Burrows of Semi-Fossorial Vertebrates in Upland Communities of Central Florida: Their Architecture, Dispersion and Ecological Consequences

Total Page:16

File Type:pdf, Size:1020Kb

Burrows of Semi-Fossorial Vertebrates in Upland Communities of Central Florida: Their Architecture, Dispersion and Ecological Consequences BURROWS OF SEMI-FOSSORIAL VERTEBRATES IN UPLAND COMMUNITIES OF CENTRAL FLORIDA: THEIR ARCHITECTURE, DISPERSION AND ECOLOGICAL CONSEQUENCES By ALTON EMORY KINLAW A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2006 1 To my daughter Skye Gabrielle Kinlaw, who has accomplished more in her short 11 years than most adults do in a lifetime. 2 ACKNOWLEDGMENTS I owe a major professional and personal debt to my chair, Michael Moulton for his guidance. In particular, at a time when I was discouraged due to health and financial reasons, he encouraged me to stay the course. Because of his quantitative background in orthithology, herpetology, and mammalogy, he has a unique intellectual perspective about vertebrate ecology and always challenged me to ask the right questions. Additionally, he provided me with a balance, Sherman live traps, and microscope. My co-chair, Dick Franz, shared his comprehensive knowledge about natural history of Florida fauna, and served as project director of the Avon Park project issues. He encouraged me to write the Avon vertebrate diversity chapter and carefully critiqued all of my papers. My research is based upon the theoretical background developed by Jim Nichols and his colleagues at Patuxent Wildlife Research Center. Jerry Butler, UF Department of Entomology and Nematology, provided sticky traps and “Tick Sucker” vacuums, reprints, and freely shared his extensive knowledge of insect fauna that use tortoise burrows. Ken Portier graciously stayed on my committee after leaving UF for a position in Atlanta, and allowed me to visit him with my questions. Katie Sieving always provided thoughtful advice. Willie Harris, UF Department of Soil Science was the visionary who encouraged me to think of the subsurface soil layer as a three dimensional life environment, and this ultimately led me to conduct the ground penetrating radar investigations. Sam Jones provided equipment and a truck and helped in many ways during the early part of my field work. George Tanner loaned me an ORV during the early part of my field work. 3 Thanks are extended to W.R.J. Dean, Joel Brown, and Fenton Kay for critically reviewing the material in chapter 2. The Avon Park research was supported by the Natural Resources Flight of the Avon Park Air Force Bombing Range (Project RWO-169). Pat Walsh assisted with many operational aspects of the field work, and Peg Margosian provided valuable GIS support. I thank the Florida Cooperative Wildlife Research Unit for its assistance in managing the funds used for the Avon Park research. For the gopher tortoise chapter, I thank the members of the survey team: Dick Franz (Director), Rex Kinlaw, Kenny Koehler, Richard Bubba Owen, Chris O’Brien, David Maehr, and Lora Smith. For the armadillo chapter, a special debt of gratitude is owed Gary White, who both provided the SURVIV code he used in the White and Bennetts (1996) paper and corrected my SURVIV code. C. Krebs answered questions about his computer program. Marinela Capanu, Department of Statistics, IFAS, University of Florida, provided statistical support. Jennifer Brown shared information about her possum simulation study in New Zealand. James Layne reviewed an early draft of the manuscript. C. Krebs answered questions about his computer program. Colleen McDonough clarified plot data from her north Florida study. For the burrow architecture chapter, Jerry Fensch of Florida Environmental allowed me to foam tortoise burrows in a tortoise relocation project near Clermont, and made arrangements for a backhoe to dig the burrows up. Larry Conyers, University of Denver, and Mark Grasmusen, University of Miami, brought their ground penetrating radar equipment to my study area for the radar survey. 