Divisibility in Integral Domains

Total Page:16

File Type:pdf, Size:1020Kb

Divisibility in Integral Domains Divisibility in Integral Domains Recall: A commutative ring with unity D is called an integral domain if D contains no zero divisors. That is, if a, b D and ab =0,wehaveeithera =0or b =0. 2 Recall: An element x of a ring R is called a unit if there is an element y in R such that xy = yx =1,where1isunityinR. Some examples of integral domains: 1. All fields, such as Q, R, C,andZp where p is prime 2. The ring of integers Z 3. The ring of polynomials D[x] if D is an integral domain 4. The Gaussian integers, a + bi : a, b Z { 2 } Definition Let D be an integral domain. If a, b D,wesaythata is a divisor of b,orthatb is a multiple of a,orthata b,ifthere is an element x in D such that ax =2b. | Example In Z, 3 is a divisor of 18, but 4 is not, since there is no integer x such that 4x = 18. NOTE THE DIFFERENCE FROM OUR USUAL DEFINITION: Example In R, 3 and 4 are both divisors of 18, since there are real numbers x and y such that 3x = 18 and 4y = 18. Definition Let D be an integral domain. If a, b D and a = ub,whereu is a unit in D,thena and b are called associates. Equivalently, a and b are associates if both2 a b and b a. | | Example In Z,1and-1areassociates. Definition A nonzero element a in a ring R is called an irreducible if a is not a unit and if whenever a = bc,theneitherb or c is a unit in R.Equivalently,ifa is an irreducible if whenever a = bc,theneithera b or a c. | | Definition A nonzero element a in a ring R is called prime if a is not a unit and if a bc implies either a b or a c. | | | Theorem 10 Every prime element x of an integral domain D is an irreducible. Proof Suppose x is prime in D, and suppose x = bc for some b, c D.Sincex = bc,thenclearlyx bc, so by the definition of prime, either x b or x c.Hencex is irreducible. 2 | | | Note that we still need the distinct definitions, because primes are not necessarily irreducible if we’re not in an integral domain. Example 3isirreducibleinZ, since it is not a unit and if 3=bc with b, c Z,theneitherb = 1 and c = 3 or b = 3 and c = 1;thatis,either3 b or 3 c.It’salsoprime:if3 bc,theneither32b or 3 c. ± ⌥ ± ⌥ | | | | | Math 280 Fall 2015 Part 3: Rings There are lots of interesting examples to consider here, but we’ll leave some for next semester. Just one last thing for Math 280: Definition Suppose D is an integral domain. If 1. we can write every nonzero, non-unit element x D as a product of irreducibles, and 2. this factorization into irreducibles is unique, up to2 associates and order then we say D is a unique factorization domain, often denoted UFD. Example Our most convenient example here is the integers, and it’s the one that will be the most useful to any future teachers. We know we can factor numbers as a product of primes: 24 = 2 2 2 3 · · · and that there’s only one way to do so, except for rearranging the terms (we wouldn’t consider 2 2 3 2 to be a new factorization). The “up to associates” part means that we also don’t consider 2 2 2 3 to be a· new· factorization.· ·− ·− · Example Any field F would also be a UFD, as would F [x]. This means the polynomials in x with real coefficients form a UFD. So the entire semester just brought us up to Algebra I: polynomials can be factored. This may seem trivial (and annoying) but there are some important points here, particularly if you’ll be teaching math someday: 1. You’ve probably encountered polynomials that “can not be factored,” like x2 +3x +1. If you wanted to find the zeros 3 p13 of such a polynomial, you’d have used the quadratic formula, and found that the zeros are − ±2 . But the polynomial can be factored, just not with integers: 3+p13 3 p13 x2 +3x +1= x + x + − 2 ! 2 ! So what we mean when we say it can’t be factored is that it can’t be factored in Z[x]. 2. Suppose you’re teaching your algebra class to factor, and you ask for the factorization of 2x2 +6x +4.Onestudent suggests (2x + 4)(x + 1), while another suggests (x + 2)(2x + 2), and a third suggest 2(x + 2)(x + 1). You’ve got a good class: they are all correct, though only the third has factored completely. Just know that there is only one way to factor a polynomial, so if you found two, they are equivalent (up to associates and order). 3. You’ll also have students suggest that x(x + 3) + 2 is a perfectly valid representation of x2 +3x +2, and they’re right. It is equivalent. However, it is not factored, which really does mean writing a number or a polynomial (or any other ring element) as a product of irreducibles in the ring. The student’s representation is not factored, as it is not a product of irreducibles. Math 280 Fall 2015 Part 3: Rings.
