Local Lung Hypoxia Determines Epithelial Fate Decisions During Alveolar Regeneration

Total Page:16

File Type:pdf, Size:1020Kb

Local Lung Hypoxia Determines Epithelial Fate Decisions During Alveolar Regeneration ARTICLES Local lung hypoxia determines epithelial fate decisions during alveolar regeneration Ying Xi1,6, Thomas Kim1, Alexis N. Brumwell1, Ian H. Driver2, Ying Wei1, Victor Tan1, Julia R. Jackson1, Jianming Xu3, Dong-Kee Lee3, Jeffrey E. Gotts1, Michael A. Matthay1, John M. Shannon4, Harold A. Chapman1,7,8 and Andrew E. Vaughan1,5,6,7 After influenza infection, lineage-negative epithelial progenitors (LNEPs) exhibit a binary response to reconstitute epithelial barriers: activating a Notch-dependent 1Np63/cytokeratin 5 (Krt5) remodelling program or differentiating into alveolar type II cells (AEC2s). Here we show that local lung hypoxia, through hypoxia-inducible factor (HIF1α), drives Notch signalling and Krt5pos basal-like cell expansion. Single-cell transcriptional profiling of human AEC2s from fibrotic lungs revealed a hypoxic subpopulation with activated Notch, suppressed surfactant protein C (SPC), and transdifferentiation toward a Krt5pos basal-like state. Activated murine Krt5pos LNEPs and diseased human AEC2s upregulate strikingly similar core pathways underlying migration and squamous metaplasia. While robust, HIF1α-driven metaplasia is ultimately inferior to AEC2 reconstitution in restoring normal lung function. HIF1α deletion or enhanced Wnt/β-catenin activity in Sox2pos LNEPs blocks Notch and Krt5 activation, instead promoting rapid AEC2 differentiation and migration and improving the quality of alveolar repair. The adult lung is a largely quiescent tissue but responds effectively In this study we explored the basis for activation and expansion to injury by activating stem/progenitor populations and promoting of lung epithelial stem/progenitor cells observed in mice infected proliferation of surviving, mature lineages. Depending on the type with H1N1 (PR8) influenza. Mice and humans infected with H1N1 and severity of cellular injury, different cell types are involved influenza develop large areas virtually devoid of alveolar epithelial in repair1–5. A remarkable expansion of potentially regenerative cells, requiring both expansion and migration of surviving AEC2s 1Np63pos/Krt5pos cells was observed in mouse lungs infected by and more undifferentiated progenitors to restore alveolar epithelial murine-adapted H1N1 (PR8) influenza A virus6. Lineage-tracing barriers2,9,10. Studies here interrogate the underlying mechanisms experiments showed that >80% of the expanded Krt5pos cells arise and sources of epithelial progenitors that determine the alternative from LNEP populations in distal airways and probably alveoli2. These pathways of alveolar repair. LNEPs proliferate and migrate dramatically to damaged sites to reconstitute the alveolar epithelium and promote recovery. Specific RESULTS ablation of the newly expanded Krt5pos cells by diphtheria toxin Influenza-activated Krt5pos cells are derived from p63pos resulted in prolonged hypoxemia, confirming involvement of these lineage-negative progenitors cells in the repair process7. Notch signalling is critical for activating Our previous studies indicated that LNEPs are a Sox2pos this 1Np63/Krt5 remodelling program; however, persistent Notch heterogeneous population comprised of both cells expressing signalling prevents alveolar epithelial differentiation8, leading to cystic the stem cell transcription factor 1Np63 and 1Np63neg cells, structures indicative of incomplete regeneration. Similar Krt5pos although p63 expression was restricted to a minor LNEP fraction2,11. honeycombing cysts also exist in the lungs from patients with Transplantation studies suggested the possibility that these subtypes pulmonary fibrosis, suggesting that common mechanisms apply to are biased toward either basal-like or AEC2 differentiation, injury responses in both mice and humans2. respectively2. To clarify this, we infected tamoxifen-treated 1Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California 94143, USA. 2Department of Anatomy, UCSF, San Francisco, California 94143, USA. 3Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. 4Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA. 5Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. 6Present addresses: Department of Immunology, Genentech Inc., South San Francisco, California 94080, USA (Y.X.); Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (A.E.V.). 7These authors jointly supervised this work. 8Correspondence should be addressed to H.C. (e-mail: [email protected]) Received 17 March 2017; accepted 21 June 2017; published online 24 July 2017; DOI: 10.1038/ncb3580 904 NATURE CELL BIOLOGY VOLUME 19 | NUMBER 8 | AUGUST 2017 © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. ARTICLES a b 95.3% 91.5% TMX Infection Euthanization 120 NS 100 –6 week d0 d13 cells 80 pos 60 40 20 traced Krt5 Percentage of p63-cre 0 Lung Trachea p63 trace 100 μm Krt5 ce HIF1αfl/fl HIF1α–/– Saline Krt5 DAPI Hypoxyprobe 500 μm 100 μm Krt5 Influenza f g P = 0.03 P = 0.02 20 Krt5 450 15 d Saline Influenza 300 10 M (K) lung area r HIF1α 100 pos 5 150 β Percentage of -actin Krt5 0 0 37 fl/fl –/– HIF1αfl/fl HIF1α–/– Relative mRNA level HIF1α HIF1α Saline Influenza 110 P = 0.04 fl/fl d21 d28 h HIF1α (n = 14) i P = 0.007 j P = 0.01 –/– l) μ 100 HIF1α (n = 7) 250 pos 100 pos 90 * 200 90 80 150 saturation 2 100 O 70 Percentage of 80 60 50 0 7 9 13 14 15 16 0 of total EpCAM 70 Excess lung water ( fl/fl –/– Percentage of SPC fl/fl –/– Days post influenza HIF1α HIF1α HIF1α HIF1α Figure 1 Epithelial HIF1α deletion blocks alveolar Krt5 activation post obtained by pulse oximetry are greater in HIF1α−=− at the indicated times. H1N1 infection. (a) Krt5pos cells are completely traced (tdTomatopos) after (i) HIF1α−=− mice exhibit less excess lung water after influenza, indicative influenza injury in p63-CreERT2/tdTomato mice. (b) Quantification of lineage of improved barrier function. Data for h and i are mean s.e.m., n D 7 tracing by manual cell counts in tissue sections. Data are mean s.e.m., HIF1α−=−, n D 14 wild-type (2 Shh-Creneg, 12 C57BL6) or n D 13 wild- n D 3 mice. (c) Krt5pos cells (red) invariably appear in hypoxic alveolar type for i (2 Shh-Creneg, 11 C57BL6) from two independent experiments. regions (hypoxyprobe, green) after influenza injury in mice, although some (j) AEC2 recovery/regeneration is improved in HIF1α−=− as judged by Krt5neg hypoxic regions were also observed (n D 7 mice). (d) HIF1α protein intracellular FACS for SPCpos cells as a fraction of total EpCAMpos cells. accumulates in influenza-infected mouse lungs (nD6 influenza, nD3 saline, The percentage of EpCAMpos live cells is unchanged in HIF1α−=− and β-actin as loading control). (e) Alveolar Krt5pos expansion (green) (left) wild-type mice. Data are mean s.e.m., n D 3 HIF1α−=−, n D 4 wild-type is largely blocked by epithelial HIF1α deletion (right). (f) Quantification mice from 2 independent experiments. Analysis is 11 days post-infection of e. Data are mean s.e.m., n D 5 wild-type, n D 4 HIF1α−=− mice unless otherwise indicated. All P values were derived by unpaired two- from two independent experiments. (g) Krt5 mRNA levels are reduced in tailed Student’s t-test, except in h, derived by Mann–Whitney. NS, not HIF1α−=− mice. Data are mean s.e.m., n D 8 wild-type, n D 9 HIF1α−=− significant. Unprocessed original scans of blots are shown in Supplementary mice from 3 independent experiments. (h) Arterial oxygen saturation values Fig. 8. p63-CreERT2 mice and determined that essentially all arising resistance to infection as well as migratory and proliferative Krt5pos cells were lineage labelled (Fig. 1a,b and Supplementary