Never Installed Vestas V90 3 MW Brochure

Total Page:16

File Type:pdf, Size:1020Kb

Never Installed Vestas V90 3 MW Brochure Never Used Turbine! -technical brochure- ! !VESTAS! !V90 3MW Proven technology to safeguard your investment ! ! ! !What is Never Installed Turbine?! !Included in the scope! What’s in a name. Never Used Turbines are brand The Never Used Turbine is supplied consisting of new wind turbines, produced few years ago and the following main components: delivered by OEM’s to the hands of project • Nacelle owners. Due to some reasons, such as legislation • Hub change, difficulties with finalization of the project • 1 set of blades development and others, the project owners were • 80 m tower not able to erect these turbines and made a • Elevator decision to offer them for sale. • Foundation ring ! • Transport frames (nacelle and blades) In order to keep the turbines in good shape till the • 60 days of free storage and security moment they get commissioned, the owners have ! been taking a very good care over the equipment The following items are not included in the scope of by investing money in proper and secure storage our basic offer, please consult our team to proceed conditions, as well as in the conservation and with a request: maintenance services during all period of storage ! in accordance with OEM’s recommendations. • Technical survey ! • Customized retrofit As the result, the turbines are present in «as new» • Customized upgrade (SCADA, etc.) visual and technical condition, while the level of • Loading investment is almost half than for similar new • Transportation turbines. In order to guarantee the safety of • Installation & Commissioning your investments, technical inspection and visit • Switchgear supply can be scheduled on request. • Full maintenance Concept ! ! ! ! Vestas! V90 3 MW! Technical specifications & data Power Regulation: Pitch regulated with Blade Dimensions: variable speed Length 44 m Operating Data: Max.chord 3.5 m Rated power 3,000 kW (50Hz) Tower: Cut-in wind speed 3,5 m/s Type tubular steel tower Rated wind speed 15 m/s Hub height 80 m Cut-out wind speed 25 m/s Nacelle Dimensions:! Wind class IEC IA Transport height 4 m Operating temperature range: Length 12.2 m standard: -20° to 40° C Width 3.5 m low T turbine: -30° to 40° C Hub Dimensions: Sound Power:!!! Max107 dB Max. transport height 3.6 m Mode 0,10 m above ground, hub height 80 m, air Max. transport width /length 4 m / 4.2 m density 1.225 kg/m3 ! Rotor:! Max. transport weight per unit Rotor diameter 90 m for transportation 79 t Swept area 6,362 m2 Air brake full blade feathering ! with 3 pitch cylinders ! ! Electrical:! ! ! Frequency 50 Hz ! Generator type 4-pole (50Hz) ! ! Doubly fed generator, slip rings ! Nominal output 50 Hz: 3,000 kW ! ! Gearbox:! ! Type 2 helical stages ! ! 1 planetary stage ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Improving business case by thinking about weights !3 MW design! !SCADA! 3 MW Vestas wind turbine design is a perfect solution For investors from some countries (list on request) for middle wind speed sites. 90 m rotor size and Never Used Vestas can be offered with installed essential 3 MW capacity made V90 type very popular latest version of Supervisory Control and Data among worldwide project developers. Specially Acquisition (SCADA). This flexible system includes integrated technology upgrade serve to minimize the an extensive range of monitoring and management downtime and cut maintenance costs. The new functions. It will enable you to optimize production profile of the V90 blades also represents a significant levels, monitor the real-time performance, get aerodynamic advance. professional reports. ! ! Transportation & Installation! ! Optimization, Upgrades and other services! When Vestas set out to establish a new benchmark ! We aim not only deliver the best quality product, for efficiency with its development of the V90 3 MW but improve its condition, customize it for your turbine, high priority was given to keeping weight needs to strengthen the certainty of your down. The result is a showcase of innovative investment in wind energy. Such services as engineering – particularly as regards weight saved. retrofit with provided warrantees, software and Following the development of 2 MW platform, 3 MW other upgrades, re-built to 60 Hz and others are Vestas was built to control loads on specific tower available on request. heights. This principle helps to reduce weight of the ! turbine and loads on the tower and foundation. This Full Maintenance Concept! cuts your unnecessary foundation costs. ! ! For investors from some countries (list on request) Service and Maintenance! we can offer a full maintenance Concept based on ! long ter m agreements for service and A series of improvements to the V90 have made maintenance, online monitoring, optimization and service and maintenance calls less demanding – and trouble-shooting. Full maintenance concept less frequent. Turbine access has been simplified ensures you with maximum power generation, and working areas expanded, while the arrangement preventive maintenance and benefits on saving of tower and nacelle components has been optimised many service costs. to facilitate service procedures. ! Photo report Never Used Turbine! -maximize your return-.