Recommended publications
  • Exercises and Solutions in Groups Rings and Fields
    EXERCISES AND SOLUTIONS IN GROUPS RINGS AND FIELDS Mahmut Kuzucuo˘glu Middle East Technical University [email protected] Ankara, TURKEY April 18, 2012 ii iii TABLE OF CONTENTS CHAPTERS 0. PREFACE . v 1. SETS, INTEGERS, FUNCTIONS . 1 2. GROUPS . 4 3. RINGS . .55 4. FIELDS . 77 5. INDEX . 100 iv v Preface These notes are prepared in 1991 when we gave the abstract al- gebra course. Our intention was to help the students by giving them some exercises and get them familiar with some solutions. Some of the solutions here are very short and in the form of a hint. I would like to thank B¨ulent B¨uy¨ukbozkırlı for his help during the preparation of these notes. I would like to thank also Prof. Ismail_ S¸. G¨ulo˘glufor checking some of the solutions. Of course the remaining errors belongs to me. If you find any errors, I should be grateful to hear from you. Finally I would like to thank Aynur Bora and G¨uldaneG¨um¨u¸sfor their typing the manuscript in LATEX. Mahmut Kuzucuo˘glu I would like to thank our graduate students Tu˘gbaAslan, B¨u¸sra C¸ınar, Fuat Erdem and Irfan_ Kadık¨oyl¨ufor reading the old version and pointing out some misprints. With their encouragement I have made the changes in the shape, namely I put the answers right after the questions. 20, December 2011 vi M. Kuzucuo˘glu 1. SETS, INTEGERS, FUNCTIONS 1.1. If A is a finite set having n elements, prove that A has exactly 2n distinct subsets.
    [Show full text]
  • The Quotient Field of an Intersection of Integral Domains
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 70, 238-249 (1981) The Quotient Field of an Intersection of Integral Domains ROBERT GILMER* Department of Mathematics, Florida State University, Tallahassee, Florida 32306 AND WILLIAM HEINZER' Department of Mathematics, Purdue University, West Lafayette, Indiana 47907 Communicated by J. DieudonnP Received August 10, 1980 INTRODUCTION If K is a field and 9 = {DA} is a family of integral domains with quotient field K, then it is known that the family 9 may possess the following “bad” properties with respect to intersection: (1) There may exist a finite subset {Di}rzl of 9 such that nl= I Di does not have quotient field K; (2) for some D, in 9 and some subfield E of K, the quotient field of D, n E may not be E. In this paper we examine more closely conditions under which (1) or (2) occurs. In Section 1, we work in the following setting: we fix a subfield F of K and an integral domain J with quotient field F, and consider the family 9 of K-overrings’ of J with quotient field K. We then ask for conditions under which 9 is closed under intersection, or finite intersection, or under which D n E has quotient field E for each D in 9 and each subfield E of K * The first author received support from NSF Grant MCS 7903123 during the writing of this paper. ‘The second author received partial support from NSF Grant MCS 7800798 during the writing of this paper.
    [Show full text]
  • 6. PID and UFD Let R Be a Commutative Ring. Recall That a Non-Unit X ∈ R Is Called Irreducible If X Cannot Be Written As A
    6. PID and UFD Let R be a commutative ring. Recall that a non-unit x R is called irreducible if x cannot be written as a product of two non-unit elements of R i.e.∈x = ab implies either a is an unit or b is an unit. Also recall that a domain R is called a principal ideal domain or a PID if every ideal in R can be generated by one element, i.e. is principal. 6.1. Lemma. (a) Let R be a commutative domain. Then prime elements in R are irreducible. (b) Let R be a PID. Then an irreducible in R is a prime element. Proof. (a) Let (p) be a prime ideal in R. If possible suppose p = uv.Thenuv (p), so either u (p)orv (p), if u (p), then u = cp,socv = 1, that is v is an unit. Similarly,∈ if v (p), then∈ u is an∈ unit. ∈ ∈(b) Let p R be irreducible. Suppose ab (p). Since R is a PID, the ideal (a, p)hasa generator, say∈ x, that is, (x)=(a, p). Then ∈p (x), so p = xu for some u R. Since p is irreducible, either u or x must be an unit and we∈ consider these two cases seperately:∈ In the first case, when u is an unit, then x = u−1p,soa (x) (p), that is, p divides a.Inthe second case, when x is a unit, then (a, p)=(1).So(∈ ab,⊆ pb)=(b). But (ab, pb) (p). So (b) (p), that is p divides b.