capacity. However, the scarcity of p63pos LNEPs and their infrequent Fig. 1a). Uninjured mice possessed p63-lineage-labelled cells scattered contribution to AEC2 regeneration (Supplementary Fig. 1a) suggest throughout airways, comprising <0.01% of all lung epithelial cells that additional p63neg Sox2pos LNEPs are a likely source of previously (Supplementary Fig. 1b,c). These rare cells must possess remarkable observed AEC2 differentiation following LNEP transplantation post NATURE CELL BIOLOGY VOLUME 19 | NUMBER 8 | AUGUST 2017 905 © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. ARTICLES influenza injury2. To begin to dissect these possibilities we considered metaplasia entirely. Given the impact of HIF1α on the quality of signals that impact LNEP expansion in vivo. epithelial recovery, we explored the mechanistic link between hypoxia and Krt5pos cell expansion. Epithelial HIF1α is required for Krt5pos cell expansion post influenza injury Hypoxia promotes Notch signalling and Krt5 expression in a To explore mechanisms for p63pos LNEP expansion during influenza HIF1α-dependent manner infection, we examined the role of hypoxia, a likely consequence We validated that submersion cultures are hypoxic, as previously of extensive epithelial necrosis. Krt5pos areas were found exclusively reported12, in comparison with air/liquid interface demonstrated in hypoxic regions identified by immunostaining of pimonidazole by hypoxyprobe staining and elevation of HIF1α targets (Fig. 3a). (hypoxyprobe) (Fig. 1c). HIF1α, a key mediator of cell responses to Hypoxia also promoted Notch target and Krt5 mRNA expression hypoxia, accumulated in the whole lung lysates 11 days post infection
Recommended publications
  • ENSG Gene Encodes Effector TCR Pathway Costimulation Inhibitory/Exhaustion Synapse/Adhesion Chemokines/Receptors
    ENSG Gene Encodes Effector TCR pathway Costimulation Inhibitory/exhaustion Synapse/adhesion Chemokines/receptors ENSG00000111537 IFNG IFNg x ENSG00000109471 IL2 IL-2 x ENSG00000232810 TNF TNFa x ENSG00000271503 CCL5 CCL5 x x ENSG00000139187 KLRG1 Klrg1 x ENSG00000117560 FASLG Fas ligand x ENSG00000121858 TNFSF10 TRAIL x ENSG00000134545 KLRC1 Klrc1 / NKG2A x ENSG00000213809 KLRK1 Klrk1 / NKG2D x ENSG00000188389 PDCD1 PD-1 x x ENSG00000117281 CD160 CD160 x x ENSG00000134460 IL2RA IL-2 receptor x subunit alpha ENSG00000110324 IL10RA IL-10 receptor x subunit alpha ENSG00000115604 IL18R1 IL-18 receptor 1 x ENSG00000115607 IL18RAP IL-18 receptor x accessory protein ENSG00000081985 IL12RB2 IL-12 receptor x beta 2 ENSG00000186810 CXCR3 CXCR3 x x ENSG00000005844 ITGAL CD11a x ENSG00000160255 ITGB2 CD18; Integrin x x beta-2 ENSG00000156886 ITGAD CD11d x ENSG00000140678 ITGAX; CD11c x x Integrin alpha-X ENSG00000115232 ITGA4 CD49d; Integrin x x alpha-4 ENSG00000169896 ITGAM CD11b; Integrin x x alpha-M ENSG00000138378 STAT4 Stat4 x ENSG00000115415 STAT1 Stat1 x ENSG00000170581 STAT2 Stat2 x ENSG00000126561 STAT5a Stat5a x ENSG00000162434 JAK1 Jak1 x ENSG00000100453 GZMB Granzyme B x ENSG00000145649 GZMA Granzyme A x ENSG00000180644 PRF1 Perforin 1 x ENSG00000115523 GNLY Granulysin x ENSG00000100450 GZMH Granzyme H x ENSG00000113088 GZMK Granzyme K x ENSG00000057657 PRDM1 Blimp-1 x ENSG00000073861 TBX21 T-bet x ENSG00000115738 ID2 ID2 x ENSG00000176083 ZNF683 Hobit x ENSG00000137265 IRF4 Interferon x regulatory factor 4 ENSG00000140968 IRF8 Interferon
    [Show full text]
  • T2 and T17 Cytokines Alter the Cargo and Function of Airway Epithelium
