air conditioning, and refrigeration equipment. The units are designed to help the student to expand and apply the basic knowledge already mastered and to learn new principles and techniques and to prepare him/her for entry-level work as an apprentice. The seventeen units cover aid conditioning calculations (psychrometrics,residential heat loss and heat gain, duct design and sizing and air treatment); troubleshooting and servicing residential air conditioners; commercial refrigeration; commercial air conditioning; heating systems (electrical resistance heating, heat pumps, gas heating, oil heating, hydronics, solar heating systems); automotive air conditioner maintenance/repair; estimating and planning heating, ventilation, and air conditioning jobs; customer relations; and shop projects. -
60 Examples of Natural Refrigerant Stories in Article 5 Countries and Eits July 2012 Ŝŷƚƌžěƶđɵžŷ !"#$%&"#'"$(
60 EXAMPLES OF NATURAL REFRIGERANT STORIES IN ARTICLE 5 COUNTRIES AND EITS JULY 2012 ŝŶƚƌŽĚƵĐƟŽŶ !"#$%&"#'"$( dŚĞƵƐĞŽĨŽnjŽŶĞͲĚĞƉůĞƟŶŐĂŶĚŚŝŐŚͲŐůŽďĂůǁĂƌŵŝŶŐƐƵďƐƚĂŶĐĞƐŚĂƐďĞĐŽŵĞĂƌŝƐ) ŝŶŐĐŽŶĐĞƌŶƚŽƚŚĞŝŶƚĞƌŶĂƟŽŶĂůĐŽŵŵƵŶŝƚLJ͕ŐŝǀĞŶƚŚĞŝƌĞŶǀŝƌŽŶŵĞŶƚĂůŝŵƉĂĐƚĨƌŽŵ ĞdžƚĞŶĚĞĚƵƐĞ͕ĐŽŵďŝŶĞĚǁŝƚŚƟŐŚƚĞŶŝŶŐƐƵƉƉůLJĂŶĚƌŝƐŝŶŐƌĂǁŵĂƚĞƌŝĂůƐĐŽƐƚ͘&Ɛ͕ ,&ƐĂŶĚ,&ƐƵƐĞĚĂƐƌĞĨƌŝŐĞƌĂŶƚƐĂƌĞĞŝƚŚĞƌĂůƌĞĂĚLJĐŽǀĞƌĞĚďLJŐůŽďĂůĂŐƌĞĞ) ŵĞŶƚƐŽƌĐƵƌƌĞŶƚůLJĚŝƐĐƵƐƐĞĚƵŶĚĞƌƉŚĂƐĞͲŽƵƚƐĐŚĞĚƵůĞƐ͘tŚĞƌĞŝŶĚŝǀŝĚƵĂůƌƟĐůĞ ϱĐŽƵŶƚƌŝĞƐŚĂǀĞƚĂŬĞŶƚŚĞůĞĂĚƚŽďĂŶƚŚĞƵƐĞŽĨĂůůŇƵŽƌŝŶĂƚĞĚŐĂƐĞƐŝŶƚŚĞĐŽŵŝŶŐ LJĞĂƌƐ͕ĂŵĂũŽƌŝƚLJŝƐƐƟůůŚĞƐŝƚĂƟŶŐĂƐƚŽǁŚĞƚŚĞƌŶŽŶͲŇƵŽƌŝŶĂƚĞĚƌĞĨƌŝŐĞƌĂŶƚƐĐŽŶƐƟ) ƚƵƚĞĂǀŝĂďůĞĂůƚĞƌŶĂƟǀĞŝŶĂůůĞŶĚͲƵƐĞƐĂŶĚĐŝƌĐƵŵƐƚĂŶĐĞƐ͘ dŚĞƉƌĞƐĞŶƚĐŽůůĞĐƟŽŶŽĨĂƌƟĐůĞƐŝƐŝŶƚĞŶĚĞĚĨŽƌƉŽůŝĐLJŵĂŬĞƌƐŝŶƐĞĂƌĐŚŽĨƐŽůŝĚ ƉƌŽŽĨĨŽƌƚŚĞǀŝĂďŝůŝƚLJŽĨƚŚĞŶĂƚƵƌĂůƐƵďƐƚĂŶĐĞƐĂŵŵŽŶŝĂ͕ĐĂƌďŽŶĚŝŽdžŝĚĞĂŶĚŚLJĚƌŽ) ĐĂƌďŽŶƐƵƐĞĚĂƐƌĞĨƌŝŐĞƌĂŶƚƐŝŶƚŚĞŚĞĂƟŶŐ͕ƌĞĨƌŝŐĞƌĂƟŽŶĂŶĚĐŽŽůŝŶŐŝŶĚƵƐƚƌLJǁŽƌůĚ) ǁŝĚĞ͘dŚĞĐŽŵƉŝůĂƟŽŶǁĂƐƉƌĞƉĂƌĞĚĂŌĞƌĚĞĐŝƐŝŽŶŵĂŬĞƌƐƌĞƉĞĂƚĞĚůLJĞdžƉƌĞƐƐĞĚ ŝŶƚĞƌĞƐƚŝŶŚĂǀŝŶŐŽŶĞƌĞĨĞƌĞŶĐĞĚŽĐƵŵĞŶƚƚŽƐƵŵŵĂƌŝƐĞďĞƐƚͲƉƌĂĐƟĐĞĞdžĂŵƉůĞƐĂŶĚ ĂĚĚƌĞƐƐƚŚĞǀĂƌŝŽƵƐŝƐƐƵĞƐĐƵƌƌĞŶƚůLJƚŚŽƵŐŚƚƚŽƉƌĞǀĞŶƚƚŚĞƵƐĞŽĨŶĂƚƵƌĂůǁŽƌŬŝŶŐ ŇƵŝĚƐŝŶƌƟĐůĞϱĐŽƵŶƚƌŝĞƐ͗ĂǀĂŝůĂďŝůŝƚLJ͕ĐŽƐƚ͕ƚĞĐŚŶŽůŽŐLJ͕ƐĂĨĞƚLJ͕ůĞŐŝƐůĂƟŽŶ͕ƚƌĂŝŶŝŶŐ ΘŬŶŽǁͲŚŽǁĂŶĚŵĂƌŬĞƚͲďĂƐĞĚďĂƌƌŝĞƌƐ͘dŚĞĐŽůůĞĐƟŽŶĂŝŵƐƚŽŚŝŐŚůŝŐŚƚŽƉƉŽƌƚƵŶŝ) ƟĞƐďƵƚůŝŬĞǁŝƐĞŽƵƚůŝŶĞĐŚĂůůĞŶŐĞƐĞŶĐŽƵŶƚĞƌĞĚŝŶĂĚŽƉƟŶŐK*(%+,-ĂŶĚ,ƐĂƐ ƌĞĨƌŝŐĞƌĂŶƚƐ͘ dŚĞĂƌƟĐůĞƐůŝƐƚĞĚŝŶƚŚŝƐĐŽůůĞĐƟŽŶĂƌĞƚĂŬĞŶĨƌŽŵƚŚĞŽŶůŝŶĞŝŶĚƵƐƚƌLJƉůĂƞŽƌŵƐ ǁǁǁ͘ĂŵŵŽŶŝĂϮϭ͘ĐŽŵ͕ǁǁǁ͘ŚLJĚƌŽĐĂƌďŽŶƐϮϭ͘ĐŽŵĂŶĚǁǁǁ͘Zϳϰϰ͘ĐŽŵͲĞĂĐŚ ƐƉĞĐŝĂůŝƐĞĚŽŶŽŶĞƌĞĨƌŝŐĞƌĂŶƚ;ŐƌŽƵƉͿǁŝƚŚůŽǁĞƐƚŐůŽďĂůǁĂƌŵŝŶŐƉŽƚĞŶƟĂůĂŶĚŶŽ ŽnjŽŶĞĚĞƉůĞƟŽŶƉŽƚĞŶƟĂů͘ dŚĞLJǁĞƌĞƉƵďůŝƐŚĞĚŽǀĞƌƚŚĞůĂƐƚϭϮŵŽŶƚŚƐĂŶĚǁĞƌĞƐĞůĞĐƚĞĚĨŽƌƚŚĞŝƌƌĞůĞǀĂŶĐĞ -
Solar Cooling Used for Solar Air Conditioning - a Clean Solution for a Big Problem
Solar Cooling Used for Solar Air Conditioning - A Clean Solution for a Big Problem Stefan Bader Editor Werner Lang Aurora McClain csd Center for Sustainable Development II-Strategies Technology 2 2.10 Solar Cooling for Solar Air Conditioning Solar Cooling Used for Solar Air Conditioning - A Clean Solution for a Big Problem Stefan Bader Based on a presentation by Dr. Jan Cremers Figure 1: Vacuum Tube Collectors Introduction taics convert the heat produced by solar energy into electrical power. This power can be “The global mission, these days, is an used to run a variety of devices which for extensive reduction in the consumption of example produce heat for domestic hot water, fossil energy without any loss in comfort