Emergence Timing and Management of Cleavers in Saskatchewan Canola Crops
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2,4-Dichlorophenoxyacetic Acid
2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators. -
Field Release of the Leaf-Feeding Moth, Hypena Opulenta (Christoph)
United States Department of Field release of the leaf-feeding Agriculture moth, Hypena opulenta Marketing and Regulatory (Christoph) (Lepidoptera: Programs Noctuidae), for classical Animal and Plant Health Inspection biological control of swallow- Service worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Field release of the leaf-feeding moth, Hypena opulenta (Christoph) (Lepidoptera: Noctuidae), for classical biological control of swallow-worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. -
Herbicide Mode of Action Table High Resistance Risk
Herbicide Mode of Action Table High resistance risk Chemical family Active constituent (first registered trade name) GROUP 1 Inhibition of acetyl co-enzyme A carboxylase (ACC’ase inhibitors) clodinafop (Topik®), cyhalofop (Agixa®*, Barnstorm®), diclofop (Cheetah® Gold* Decision®*, Hoegrass®), Aryloxyphenoxy- fenoxaprop (Cheetah®, Gold*, Wildcat®), fluazifop propionates (FOPs) (Fusilade®), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) Cyclohexanediones (DIMs) butroxydim (Factor®*), clethodim (Select®), profoxydim (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) Phenylpyrazoles (DENs) pinoxaden (Axial®) GROUP 2 Inhibition of acetolactate synthase (ALS inhibitors), acetohydroxyacid synthase (AHAS) Imidazolinones (IMIs) imazamox (Intervix®*, Raptor®), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, Lightning®*, Midas®* OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) Pyrimidinyl–thio- bispyribac (Nominee®), pyrithiobac (Staple®) benzoates Sulfonylureas (SUs) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*, Trimac Plus®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron (Logran®, Logran® B-Power®*), tribenuron (Express®), -
Effective Typification of Galium Verum Var. Hallaensis, a Replacement Name for the Korean G
Phytotaxa 423 (5): 289–292 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Correspondence ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.423.5.3 Effective typification of Galium verum var. hallaensis, a replacement name for the Korean G. pusillum (Rubiaceae) DONG CHAN SON1 & KAE SUN CHANG1* 1Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon-si, Gyeonggi-do 11186, Republic of Korea *Author for correspondence: [email protected] The genus Galium Linnaeus (1753: 105), a well-known member of the madder family, consists of around 650 perennial and annual herbaceous species widely distributed in temperate, subtropical, and tropical regions worldwide (Ehrendorfer et al. 2005, Chen & Ehrendorfer 2011). This genus is distinguished from other genera belonging to Rubiaceae by several morphological characteristics including the leaves in whorls of 2–8, 3 or 4-lobed corollas, rudimentary corolla tubes, and dry mericarps (Yamazaki 1993, Ehrendorfer et al. 2014, Elkordy & Schanzer 2015). Article 9.23 of the Shenzhen Code (Turland et al. 2018) requires that “on or after 1 January 2001, lectotypification, neotypification, or epitypification of a name of a species or infraspecific taxon is not effected unless indicated by use of the term “lectotypus”, “neotypus”, or “epitypus”, its abbreviation, or its equivalent in a modern language,” and Art. 7.11 requires that “… designation of a type is achieved only…, on or after 1 January 2001, if the typification statement includes the phrase “designated here” (hic designatus) or an equivalent.” However, in many monographic and taxonomic works published on or after 1 January 2001, the requirements of Art. -