    Ax et al. Respiratory Research (2020) 21:155 https://doi.org/10.1186/s12931-020-01402-3 RESEARCH Open Access T2 and T17 cytokines alter the cargo and function of airway epithelium-derived extracellular vesicles Elisabeth Ax1,2 , Zala Jevnikar2, Aleksander Cvjetkovic1 , Carina Malmhäll1 , Henric Olsson2, Madeleine Rådinger1*† and Cecilia Lässer1*† Abstract Background: Asthma is a common and heterogeneous disease that includes subgroups characterized by type 2 (T2) or type 17 (T17) immune responses for which there is a need to identify the underlying mechanisms and biomarkers in order to develop specific therapies. These subgroups can be defined by airway epithelium gene signatures and the airway epithelium has also been implicated to play a significant role in asthma pathology. Extracellular vesicles (EVs) carry functional biomolecules and participate in cell-to-cell communication in both health and disease, properties that are likely to be involved in airway diseases such as asthma. The aim of this study was to identify stimulus-specific proteins and functionality of bronchial epithelium-derived EVs following stimulation with T2 or T17 cytokines. Methods: EVs from cytokine-stimulated (T2: IL-4 + IL-13 or T17: IL-17A + TNFα) human bronchial epithelial cells cultured at air-liquid interface (HBEC-ALI) were isolated by density cushion centrifugation and size exclusion chromatography and characterized with Western blotting and electron microscopy. Transcriptomic (cells) and proteomic (EVs) profiling was also performed. Results: Our data shows that EVs are secreted and can be isolated from the apical side of HBEC-ALI and that cytokine stimulation increases EV release. Genes upregulated in cells stimulated with T2 or T17 cytokines were increased also on protein level in the EVs.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • 3034.Full.Pdf
    Characterization of the CD200 Receptor Family in Mice and Humans and Their Interactions with CD200 This information is current as Gavin J. Wright, Holly Cherwinski, Mildred Foster-Cuevas, of September 28, 2021. Gary Brooke, Michael J. Puklavec, Mike Bigler, Yaoli Song, Maria Jenmalm, Dan Gorman, Terri McClanahan, Man-Ru Liu, Marion H. Brown, Jonathon D. Sedgwick, Joseph H. Phillips and A. Neil Barclay J Immunol 2003; 171:3034-3046; ; Downloaded from doi: 10.4049/jimmunol.171.6.3034 http://www.jimmunol.org/content/171/6/3034 References This article cites 39 articles, 20 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/171/6/3034.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Characterization of the CD200 Receptor Family in Mice and Humans and Their Interactions with CD2001 Gavin J.
    [Show full text]
  • Title a New Centrosomal Protein Regulates Neurogenesis By
    Title A new centrosomal protein regulates neurogenesis by microtubule organization Authors: Germán Camargo Ortega1-3†, Sven Falk1,2†, Pia A. Johansson1,2†, Elise Peyre4, Sanjeeb Kumar Sahu5, Loïc Broic4, Camino De Juan Romero6, Kalina Draganova1,2, Stanislav Vinopal7, Kaviya Chinnappa1‡, Anna Gavranovic1, Tugay Karakaya1, Juliane Merl-Pham8, Arie Geerlof9, Regina Feederle10,11, Wei Shao12,13, Song-Hai Shi12,13, Stefanie M. Hauck8, Frank Bradke7, Victor Borrell6, Vijay K. Tiwari§, Wieland B. Huttner14, Michaela Wilsch- Bräuninger14, Laurent Nguyen4 and Magdalena Götz1,2,11* Affiliations: 1. Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany. 2. Physiological Genomics, Biomedical Center, Ludwig-Maximilian University Munich, Germany. 3. Graduate School of Systemic Neurosciences, Biocenter, Ludwig-Maximilian University Munich, Germany. 4. GIGA-Neurosciences, Molecular regulation of neurogenesis, University of Liège, Belgium 5. Institute of Molecular Biology (IMB), Mainz, Germany. 6. Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain. 7. Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. 8. Research Unit Protein Science, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany. 9. Protein Expression and Purification Facility, Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany. 10. Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany. 11. SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig- Maximilian University Munich, Germany. 12. Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA 13.