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • 9. Gauss Lemma Obviously It Would Be Nice to Have Some More General Methods of Proving That a Given Polynomial Is Irreducible. T
    9. Gauss Lemma Obviously it would be nice to have some more general methods of proving that a given polynomial is irreducible. The first is rather beau- tiful and due to Gauss. The basic idea is as follows. Suppose we are given a polynomial with integer coefficients. Then it is natural to also consider this polynomial over the rationals. Note that it is much easier to prove that this polynomial is irreducible over the integers than it is to prove that it is irreducible over the rationals. For example it is clear that x2 − 2 is irreducible overp the integers. In fact it is irreducible over the rationals as well, that is, 2 is not a rational number. First some definitions. Definition 9.1. Let R be a commutative ring and let a1; a2; : : : ; ak be a sequence of elements of R. The gcd of a1; a2; : : : ; ak is an element d 2 R such that (1) djai, for all 1 ≤ i ≤ k. 0 0 (2) If d jai, for all 1 ≤ i ≤ k, then d jd. Lemma 9.2. Let R be a UFD. Then the gcd of any sequence a1; a2; : : : ; ak of elements of R exists. Proof. There are two obvious ways to proceed. The first is to take a common factorisation of each ai into a product of powers of primes, as in the case k = 2. The second is to recursively construct the gcd, by setting di to be the gcd of di−1 and ai and taking d1 = a1. In this case d = dk will be a gcd for the whole sequence a1; a2; : : : ; ak.
    [Show full text]
  • NOTES on UNIQUE FACTORIZATION DOMAINS Alfonso Gracia-Saz, MAT 347
    Unique-factorization domains MAT 347 NOTES ON UNIQUE FACTORIZATION DOMAINS Alfonso Gracia-Saz, MAT 347 Note: These notes summarize the approach I will take to Chapter 8. You are welcome to read Chapter 8 in the book instead, which simply uses a different order, and goes in slightly different depth at different points. If you read the book, notice that I will skip any references to universal side divisors and Dedekind-Hasse norms. If you find any typos or mistakes, please let me know. These notes complement, but do not replace lectures. Last updated on January 21, 2016. Note 1. Through this paper, we will assume that all our rings are integral domains. R will always denote an integral domains, even if we don't say it each time. Motivation: We know that every integer number is the product of prime numbers in a unique way. Sort of. We just believed our kindergarden teacher when she told us, and we omitted the fact that it needed to be proven. We want to prove that this is true, that something similar is true in the ring of polynomials over a field. More generally, in which domains is this true? In which domains does this fail? 1 Unique-factorization domains In this section we want to define what it means that \every" element can be written as product of \primes" in a \unique" way (as we normally think of the integers), and we want to see some examples where this fails. It will take us a few definitions. Definition 2. Let a; b 2 R.
    [Show full text]
  • Algebraic Number Theory Summary of Notes
    Algebraic Number Theory summary of notes Robin Chapman 3 May 2000, revised 28 March 2004, corrected 4 January 2005 This is a summary of the 1999–2000 course on algebraic number the- ory. Proofs will generally be sketched rather than presented in detail. Also, examples will be very thin on the ground. I first learnt algebraic number theory from Stewart and Tall’s textbook Algebraic Number Theory (Chapman & Hall, 1979) (latest edition retitled Algebraic Number Theory and Fermat’s Last Theorem (A. K. Peters, 2002)) and these notes owe much to this book. I am indebted to Artur Costa Steiner for pointing out an error in an earlier version. 1 Algebraic numbers and integers We say that α ∈ C is an algebraic number if f(α) = 0 for some monic polynomial f ∈ Q[X]. We say that β ∈ C is an algebraic integer if g(α) = 0 for some monic polynomial g ∈ Z[X]. We let A and B denote the sets of algebraic numbers and algebraic integers respectively. Clearly B ⊆ A, Z ⊆ B and Q ⊆ A. Lemma 1.1 Let α ∈ A. Then there is β ∈ B and a nonzero m ∈ Z with α = β/m. Proof There is a monic polynomial f ∈ Q[X] with f(α) = 0. Let m be the product of the denominators of the coefficients of f. Then g = mf ∈ Z[X]. Pn j Write g = j=0 ajX . Then an = m. Now n n−1 X n−1+j j h(X) = m g(X/m) = m ajX j=0 1 is monic with integer coefficients (the only slightly problematical coefficient n −1 n−1 is that of X which equals m Am = 1).
