SUPPLEMENTARY DOCUMENT Survival transcriptome in the coenzyme Q10 deficiency syndrome is acquired by epigenetic modifications: a modelling study for human coenzyme Q10 deficiencies. Daniel J. M. Fernández-Ayala1,5, Ignacio Guerra1,5, Sandra Jiménez-Gancedo1,5, Maria V. Cascajo1,5, Angela Gavilán1,5, Salvatore DiMauro2, Michio Hirano2, Paz Briones3,5, Rafael Artuch4,5, Rafael de Cabo6, Leonardo Salviati7,8 and Plácido Navas1,5,8 1Centro Andaluz de Biología del Desarrollo (CABD-CSIC), Universidad Pablo Olavide, Seville, Spain 2Department of Neurology, Columbia University Medical Center, New York, NY, USA 3Instituto de Bioquímica Clínica, Corporació Sanitaria Clínic, Barcelona, Spain 4Department of Clinical Biochemistry, Hospital Sant Joan de Déu, Barcelona, Spain 5CIBERER, Instituto de Salud Carlos III, Spain 6Laboratory of Experimental Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA 7Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Italy 8 Senior authorship is shared by LS and PN Corresponding author Plácido Navas Tel (+34)954349381; Fax (+34)954349376 e-mail:
[email protected] 1 SUPPLEMENTARY DATA Identification of genes, biological process and pathways regulated in CoQ10 deficiency. Data analysis for each gene in the array compared the signal of each patient’s fibroblast mRNA with the signal of each control fibroblast mRNA, over which the statistical analyses were performed. MAS5 algorithm and SAM software were performed in order to select those probe sets with significant differences in gene expression. Approximately from 6% to 11% of the probe sets present in the array were picked with a significant fold change higher than 1.5, while the false discovery rate (FDR) was maintained lower than 5%, the maximum value to consider changes as significant [1].