    [Show full text]
  • Viewed Under 23 (B) Or 203 (C) fi M M Male Cko Mice, and Largely Unaffected Magni Cation; Scale Bars, 500 M (B) and 50 M (C)
    BRIEF COMMUNICATION www.jasn.org Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron Camille Ansermet,* Matthias B. Moor,* Gabriel Centeno,* Muriel Auberson,* † † ‡ Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva,* Barbara Haenzi,* | Natalya Katanaeva,* Ivan Gautschi,* Vladimir Katanaev,*§ Samuel Rotman, Robert Koesters,¶ †† Laurent Schild,* Sylvain Pradervand,** Olivier Bonny,* and Dmitri Firsov* BRIEF COMMUNICATION *Department of Pharmacology and Toxicology and **Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland; †Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; ‡Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; §School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; |Services of Pathology and ††Nephrology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland; and ¶Université Pierre et Marie Curie, Paris, France ABSTRACT Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is crit- leaves.4 Most recently, Legati et al. have ical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the shown an association between genetic kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical polymorphisms in Xpr1 and primary fa- sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the milial brain calcification disorder.5 How- molecular identity of the protein(s) participating in the basolateral Pi efflux remains ever, the role of XPR1 in the maintenance unknown. Evidence has suggested that xenotropic and polytropic retroviral recep- of Pi homeostasis remains unknown. Here, tor 1 (XPR1) might be involved in this process. Here, we show that conditional in- we addressed this issue in mice deficient for activation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi Xpr1 in the nephron.
    [Show full text]
  • Synergistic Genetic Interactions Between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models
    BASIC RESEARCH www.jasn.org Synergistic Genetic Interactions between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models Rory J. Olson,1 Katharina Hopp ,2 Harrison Wells,3 Jessica M. Smith,3 Jessica Furtado,1,4 Megan M. Constans,3 Diana L. Escobar,3 Aron M. Geurts,5 Vicente E. Torres,3 and Peter C. Harris 1,3 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct, with ADPKD usually caused by the genes PKD1 or PKD2 (encoding polycystin-1 and polycystin-2, respectively) and ARPKD caused by PKHD1 (encoding fibrocys- tin/polyductin [FPC]). Primary cilia have been considered central to PKD pathogenesis due to protein localization and common cystic phenotypes in syndromic ciliopathies, but their relevance is questioned in the simple PKDs. ARPKD’s mild phenotype in murine models versus in humans has hampered investi- gating its pathogenesis. Methods To study the interaction between Pkhd1 and Pkd1, including dosage effects on the phenotype, we generated digenic mouse and rat models and characterized and compared digenic, monogenic, and wild-type phenotypes. Results The genetic interaction was synergistic in both species, with digenic animals exhibiting pheno- types of rapidly progressive PKD and early lethality resembling classic ARPKD. Genetic interaction be- tween Pkhd1 and Pkd1 depended on dosage in the digenic murine models, with no significant enhancement of the monogenic phenotype until a threshold of reduced expression at the second locus was breached.
    [Show full text]
  • Figure S1. DMD Module Network. the Network Is Formed by 260 Genes from Disgenet and 1101 Interactions from STRING. Red Nodes Are the Five Seed Candidate Genes
    Figure S1. DMD module network. The network is formed by 260 genes from DisGeNET and 1101 interactions from STRING. Red nodes are the five seed candidate genes. Figure S2. DMD module network is more connected than a random module of the same size. It is shown the distribution of the largest connected component of 10.000 random modules of the same size of the DMD module network. The green line (x=260) represents the DMD largest connected component, obtaining a z-score=8.9. Figure S3. Shared genes between BMD and DMD signature. A) A meta-analysis of three microarray datasets (GSE3307, GSE13608 and GSE109178) was performed for the identification of differentially expressed genes (DEGs) in BMD muscle biopsies as compared to normal muscle biopsies. Briefly, the GSE13608 dataset included 6 samples of skeletal muscle biopsy from healthy people and 5 samples from BMD patients. Biopsies were taken from either biceps