4 For the Avon Park vertebrate diversity chapter, Dick Franz, Bubba Owen, and Chris O’Brien identified many of the specimens. Dick Franz and Bubba Owen provided slides and clarified aspects of the sampling process. Kenny Krysko provided access to his unpublished range maps of herpetofauna of Florida. For other aspects of my research, the following biologists (and their affiliation) provided access to the following study areas: Anne Malatesta (Lake Wales Ridge State Forest); Boyd Blihovde and Bubba Owen (Wekiwa Springs State Park), Carlton Hall (Dynamac Corporation, Kennedy Space Center) and Marc Epstein (Merritt Island National Wildlife Refuge), the natural resources staff at Ocala National Forest, especially Janet Henshee. Bob Giguere, Executive Producer of WMFE Channel 24 in Orlando, filmed my project as part of his documentary, “Wekiwa-Legacy or Lost?” Herb Kalmbacker (IFAS) loaned me seed shakers. Dave Almquist, Entomology, shared his knowledge regarding beatle taxonomy and his “burrow facade trap.” Louis Kelemen of Zelwin Farms built a small “tick sucker” vacuum for me, and Bill Kelly provided me with many sources for the many supplies I needed. Paul Schumacher of Hughes Supply, Inc of Orlando not only provided 8 and 10 in PVC pipe (for pitfall traps) gratis, but spent time cutting sections for me. My wife Monnie, while not a biologist, had an uncanny sense for what would and would not work with my traps. Her background as an agricultural nurse proved to be helpful in uncountable ways, especially with my history of Lyme disease. My daughter Skye was a very colorful and chatty field assistant on several occasions, and enthralled everyone with her comments about “getting dirty as a pig.” 5 TABLE OF CONTENTS page ACKNOWLEDGEMENTS…………………………………………………………... 3 LIST OF TABLES…………………………………………………………………… 9 LIST OF FIGURES………………………………………………………………….. 11 ABSTRACT………………………………………………………………………….. 14 CHAPTER 1 INTRODUCTION………………………………………………………………. 16 2 A REVIEW OF BURROWING BY SEMI-FOSSORIAL VERTEBRATES IN ARID ENVIRONMENTS ............................................... 19 Introduction: Fauna of Arid Regions …………………………………… 19 Methods…………………………………………………………………… 20 Results and Discussion…………………………………………………… 21 Natural History…………………………………………………… 21 Functional Ecology, Burrow Architecture, 25 and Burrowing Behavior…….……………………………… Classical Ecological Issues………………………………………… 31 Animals as Engineers and Resulting Impacts… 33 Geomorphology…………………………………………………… 36 Pedological Effects of Burrowing on The Soil…………………… 37 Pedological Effects of the Soil Type on Architecture and Species Distribution…………………………………… 38 Vegetation Effects………………………………………………… 39 Animal Community Ecology……………………………………… 39 Future Research and a Conceptual Model ………………..……………… 41 3 SAMPLING APPROACHES TO ESTIMATE DENSITY OF GOPHER TORTOISES (Gopherus polyphemus) IN CENTRAL FLORIDA …….……… 46 Limitations of Current Gopher Tortoise Burrow Census Methods……….. 46 Materials and Methods……………………………………………………. 50 Results…………………………………………………………………….. 55 Discussion………………………………………………………………… 57 6 4 BURROW DISPERSION OF ARMADILLOS (Dasypus novemcientus) AT AVON PARK AIR FORCE RANGE, FLORIDA ……………………………………………………………………..... 70 Introduction: Armadillo Life History…………………………………........ 70 Study Area…………………………………………………………………. 72 Methods………………………………………………………………......... 72 Results……………………………………………………………………… 76 Discussion………………………………………………………………… 77 5 ARCHITECTURE OF GOPHER TORTOISE BURROWS DETERMINED BY 2D GROUND PENETRATING RADAR………………… 86 Introduction: Gopher Tortoise Burrows…………………………………..... 