A New Application for Phylogenetic Marker Development Using Angiosperm Transcriptomes Author(S): Srikar Chamala, Nicolás García, Grant T
MarkerMiner 1.0: A New Application for Phylogenetic Marker Development Using Angiosperm Transcriptomes Author(s): Srikar Chamala, Nicolás García, Grant T. Godden, Vivek Krishnakumar, Ingrid E. Jordon- Thaden, Riet De Smet, W. Brad Barbazuk, Douglas E. Soltis, and Pamela S. Soltis Source: Applications in Plant Sciences, 3(4) Published By: Botanical Society of America DOI: http://dx.doi.org/10.3732/apps.1400115 URL: http://www.bioone.org/doi/full/10.3732/apps.1400115 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. ApApplicatitionsons Applications in Plant Sciences 2015 3 ( 4 ): 1400115 inin PlPlant ScienSciencesces S OFTWARE NOTE M ARKERMINER 1.0: A NEW APPLICATION FOR PHYLOGENETIC 1 MARKER DEVELOPMENT USING ANGIOSPERM TRANSCRIPTOMES S RIKAR C HAMALA 2,12 , N ICOLÁS G ARCÍA 2,3,4 * , GRANT T . G ODDEN 2,3,5 * , V IVEK K RISHNAKUMAR 6 , I NGRID E. -
28. GALIUM Linnaeus, Sp. Pl. 1: 105. 1753
Fl. China 19: 104–141. 2011. 28. GALIUM Linnaeus, Sp. Pl. 1: 105. 1753. 拉拉藤属 la la teng shu Chen Tao (陈涛); Friedrich Ehrendorfer Subshrubs to perennial or annual herbs. Stems often weak and clambering, often notably prickly or “sticky” (i.e., retrorsely aculeolate, “velcro-like”). Raphides present. Leaves opposite, mostly with leaflike stipules in whorls of 4, 6, or more, usually sessile or occasionally petiolate, without domatia, abaxial epidermis sometimes punctate- to striate-glandular, mostly with 1 main nerve, occasionally triplinerved or palmately veined; stipules interpetiolar and usually leaflike, sometimes reduced. Inflorescences mostly terminal and axillary (sometimes only axillary), thyrsoid to paniculiform or subcapitate, cymes several to many flowered or in- frequently reduced to 1 flower, pedunculate to sessile, bracteate or bracts reduced especially on higher order axes [or bracts some- times leaflike and involucral], bracteoles at pedicels lacking. Flowers mostly bisexual and monomorphic, hermaphroditic, sometimes unisexual, andromonoecious, occasionally polygamo-dioecious or dioecious, pedicellate to sessile, usually quite small. Calyx with limb nearly always reduced to absent; hypanthium portion fused with ovary. Corolla white, yellow, yellow-green, green, more rarely pink, red, dark red, or purple, rotate to occasionally campanulate or broadly funnelform; tube sometimes so reduced as to give appearance of free petals, glabrous inside; lobes (3 or)4(or occasionally 5), valvate in bud. Stamens (3 or)4(or occasionally 5), inserted on corolla tube near base, exserted; filaments developed to ± reduced; anthers dorsifixed. Inferior ovary 2-celled, ± didymous, ovoid, ellipsoid, or globose, smooth, papillose, tuberculate, or with hooked or rarely straight trichomes, 1 erect and axile ovule in each cell; stigmas 2-lobed, exserted. -
INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401 -
U.S. EPA, Pesticide Product Label, QUINCLORAC 75 SWF, 02/06/2006
u.s. ENVIRONM£~J7AL PkO';EC';ION N:JENCY EPfI, Req. Cate ~f Issuance: Office of t'esticide "roqram.<; Number: Keqistratlon Divlsion (7:'()SC) 1200 Pennsylvania Ave., N.W. WashingtrJII, D.::'. ?046D 42750- 131 FEE - 6 2006 NOTICE OF PESTICIDE: Term of Issuance: ~ Registration Conditional __ Reregistration : under r: fRJ'l., as am'?nd'O'd: Name of ~esticide Product: Quinclorac 75DF SWF Name and Address of RegIstrant ,include ZIP Codej: Albaugh, Inc. P.O. Box 2127 Valdosta, GA 31604-2127 Note: Changes in .LabEoli~fg differing in suostance from that accepted in connection with this registration must be submitted to and accepted by the Registratlon Division prior to use of the label in commerce. In any correspondence on this product always refer to the above EPA registration number. em ::he bas':s of lnformat':on f ~rr,lshed by the reg:s'Crant, the above llamed pesticide ':5 hereby roegisterea/reregJ.3terec under :::--.e federa; =nsec::':c:ide, fungicide and Rodenticide Act. Reg':straL,on is ir. no (.Jay tc be ::onstrued as an endorsement or recommendation of this product by the Agency. =n urder to protect hea~ttJ and tr.e ",nvil"onment, ::he Admir.istrator, on his motion, may at any time suspend or cancel the regi3t:::ation of a pesticide in accoraance with the Act. The acceptance of any name 1.n connection with the registration of a product under this Act is not to be construed as giving the registrant a right to -=xclusive use of the r,ame or to its use if it has been coveroed by others. -
Determining the Emergence Timing, Morphological Characteristics, and Species Composition of Galium Populations in Western Canada
Determining the emergence timing, morphological characteristics, and species composition of Galium populations in western Canada A Thesis Submitted to the College of Graduate Studies and Research In Partial fulfillment of the Requirements For the Degree of Master of Science In the Department of Plant Sciences University of Saskatchewan Saskatoon By Andrea C. De Roo © Copyright Andrea C. De Roo, 2016. All rights reserved. Permission to Use In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying, publication, or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Request for permission to copy or to make other use of material in this thesis, in whole or part, should be addressed to: Head of the Department of Plant Sciences 51 Campus Drive University of Saskatchewan Saskatoon, Saskatchewan (S7N 5A8) i Abstract Three species of Galium are commonly believed to thrive in western Canada; Galium aparine L., Galium spurium L. -
GREAT PLAINS REGION - NWPL 2016 FINAL RATINGS User Notes: 1) Plant Species Not Listed Are Considered UPL for Wetland Delineation Purposes
GREAT PLAINS REGION - NWPL 2016 FINAL RATINGS User Notes: 1) Plant species not listed are considered UPL for wetland delineation purposes. 2) A few UPL species are listed because they are rated FACU or wetter in at least one Corps region. -
Autumn Willow in Rocky Mountain Region the Black Hills National
