Journal of Artificial Intelligence Research 19 (2003) 155-203 Submitted 1/03; published 9/03 Representing and Aggregating Conflicting Beliefs Pedrito Maynard-Zhang
[email protected] Department of Computer Science and Systems Analysis Miami University Oxford, Ohio 45056, USA Daniel Lehmann
[email protected] School of Computer Science and Engineering Hebrew University Jerusalem 91904, Israel Abstract We consider the two-fold problem of representing collective beliefs and aggregating these beliefs. We propose a novel representation for collective beliefs that uses modular, transitive relations over possible worlds. They allow us to represent conflicting opinions and they have a clear semantics, thus improving upon the quasi-transitive relations often used in social choice. We then describe a way to construct the belief state of an agent informed by a set of sources of varying degrees of reliability. This construction circumvents Arrow’s Impossibility Theorem in a satisfactory manner by accounting for the explicitly encoded conflicts. We give a simple set-theory-based operator for combining the informa- tion of multiple agents. We show that this operator satisfies the desirable invariants of idempotence, commutativity, and associativity, and, thus, is well-behaved when iterated, and we describe a computationally effective way of computing the resulting belief state. Finally, we extend our framework to incorporate voting. 1. Introduction We are interested in the multi-agent setting where agents are informed by sources of varying levels of reliability, and where agents can iteratively combine their belief states. This setting introduces three problems: (1) Finding an appropriate representation for collective beliefs; (2) Constructing an agent’s belief state by aggregating the information from informant sources, accounting for the relative reliability of these sources; and, (3) Combining the information of multiple agents in a manner that is well-behaved under iteration.