86 Ground Penetrating Radar Methodology………………………………… 87 Field Site Description and Burrow Selection……………………………… 88 GPR Collection Procedure………………………………………………… 90 ImageAnalysis……………………………………………………………… 93 Results……………………………………………………………………… 94 Discussion: Advantages and Limitations of GPR………………………… 95 6 BIOLOGICAL APPLICATIONS OF FULL RESOLUTION 3D GROUND PENETRATING RADAR IMAGING……………………………… 105 Introduction………………………………………………………………… 105 Methods…………………………………………………………………… 105 Results……………………………………………………………………… 106 Discussion………………………………………………………………… 106 7 OCCUPANCY OF FAUNA INHABITING GOPHER TORTOISE BURROWS LOCATED IN SCRUB AND SANDHILL VEGETATION OF CENTRAL FLORIDA……………………………………………………… 116 Introduction……………………………………………………………… 116 Study Areas……………………………………………………………… 117 Sampling Methods………………………………………………………… 118 Results…………………………………………………………………… 121 Discussion………………………………………………………………… 122 8 VERTEBRATE SPECIES RICHNESS AT AVON PARK AIR FORCE RANGE, FLORIDA ESTIMATED WITH THE JACKKNIFE…………………………………………………………………… 139 Introduction: Species Richness Estimation ……………………………… 139 7 Methods…………………………………………………………………… 143 Results……………………………………………………………………… 144 Discussion………………………………………………………………… 144 True Presence (True Positives)…………………………………… 144 False Positives …………………………………………………… 145 True Negatives …………………………………………………… 145 False Negatives and Detection Probability………………………… 147 Availability………………………………………………………… 148 Sampling Bias of Methods Used…………………………………… 151 Species Missed Due to Inappropriate or Insufficient Methods……………………………………… 152 Species Characteristics, including Rareness……………………… 154 When is a Species “Effectively Not There”?..................................... 155 Conclusion………………………………………………………………… 157 9 SUMMARY…………………………………………………………………… 166 LIST OF REFERENCES……………………………………………………………… 169 BIOGRAPHICAL SKETCH………………………………………………………… 194 8 LIST OF TABLES Table page 2-1 Diversity of animal fauna found in burrows in semi-arid environments or environments with dry, sandy soils………………………..43 3-1 Summary statistics for Gopher Tortoise burrow quadrat study conducted in four upland habitats at Avon Park Air Force Range,
Recommended publications
  • Big Creek Lepidoptera Checklist
    Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae
    [Show full text]
  • The Ontogeny and Distribution of Countershading in Colonies of the Naked Mole-Rat (Heterocephalus Glaber)
    J. Zool., Lond. (2001) 253, 351±357 # 2001 The Zoological Society of London Printed in the United Kingdom The ontogeny and distribution of countershading in colonies of the naked mole-rat (Heterocephalus glaber) Stanton Braude1*, Deborah Ciszek2, Nancy E. Berg3 and Nancy Shefferly4 1 International Center for Tropical Ecology at UMSL and Washington University, St Louis, MO 63130, U.S.A. 2 University of Michigan, Ann Arbor, MI 48109-1079, U.S.A. 3 Washington University, St Louis, MO 63130, U.S.A. 4 Oakland Community College, Farmington Hills, MI 48334, U.S.A. (Accepted 22 February 2000) Abstract Most naked mole-rats Heterocephalus glaber are countershaded, with purple-grey dorsal but pale pink ventral skin. The exceptions to this coloration pattern are uniformly pink, and include newborn pups, most queens and breeding males, and very old animals. Countershading begins to appear at 2±3 weeks of age and begins to disappear at c. 7 years of age. Countershading may provide camou¯age when young naked mole-rats are above ground attempting to disperse. Therefore, reproductives and older workers may lose this coloration once they are unlikely to leave the burrow. Alternative hypotheses for pigmentation that we considered include: thermoregulation, and protection from abrasion or from damaging ultraviolet radiation. These hypotheses are not necessarily mutually exclusive, but do lead to different predictions regarding the development of pigmentation and which colony members should be countershaded. Key words: Heterocephalus glaber, naked mole-rat, countershading, adaptive coloration INTRODUCTION and tail, rows of brushes between the toes, and scattered bristles (Thigpen, 1940; Daly & Buffenstein, 1998).