United States Department of Agriculture Conservation Assessment Forest Service for the Autumn Willow in Rocky Mountain Region the Black Hills National Black Hills National Forest, South Dakota and Forest Custer, South Dakota Wyoming April 2003 J.Hope Hornbeck, Carolyn Hull Sieg, and Deanna J. Reyher Species Assessment of Autumn willow in the Black Hills National Forest, South Dakota and Wyoming J. Hope Hornbeck, Carolyn Hull Sieg and Deanna J. Reyher J. Hope Hornbeck is a Botanist with the Black Hills National Forest in Custer, South Dakota. She completed a B.S. in Environmental Biology (botany emphasis) at The University of Montana and a M.S. in Plant Biology (plant community ecology emphasis) at the University of Minnesota-Twin Cities. Carolyn Hull Sieg is a Research Plant Ecologist with the Rocky Mountain Research Station in Flagstaff, Arizona. She completed a B.S. in Wildlife Biology and M.S. in Range Science from Colorado State University and a Ph.D. in Range and Wildlife Management (fire ecology) at Texas Tech University. Deanna J. Reyher is Ecologist/Soil Scientist with the Black Hills National Forest in Custer, South Dakota. She completed a B.S. degree in Agronomy (soil science and crop production emphasis) from the University of Nebraska – Lincoln. EXECUTIVE SUMMARY Autumn willow, Salix serissima (Bailey) Fern., is an obligate wetland shrub that occurs in fens and bogs in the northeastern United States and eastern Canada. Disjunct populations of autumn willow occur in the Black Hills of South Dakota. Only two populations occur on Black Hills National Forest lands: a large population at McIntosh Fen and a small population on Middle Boxelder Creek. -
US EPA, Pesticide Product Label, QUINCLORAC 4L AG,03/04/2019
81,7('67$7(6(19,5210(17$/3527(&7,21$*(1&< :$6+,1*721'& 2)),&(2)&+(0,&$/6$)(7< $1'32//87,2135(9(17,21 0DUFK 0RUULV*DVNLQV $OEDXJK//& 32%R[ 9DOGRVWD*$ 6XEMHFW /DEHO$PHQGPHQW±5HLQVWDWH3DVWXUHDQG5DQJHODQG8VH 3URGXFW1DPH48,1&/25$&/$* (3$5HJLVWUDWLRQ1XPEHU $SSOLFDWLRQ'DWH 'HFLVLRQ1XPEHU 'HDU0U*DVNLQV 7KHDPHQGHGODEHOUHIHUUHGWRDERYHVXEPLWWHGLQFRQQHFWLRQZLWKUHJLVWUDWLRQXQGHUWKH)HGHUDO ,QVHFWLFLGH)XQJLFLGHDQG5RGHQWLFLGH$FWDVDPHQGHGLVDFFHSWDEOH7KLVDSSURYDOGRHVQRW DIIHFWDQ\FRQGLWLRQVWKDWZHUHSUHYLRXVO\LPSRVHGRQWKLVUHJLVWUDWLRQ<RXFRQWLQXHWREH VXEMHFWWRH[LVWLQJFRQGLWLRQVRQ\RXUUHJLVWUDWLRQDQGDQ\GHDGOLQHVFRQQHFWHGZLWKWKHP $VWDPSHGFRS\RI\RXUODEHOLQJLVHQFORVHGIRU\RXUUHFRUGV7KLVODEHOLQJVXSHUVHGHVDOO SUHYLRXVO\DFFHSWHGODEHOLQJ<RXPXVWVXEPLWRQHFRS\RIWKHILQDOSULQWHGODEHOLQJEHIRUH\RX UHOHDVHWKHSURGXFWIRUVKLSPHQWZLWKWKHQHZODEHOLQJ,QDFFRUGDQFHZLWK&)5 F \RXPD\GLVWULEXWHRUVHOOWKLVSURGXFWXQGHUWKHSUHYLRXVO\DSSURYHGODEHOLQJIRUPRQWKV IURPWKHGDWHRIWKLVOHWWHU$IWHUPRQWKV\RXPD\RQO\GLVWULEXWHRUVHOOWKLVSURGXFWLILW EHDUVWKLVQHZUHYLVHGODEHOLQJRUVXEVHTXHQWO\DSSURYHGODEHOLQJ³7RGLVWULEXWHRUVHOO´LV GHILQHGXQGHU),)5$VHFWLRQ JJ DQGLWVLPSOHPHQWLQJUHJXODWLRQDW&)5 6KRXOG\RXZLVKWRDGGUHWDLQDUHIHUHQFHWRWKHFRPSDQ\¶VZHEVLWHRQ\RXUODEHOWKHQSOHDVHEH DZDUHWKDWWKHZHEVLWHEHFRPHVODEHOLQJXQGHUWKH)HGHUDO,QVHFWLFLGH)XQJLFLGHDQG5RGHQWLFLGH $FWDQGLVVXEMHFWWRUHYLHZE\WKH$JHQF\,IWKHZHEVLWHLVIDOVHRUPLVOHDGLQJWKHSURGXFW ZRXOGEHPLVEUDQGHGDQGXQODZIXOWRVHOORUGLVWULEXWHXQGHU),)5$VHFWLRQ D ( &)5 D OLVWH[DPSOHVRIVWDWHPHQWV(3$PD\FRQVLGHUIDOVHRUPLVOHDGLQJ,QDGGLWLRQ UHJDUGOHVVRIZKHWKHUDZHEVLWHLVUHIHUHQFHGRQ\RXUSURGXFW¶VODEHOFODLPVPDGHRQWKH