    [Show full text]
  • Gaussian Integers
    Gaussian integers 1 Units in Z[i] An element x = a + bi 2 Z[i]; a; b 2 Z is a unit if there exists y = c + di 2 Z[i] such that xy = 1: This implies 1 = jxj2jyj2 = (a2 + b2)(c2 + d2) But a2; b2; c2; d2 are non-negative integers, so we must have 1 = a2 + b2 = c2 + d2: This can happen only if a2 = 1 and b2 = 0 or a2 = 0 and b2 = 1. In the first case we obtain a = ±1; b = 0; thus x = ±1: In the second case, we have a = 0; b = ±1; this yields x = ±i: Since all these four elements are indeed invertible we have proved that U(Z[i]) = {±1; ±ig: 2 Primes in Z[i] An element x 2 Z[i] is prime if it generates a prime ideal, or equivalently, if whenever we can write it as a product x = yz of elements y; z 2 Z[i]; one of them has to be a unit, i.e. y 2 U(Z[i]) or z 2 U(Z[i]): 2.1 Rational primes p in Z[i] If we want to identify which elements of Z[i] are prime, it is natural to start looking at primes p 2 Z and ask if they remain prime when we view them as elements of Z[i]: If p = xy with x = a + bi; y = c + di 2 Z[i] then p2 = jxj2jyj2 = (a2 + b2)(c2 + d2): Like before, a2 + b2 and c2 + d2 are non-negative integers. Since p is prime, the integers that divide p2 are 1; p; p2: Thus there are three possibilities for jxj2 and jyj2 : 1.
    [Show full text]
  • Part IV (§18-24) Rings and Fields
    Part IV (§18-24) Rings and Fields Satya Mandal University of Kansas, Lawrence KS 66045 USA January 22 18 Rings and Fields Groups dealt with only one binary operation. You are used to working with two binary operation, in the usual objects you work with: Z, R. Now we will study with such objects, with two binary operations: additions and multiplication. 18.1 Defintions and Basic Properties Definition 18.1. A Ring hR, +, ·i is a set with two binary operations +, ·, which we call addition and multiplication, defined on R such that 1. hR, +, ·i is an abelian group. The additive identiy is denoted by zero 0. 2. Multiplication is associative. 3. The distributive property is satiesfied as follows: ∀ a,b,c ∈ R a(b + c)= ab + ac and (b + c)a = ba + ca. 1 Further, A ring hR, +, ·i is called a commutative ring, if the multipli- cation is commutative. That means, if ∀ a,b ∈ R ab = ba. Definition 18.2. Let hR, +, ·i be a ring. If R has a multiplicative identity, then we has hR, +, ·i is a ring with unity. The multiplicative unit is denoted by 1. Recall, it means ∀ x ∈ R 1 · x = x · 1= x. Barring some exceptions (if any), we consider rings with unity only. Lemma 18.3. Suppose hR, +, ·i is a ring with unity. Suppse 0=1. then R = {0}. Proof. Suppose x ∈ R. Then, x = x · 1= x · 0= x · (0+0) = x · 0+ x · 0= x · 1+ x · 1= x + x. So, x + x = x and hence x = 0.