    [Show full text]
  • André Nel Sixtieth Anniversary Festschrift
    Palaeoentomology 002 (6): 534–555 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY PE Copyright © 2019 Magnolia Press Editorial ISSN 2624-2834 (online edition) https://doi.org/10.11646/palaeoentomology.2.6.1 http://zoobank.org/urn:lsid:zoobank.org:pub:25D35BD3-0C86-4BD6-B350-C98CA499A9B4 André Nel sixtieth anniversary Festschrift DANY AZAR1, 2, ROMAIN GARROUSTE3 & ANTONIO ARILLO4 1Lebanese University, Faculty of Sciences II, Department of Natural Sciences, P.O. Box: 26110217, Fanar, Matn, Lebanon. Email: [email protected] 2State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. 3Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France. 4Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain. FIGURE 1. Portrait of André Nel. During the last “International Congress on Fossil Insects, mainly by our esteemed Russian colleagues, and where Arthropods and Amber” held this year in the Dominican several of our members in the IPS contributed in edited volumes honoring some of our great scientists. Republic, we unanimously agreed—in the International This issue is a Festschrift to celebrate the 60th Palaeoentomological Society (IPS)—to honor our great birthday of Professor André Nel (from the ‘Muséum colleagues who have given us and the science (and still) national d’Histoire naturelle’, Paris) and constitutes significant knowledge on the evolution of fossil insects a tribute to him for his great ongoing, prolific and his and terrestrial arthropods over the years.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Morphology and Burrowing Energetics of Semi-Fossorial Skinks (Liopholis Spp.) Nicholas C
    © 2015. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2015) 218, 2416-2426 doi:10.1242/jeb.113803 RESEARCH ARTICLE Morphology and burrowing energetics of semi-fossorial skinks (Liopholis spp.) Nicholas C. Wu1,*, Lesley A. Alton1, Christofer J. Clemente1, Michael R. Kearney2 and Craig R. White1 ABSTRACT mouse (Notomys alexis), can expend 5000 times more energy −1 −1 Burrowing is an important form of locomotion in reptiles, but no study burrowing than running (7.1 kJ m compared with 1.2 J m ; has examined the energetic cost of burrowing for reptiles. This is White et al., 2006b). Despite the considerable energetic cost, significant because burrowing is the most energetically expensive burrowing has many benefits. These include food storage, access to mode of locomotion undertaken by animals and many burrowing underground food, a secure micro-environment free from predators species therefore show specialisations for their subterranean lifestyle. and extreme environmental gradients (Robinson and Seely, 1980), We examined the effect of temperature and substrate characteristics nesting (Seymour and Ackerman, 1980), hibernation (Moberly, (coarse sand or fine sand) on the net energetic cost of burrowing 1963) and enhanced acoustics to facilitate communication (Bennet- (NCOB) and burrowing rate in two species of the Egernia group of Clark, 1987). skinks (Liopholis striata and Liopholis inornata) compared with other Animals utilise a range of methods to burrow through soil, burrowing animals. We further tested for morphological specialisations depending on soil characteristics (density, particle size and moisture among burrowing species by comparing the relationship between content) and body morphology (limbed or limbless).
    [Show full text]
  • Conceptual Issues in Phylogeny, Taxonomy, and Nomenclature
    Contributions to Zoology, 66 (1) 3-41 (1996) SPB Academic Publishing bv, Amsterdam Conceptual issues in phylogeny, taxonomy, and nomenclature Alexandr P. Rasnitsyn Paleontological Institute, Russian Academy ofSciences, Profsoyuznaya Street 123, J17647 Moscow, Russia Keywords: Phylogeny, taxonomy, phenetics, cladistics, phylistics, principles of nomenclature, type concept, paleoentomology, Xyelidae (Vespida) Abstract On compare les trois approches taxonomiques principales développées jusqu’à présent, à savoir la phénétique, la cladis- tique et la phylistique (= systématique évolutionnaire). Ce Phylogenetic hypotheses are designed and tested (usually in dernier terme s’applique à une approche qui essaie de manière implicit form) on the basis ofa set ofpresumptions, that is, of à les traits fondamentaux de la taxonomic statements explicite représenter describing a certain order of things in nature. These traditionnelle en de leur et particulier son usage preuves ayant statements are to be accepted as such, no matter whatever source en même temps dans la similitude et dans les relations de evidence for them exists, but only in the absence ofreasonably parenté des taxons en question. L’approche phylistique pré- sound evidence pleading against them. A set ofthe most current sente certains avantages dans la recherche de réponses aux phylogenetic presumptions is discussed, and a factual example problèmes fondamentaux de la taxonomie. ofa practical realization of the approach is presented. L’auteur considère la nomenclature A is made of the three
    [Show full text]
  • Lepidoptera, Incurvariidae) with Two New Species from China and Japan
    Zootaxa 4927 (2): 209–233 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4927.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:96B9981B-01B5-4828-A4C6-E2E4A08DB8F2 Review of the genus Vespina (Lepidoptera, Incurvariidae) with two new species from China and Japan TOSHIYA HIROWATARI1*, SADAHISA YAGI1, ISSEI OHSHIMA2, GUO-HUA HUANG3 & MIN WANG4 1Entomological laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan. [email protected]; https://orcid.org/0000-0002-4261-1219 2Department of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522 Japan. [email protected]; https://orcid.org/0000-0001-8295-9749 3Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, Hunan, China. [email protected]; https://orcid.org/0000-0002-6841-0095 4Department of Entomology, South China Agricultural University, Guangzhou 510640, Guangdong, China. [email protected]; https://orcid.org/0000-0001-5834-4058 *Corresponding author. [email protected]; https://orcid.org/0000-0002-6839-2229 Abstract Asian species of the genus Vespina Davis, 1972 (Lepidoptera, Incurvariidae) are mainly reviewed. Vespina meridiana Hirowatari & Yagi sp. nov. from the Ryukyu Islands, Japan, and Vespina sichuana Hirowatari, Huang & Wang sp. nov. from Sichuan, China, are described. The previously known Vespina species are associated with plants from the Fagaceae family on the western coast of the USA and East Asia and with Sapindaceae (Aceraceae) in eastern Europe.