brachii, triceps brachii or deltoid. The GSE3307 dataset included 17 samples of skeletal muscle biopsy from healthy people and 10 samples from BMD patients. The GSE109178 dataset included 14 samples of controls and 11 samples from BMD patients. For both GSE3307 and GSE10917 datasets, biopsies were taken at the time of diagnosis and from the vastus lateralis. For the meta-analysis of GSE13608, GSE3307 and GSE109178, a random effects model of effect size measure was used to integrate gene expression patterns from the two datasets. Genes with an adjusted p value (FDR) < 0.05 and an │effect size│>2 were identified as DEGs and selected for further analysis. A significant number of DEGs (p<0.001) were in common with the DMD signature genes (blue nodes), as determined by a hypergeometric test assessing the significance of the overlap between the BMD DEGs and the number of DMD signature genes B) MCODE analysis of the overlapping genes between BMD DEGs and DMD signature genes.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table 3 Complete List of RNA-Sequencing Analysis of Gene Expression Changed by ≥ Tenfold Between Xenograft and Cells Cultured in 10%O2
    Supplementary Table 3 Complete list of RNA-Sequencing analysis of gene expression changed by ≥ tenfold between xenograft and cells cultured in 10%O2 Expr Log2 Ratio Symbol Entrez Gene Name (culture/xenograft) -7.182 PGM5 phosphoglucomutase 5 -6.883 GPBAR1 G protein-coupled bile acid receptor 1 -6.683 CPVL carboxypeptidase, vitellogenic like -6.398 MTMR9LP myotubularin related protein 9-like, pseudogene -6.131 SCN7A sodium voltage-gated channel alpha subunit 7 -6.115 POPDC2 popeye domain containing 2 -6.014 LGI1 leucine rich glioma inactivated 1 -5.86 SCN1A sodium voltage-gated channel alpha subunit 1 -5.713 C6 complement C6 -5.365 ANGPTL1 angiopoietin like 1 -5.327 TNN tenascin N -5.228 DHRS2 dehydrogenase/reductase 2 leucine rich repeat and fibronectin type III domain -5.115 LRFN2 containing 2 -5.076 FOXO6 forkhead box O6 -5.035 ETNPPL ethanolamine-phosphate phospho-lyase -4.993 MYO15A myosin XVA -4.972 IGF1 insulin like growth factor 1 -4.956 DLG2 discs large MAGUK scaffold protein 2 -4.86 SCML4 sex comb on midleg like 4 (Drosophila) Src homology 2 domain containing transforming -4.816 SHD protein D -4.764 PLP1 proteolipid protein 1 -4.764 TSPAN32 tetraspanin 32 -4.713 N4BP3 NEDD4 binding protein 3 -4.705 MYOC myocilin -4.646 CLEC3B C-type lectin domain family 3 member B -4.646 C7 complement C7 -4.62 TGM2 transglutaminase 2 -4.562 COL9A1 collagen type IX alpha 1 chain -4.55 SOSTDC1 sclerostin domain containing 1 -4.55 OGN osteoglycin -4.505 DAPL1 death associated protein like 1 -4.491 C10orf105 chromosome 10 open reading frame 105 -4.491
    [Show full text]
  • CD200 and Its Receptor, CD200R, Modulate Bone Mass Via the Differentiation of Osteoclasts
    CD200 and its receptor, CD200R, modulate bone mass via the differentiation of osteoclasts Weiguo Cui*†, Esteban Cuartas*, Juan Ke*‡, Qing Zhang*, Halldor B. Einarsson*, Jonathon D. Sedgwick§¶, Jun Liʈ, and Agne` s Vignery*,** *Department of Orthopedics and Rehabilitation, Yale School of Medicine, 310 Cedar Street, New Haven, CT 06510; §Schering–Plough Biopharma (DNAX), Palo Alto, CA 94304; and ʈDepartment of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877 Edited by Richard A. Flavell, Yale University School of Medicine, New Haven, CT, and approved July 25, 2007 (received for review April 11, 2007) Fusion of macrophages is an essential step in the differentiation of plays a role in the recognition of self and in the fusion of macro- osteoclasts, which play a central role in the development and remod- phages (10). To gain further insight into the mechanism of mac- eling of bone. Osteoclasts are important mediators of bone loss, rophage fusion, we subjected fusing alveolar macrophages from rats which leads, for example, to osteoporosis. Macrophage fusion recep- to genome-wide oligonucleotide microarray analysis, and we dis- tor/signal regulatory protein ␣ (MFR/SIRP␣) and its ligand CD47, covered the expression of CD200 de novo at the onset of fusion. which are members of the Ig superfamily (IgSF), have been implicated CD200 also belongs to the IgSF and has a short cytoplasmic tail. in the fusion of macrophages. We show that CD200, which is not It is expressed on various types of mouse and human cells (see ref. expressed in cells that belong to the myeloid lineage, is strongly 11 for a review) and on mouse osteoblasts (12), but not on expressed in macrophages at the onset of fusion.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]