    [Show full text]
  • Student Notes
    270 Chapter 5 Rings, Integral Domains, and Fields 270 Chapter 5 Rings, Integral Domains, and Fields 5.2 Integral5.2 DomainsIntegral Domains and Fields and Fields In the precedingIn thesection preceding we definedsection we the defined terms the ring terms with ring unity, with unity, commutative commutative ring, ring,andandzerozero 270 Chapter 5 Rings, Integral Domains, and Fields 5.2divisors. IntegralAll Domains threedivisors. of and theseAll Fields three terms ! of these are usedterms inare defining used in defining an integral an integral domain. domain. Week 13 Definition 5.14DefinitionI Integral 5.14 IDomainIntegral Domain 5.2 LetIntegralD be a ring. Domains Then D is an andintegral Fields domain provided these conditions hold: Let D be a ring. Then D is an integral domain provided these conditions hold: In1. theD ispreceding a commutative section ring. we defined the terms ring with unity, commutative ring, and zero 1. D is a commutativedivisors.2. D hasAll a ring. unity three eof, and thesee 2terms0. are used in defining an integral domain. 2. D has a unity3. De,has and noe zero2 0 divisors.. Definition 5.14 I Integral Domain 3. D has no zero divisors. Note that the requirement e 2 0 means that an integral domain must have at least two Let D be a ring. Then D is an integral domain provided these conditions hold: Remark. elements. Note that the1. requirementD is a commutative e 2 0ring. means that an integral domain must have at least two elements. Example2. D has a1 unityThe e, ring andZe of2 all0. integers is an integral domain, but the ring E of all even in- tegers3.
    [Show full text]
  • Ideals and Class Groups of Number Fields
    Ideals and class groups of number fields A thesis submitted To Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science by Minjiao Yang August, 2018 ○C Copyright All rights reserved Except for previously published materials Thesis written by Minjiao Yang B.S., Kent State University, 2015 M.S., Kent State University, 2018 Approved by Gang Yu , Advisor Andrew Tonge , Chair, Department of Mathematics Science James L. Blank , Dean, College of Arts and Science TABLE OF CONTENTS…………………………………………………………...….…...iii ACKNOWLEDGEMENTS…………………………………………………………....…...iv CHAPTER I. Introduction…………………………………………………………………......1 II. Algebraic Numbers and Integers……………………………………………......3 III. Rings of Integers…………………………………………………………….......9 Some basic properties…………………………………………………………...9 Factorization of algebraic integers and the unit group………………….……....13 Quadratic integers……………………………………………………………….17 IV. Ideals……..………………………………………………………………….......21 A review of ideals of commutative……………………………………………...21 Ideal theory of integer ring 풪푘…………………………………………………..22 V. Ideal class group and class number………………………………………….......28 Finiteness of 퐶푙푘………………………………………………………………....29 The Minkowski bound…………………………………………………………...32 Further remarks…………………………………………………………………..34 BIBLIOGRAPHY…………………………………………………………….………….......36 iii ACKNOWLEDGEMENTS I want to thank my advisor Dr. Gang Yu who has been very supportive, patient and encouraging throughout this tremendous and enchanting experience. Also, I want to thank my thesis committee members Dr. Ulrike Vorhauer and Dr. Stephen Gagola who help me correct mistakes I made in my thesis and provided many helpful advices. iv Chapter 1. Introduction Algebraic number theory is a branch of number theory which leads the way in the world of mathematics. It uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Concepts and results in algebraic number theory are very important in learning mathematics.
    [Show full text]
  • Section III.3. Factorization in Commutative Rings
    III.3. Factorization in Commutative Rings 1 Section III.3. Factorization in Commutative Rings Note. In this section, we introduce the concepts of divisibility, irreducibility, and prime elements in a ring. We define a unique factorization domain and show that every principal ideal domain is one (“every PID is a UFD”—Theorem III.3.7). We push the Fundamental Theorem of Arithmetic and the Division Algorithm to new settings. Definition III.3.1. A nonzero element a of commutative ring R divides an element b R (denoted a b) if there exists x R such that ax = b. Elements a,b R are ∈ | ∈ ∈ associates if a b and b a. | | Theorem III.3.2. Let a,b,u be elements of a commutative ring R with identity. (i) a b if and only if (b) (a). | ⊂ (ii) a and b are associates if and only if (a)=(b). (iii) u is a unit if and only if u r for all r R. | ∈ (iv) u is a unit if and only if (u)= R. (v) The relation “a is an associate of b” is an equivalence relation on R. (vi) If a = br with r R a unit, then a and b are associates. If R is an integral ∈ domain, the converse is true. Proof. Exercise. III.3. Factorization in Commutative Rings 2 Definition III.3.3. Let R be a commutative ring with identity. An element c R ∈ is irreducible provided that: (i) c is a nonzero nonunit, and (ii) c = ab implies that either a is a unit or b is a unit.
    [Show full text]