    [Show full text]
  • Lepidoptera) from Siberia and the Russian Far East, with Descriptions of Two New Species·
    © Entomologica Fennica. 20 September 1996 lncurvariidae and Prodoxidae (Lepidoptera) from Siberia and the Russian Far East, with descriptions of two new species· Mikhail V. Kozlov Kozlov, M.V. 1996: Incurvariidae and Prodoxidae (Lepidoptera) from Siberia and the Russian Far East, with descriptions of two new species - Entomol. Fennica 7:55-62. The Incurvariidae and Prodoxidae of eastern Russia total 19 species in eight genera. Phylloporia bistrigella (Haworth), now reported from Yukon, is tentatively included in the list, although it has not yet been discovered in the Eastern Palaearctic. Four species previously known only from Europe, lncurvaria vetulella (Zetterstedt), I. circulella (Zetterstedt), Lampronia luzella (Hubner), and L. provectella (Heyden) are reported from Siberia; lncurvaria kivatshella Kutenkova is synonymized with 1. vetulella. Lampronia sakhalinella sp. n. is described from Sakhalin. L. altaica Zagulajev is reported from North Korea; the female postabdomen and genitalia of this species are described and figured. The genus Greya Busck, previously known only from North America, is reported from the Palaearctic, with G. variabilis Davis & Pellmyr and G. kononenkoi sp. n. recorded from the Chukchi Peninsula, and G. marginimacu­ lata (Issiki) comb. n. originally described from Japan is expected from the Russian Far East. Among the nine species not known from Europe, one species is reported from Altai only; two show a Beringian distribution; six species are associated with the southern areas of the Far East and Japan, and one is distributed from the Irkutsk region to Sakhalin and Primorye. Mikhail V. Kozlov, Laboratory of Ecological Zoology, University of Turku, FIN-20500 Turku, Finland Received 23 February 1994, accepted 2 November 1995 1.
    [Show full text]
  • Nine-Banded Armadillo (Dasypus Novemcinctus) Michael T
    Nine-banded Armadillo (Dasypus novemcinctus) Michael T. Mengak Armadillos are present throughout much of Georgia and are considered an urban pest by many people. Armadillos are common in central and southern Georgia and can easily be found in most of Georgia’s 159 counties. They may be absent from the mountain counties but are found northward along the Interstate 75 corridor. They have poorly developed teeth and limited mobility. In fact, armadillos have small, peg-like teeth that are useful for grinding their food but of little value for capturing prey. No other mammal in Georgia has bony skin plates or a “shell”, which makes the armadillo easy to identify. Just like a turtle, the shell is called a carapace. Only one species of armadillo is found in Georgia and the southeastern U.S. However, 20 recognized species are found throughout Central and South America. These include the giant armadillo, which can weigh up to 130 pounds, and the pink fairy armadillo, which weighs less than 4 ounces. Taxonomy Order Cingulata – Armadillos Family Dasypodidae – Armadillo Nine-banded Armadillo – Dasypus novemcinctus The genus name Dasypus is thought to be derived from a Greek word for hare or rabbit. The armadillo is so named because the Aztec word for armadillo meant turtle-rabbit. The species name novemcinctus refers to the nine movable bands on the middle portion of their shell or carapace. Their common name, armadillo, is derived from a Spanish word meaning “little armored one.” Figure 1. Nine-banded Armadillo. Photo by author, 2014. Status Armadillos are considered both an exotic species and a pest.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    UNDERSTANDING CARNIVORAN ECOMORPHOLOGY THROUGH DEEP TIME, WITH A CASE STUDY DURING THE CAT-GAP OF FLORIDA By SHARON ELIZABETH HOLTE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Sharon Elizabeth Holte To Dr. Larry, thank you ACKNOWLEDGMENTS I would like to thank my family for encouraging me to pursue my interests. They have always believed in me and never doubted that I would reach my goals. I am eternally grateful to my mentors, Dr. Jim Mead and the late Dr. Larry Agenbroad, who have shaped me as a paleontologist and have provided me to the strength and knowledge to continue to grow as a scientist. I would like to thank my colleagues from the Florida Museum of Natural History who provided insight and open discussion on my research. In particular, I would like to thank Dr. Aldo Rincon for his help in researching procyonids. I am so grateful to Dr. Anne-Claire Fabre; without her understanding of R and knowledge of 3D morphometrics this project would have been an immense struggle. I would also to thank Rachel Short for the late-night work sessions and discussions. I am extremely grateful to my advisor Dr. David Steadman for his comments, feedback, and guidance through my time here at the University of Florida. I also thank my committee, Dr. Bruce MacFadden, Dr. Jon Bloch, Dr. Elizabeth Screaton, for their feedback and encouragement. I am grateful to the geosciences department at East Tennessee State University, the American Museum of Natural History, and the Museum of Comparative Zoology at Harvard for the loans of specimens.