or lighting or indoor temperature control. living standards. An important method to achieve this is the intelligent use of current and Photovoltaics produce electricity, which can be future solar technologies. With this in mind, we used to power other devices, such as are developing and optimizing systems for compression chillers for cooling buildings. architecture and industry to meet the high While using the heat of the sun to cool individual demands.” Philosophy of SolarNext buildings seems counter intuitive, a closer look AG, Germany.1 into solar cooling systems reveals that it might be an efficient way to use the energy received When sustainability is discussed, one of the from the sun. On the one hand, during the time first techniques mentioned is the use of solar that heat is needed the most - during the energy. There are many ways to utilize the winter months - there is a lack of solar energy. -
Air Conditioning and Refrigeration Chronology
Air Conditioning and Refrigeration C H R O N O L O G Y Significant dates pertaining to Air Conditioning and Refrigeration revised May 4, 2006 Assembled by Bernard Nagengast for American Society of Heating, Refrigerating and Air Conditioning Engineers Additions by Gerald Groff, Dr.-Ing. Wolf Eberhard Kraus and International Institute of Refrigeration End of 3rd. Century B.C. Philon of Byzantium invented an apparatus for measuring temperature. 1550 Doctor, Blas Villafranca, mentioned process for cooling wine and water by adding potassium nitrate About 1597 Galileo’s ‘air thermoscope’ Beginning of 17th Century Francis Bacon gave several formulae for refrigeration mixtures 1624 The word thermometer first appears in literature in a book by J. Leurechon, La Recreation Mathematique 1631 Rey proposed a liquid thermometer (water) Mid 17th Century Alcohol thermometers were known in Florence 1657 The Accademia del Cimento, in Florence, used refrigerant mixtures in scientific research, as did Robert Boyle, in 1662 1662 Robert Boyle established the law linking pressure and volume of a gas a a constant temperature; this was verified experimentally by Mariotte in 1676 1665 Detailed publication by Robert Boyle with many fundamentals on the production of low temperatures. 1685 Philippe Lahire obtained ice in a phial by enveloping it in ammonium nitrate 1697 G.E. Stahl introduced the notion of “phlogiston.” This was replaced by Lavoisier, by the “calorie.” 1702 Guillaume Amontons improved the air thermometer; foresaw the existence of an absolute zero of temperature 1715 Gabriel Daniel Fahrenheit developed mercury thermoneter 1730 Reamur introduced his scale on an alcohol thermometer 1742 Anders Celsius developed Centigrade Temperature Scale, later renamed Celsius Temperature Scale 1748 G. -
Carrier Transicold to Highlight Sustainability Solutions at IAA Show 2016 Stand E15, Hall 27, IAA Show, Hanover, Germany, 22 – 29 September 2016