    [Show full text]
  • Ecological Roles and Conservation Challenges of Social, Burrowing
    REVIEWS REVIEWS REVIEWS Ecological roles and conservation challenges 477 of social, burrowing, herbivorous mammals in the world’s grasslands Ana D Davidson1,2*, James K Detling3, and James H Brown1 The world’s grassland ecosystems are shaped in part by a key functional group of social, burrowing, herbivorous mammals. Through herbivory and ecosystem engineering they create distinctive and important habitats for many other species, thereby increasing biodiversity and habitat heterogeneity across the landscape. They also help maintain grassland presence and serve as important prey for many predators. However, these burrowing mammals are facing myriad threats, which have caused marked decreases in populations of the best-studied species, as well as cascading declines in dependent species and in grassland habitat. To prevent or mitigate such losses, we recommend that grasslands be managed to promote the compatibility of burrowing mammals with human activities. Here, we highlight the important and often overlooked ecological roles of these burrowing mammals, the threats they face, and future management efforts needed to enhance their populations and grass- land ecosystems. Front Ecol Environ 2012; 10(9): 477–486, doi:10.1890/110054 (published online 28 Sep 2012) rassland ecosystems worldwide are fundamentally Australia (Figure 1). Often living in colonies ranging Gshaped by an underappreciated but key functional from tens to thousands of individuals, these mammals col- group of social, semi-fossorial (adapted to burrowing and lectively transform grassland landscapes through their bur- living underground), herbivorous mammals (hereafter, rowing and feeding activity. By grouping together socially, burrowing mammals). Examples include not only the phy- they also create distinctive habitat patches that serve as logenetically similar species of prairie dogs of North areas of concentrated prey for many predators.
    [Show full text]
  • Phylogeny of Endopterygote Insects, the Most Successful Lineage of Living Organisms*
    REVIEW Eur. J. Entomol. 96: 237-253, 1999 ISSN 1210-5759 Phylogeny of endopterygote insects, the most successful lineage of living organisms* N iels P. KRISTENSEN Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen 0, Denmark; e-mail: [email protected] Key words. Insecta, Endopterygota, Holometabola, phylogeny, diversification modes, Megaloptera, Raphidioptera, Neuroptera, Coleóptera, Strepsiptera, Díptera, Mecoptera, Siphonaptera, Trichoptera, Lepidoptera, Hymenoptera Abstract. The monophyly of the Endopterygota is supported primarily by the specialized larva without external wing buds and with degradable eyes, as well as by the quiescence of the last immature (pupal) stage; a specialized morphology of the latter is not an en­ dopterygote groundplan trait. There is weak support for the basal endopterygote splitting event being between a Neuropterida + Co­ leóptera clade and a Mecopterida + Hymenoptera clade; a fully sclerotized sitophore plate in the adult is a newly recognized possible groundplan autapomorphy of the latter. The molecular evidence for a Strepsiptera + Díptera clade is differently interpreted by advo­ cates of parsimony and maximum likelihood analyses of sequence data, and the morphological evidence for the monophyly of this clade is ambiguous. The basal diversification patterns within the principal endopterygote clades (“orders”) are succinctly reviewed. The truly species-rich clades are almost consistently quite subordinate. The identification of “key innovations” promoting evolution­
    [Show full text]