For Immediate Release Contact: Andy Hemphill / Beth Laws For Carrier Transicold 020 8647 4467 [email protected] [email protected] Carrier Transicold to Highlight Sustainability Solutions at IAA Show 2016 Stand E15, Hall 27, IAA Show, Hanover, Germany, 22 – 29 September 2016 WARRINGTON, England, Aug. 25, 2016 — Carrier Transicold will introduce visitors to a prototype natural refrigerant trailer unit as well as a new generation of engineless transport refrigeration systems at the 2016 IAA Show in Hanover, Germany. Both technologies highlight Carrier’s commitment to helping fleets meet efficiency and sustainability goals. Carrier Transicold, which operates in the UK as Carrier Transicold UK, is a part of UTC Climate, Controls & Security, a unit of United Technologies Corp. (NYSE: UTX). The prototype natural refrigerant trailer unit will be making its IAA debut, mounted to a Rohr trailer and displayed on the Rohr stand (F09) in Hall 27. Following the IAA Show, it will enter service on a three-year technology field trial with German retailer Netto Marken-Discount. The prototype unit stands apart from conventional transport refrigeration technology for operating exclusively with carbon dioxide (CO2) refrigerant in a closed- loop system. CO2 is a safe and non-ozone depleting gas with a global warming potential (GWP) of one, delivering a massive reduction in F-Gases and making it the baseline against which other refrigerants are measured. Carrier Transicold will also showcase the new engineless transport refrigeration units that have joined its range following the strategic acquisition of Dutch firm, TRS Transportkoeling b.v. (TRS). The Carrier stand will feature an example of the ground- breaking ECO-DRIVE power module, which utilises the power generated by a truck’s own Euro VI diesel engine to drive a host refrigeration unit, removing the need for a secondary engine. -
1. Is Earth's Ozone Layer Still at Risk?
Volume XVIII | 30 April 2018 In this issue: 1. Is Earth’s ozone layer still at risk? 5 questions answered 2. Hydrochlorofluorocarbon market set explosive growth to 2025 3. Fast mitigation to save lives and the planet in Latin America and the Caribbean 4. USEPA to start new rule-making on HFCs 5. HVAC manufacturers optimistic about the future of the refrigeration market 6. Reclamation of R-22 weakens in 2017, resulting in refrigerant concern 7. Oman and Jordan share experience on training and certification in the refrigeration and air conditioning 8. Cooling India with less warming: Affordable & Efficient ACs 9. NEW REPORT: Removing ‘F-gases’ could slow global warming by 0.5 degrees 10. ODS banks: Over 70 participants learned in GIZ webinar about environmental friendly disposal of old appliances in RAC sector 1. Is Earth’s ozone layer still at risk? 5 questions answered Editor’s note: Curbing damage to Earth’s protective ozone layer is widely viewed as one of the most important successes of the modern environmental era. Earlier this year, however, a study reported that ozone concentrations in the lower level of the stratosphere had been falling since the late 1990s – even though the Montreal Protocol, a global treaty to phase out ozone-depleting chemicals, had been in effect since 1989. This raised questions about whether and how human activities could still be damaging the ozone layer. Atmospheric chemist A.R. Ravishankara, who co-chaired a United Nations/World Meteorological Organization Scientific Assessment panel on stratospheric ozone from 2007 to 2015, provides perspective. What’s the prevailing view among atmospheric scientists today about the state of the ozone layer? The overall picture is clear: The Montreal Protocol reduced use of ozone-depleting chemicals and will lead to healing of the ozone layer.