Recommended publications
  • CHAPTER 7 Design and Development of Small Wind Turbines
    CHAPTER 7 Design and development of small wind turbines Lawrence Staudt Center for Renewable Energy, Dundalk Institute of Technology, Ireland. For the purposes of this chapter, “small” wind turbines will be defi ned as those with a power rating of 50 kW or less (approximately 15 m rotor diameter). Small electricity-generating wind turbines have been in existence since the early 1900s, having been particularly popular for providing power for dwellings not yet con- nected to national electricity grids. These turbines largely disappeared as rural electrifi cation took place, and have primarily been used for remote power until recently. The oil crisis of the 1970s led to a resurgence in small wind technology, including the new concept of grid-connected small wind technology. There are few small wind turbine manufacturers with a track record spanning more than a decade. This can be attributed to diffi cult market conditions and nascent technol- ogy. However, the technology is becoming more mature, energy prices are rising and public awareness of renewable energy is increasing. There are now many small wind turbine companies around the world who are addressing the growing market for both grid-connected and remote power applications. The design fea- tures of small wind turbines, while similar to large wind turbines, often differ in signifi cant ways. 1 Small wind technology Technological approaches taken for the various components of a small wind turbine will be examined: the rotor, the drivetrain, the electrical systems and the tower. Of course wind turbines must be designed as a system, and so rotor design affects drivetrain design which affects control system design, etc.
    [Show full text]
  • Implementation and Validation of an Advanced Wind Energy Controller in Aero-Servo-Elastic Simulations Using the Lifting Line Free Vortex Wake Model
    energies Article Implementation and Validation of an Advanced Wind Energy Controller in Aero-Servo-Elastic Simulations Using the Lifting Line Free Vortex Wake Model Sebastian Perez-Becker *, David Marten, Christian Navid Nayeri and Christian Oliver Paschereit Chair of Fluid Dynamics, Hermann Föttinger Institute, Technische Universität Berlin, Müller-Breslau-Str. 8, 10623 Berlin, Germany; [email protected] (D.M.); [email protected] (C.N.N.); [email protected] (C.O.P.) * Correspondence: [email protected] Abstract: Accurate and reproducible aeroelastic load calculations are indispensable for designing modern multi-MW wind turbines. They are also essential for assessing the load reduction capabilities of advanced wind turbine control strategies. In this paper, we contribute to this topic by introducing the TUB Controller, an advanced open-source wind turbine controller capable of performing full load calculations. It is compatible with the aeroelastic software QBlade, which features a lifting line free vortex wake aerodynamic model. The paper describes in detail the controller and includes a validation study against an established open-source controller from the literature. Both controllers show comparable performance with our chosen metrics. Furthermore, we analyze the advanced load reduction capabilities of the individual pitch control strategy included in the TUB Controller. Turbulent wind simulations with the DTU 10 MW Reference Wind Turbine featuring the individual pitch control strategy show a decrease in the out-of-plane and torsional blade root bending moment fatigue loads of 14% and 9.4% respectively compared to a baseline controller. Citation: Perez-Becker, S.; Marten, D.; Nayeri, C.N.; Paschereit, C.O.
    [Show full text]
  • Design and Access Statement April 2015 FULBECK AIRFIELD WIND FARM DESIGN and ACCESS STATEMENT
    Energiekontor UK Ltd Design and Access Statement April 2015 FULBECK AIRFIELD WIND FARM DESIGN AND ACCESS STATEMENT Contents Section Page 1. Introduction 2 2. Site Selection 3 3. Design Influences 7 4. Design Evolution, Amount, Layout and Scale 9 5. Development Description, Appearance and Design 14 6. Access 16 Figures Page 2.1 Site Location 3 2.2 Landscape character areas 4 2.3 1945 RAF Fulbeck site plan 5 2.4 Site selection criteria 6 4.1 First Iteration 10 4.2 Second Iteration 11 4.3 Third Iteration 12 4.4 Fourth Iteration 13 5.1 First Iteration looking SW from the southern edge of Stragglethorpe 14 5.2 Fourth Iteration looking SW from the southern edge of 14 Stragglethorpe 5.3 First Iteration looking east from Sutton Road south of Rectory Lane 15 5.4 Fourth Iteration looking east from Sutton Road south of Rectory Lane 15 6.1 Details of temporary access for turbine deliveries 16 EnergieKontor UK Ltd 1 May 2015 FULBECK AIRFIELD WIND FARM DESIGN AND ACCESS STATEMENT 1 Introduction The Application 1.8 The Fulbeck Airfield Wind Farm planning application is Context 1.6 The Environmental Impact Assessment (EIA) process also submitted in full and in addition to this Design and Access exploits opportunities for positive design, rather than merely Statement is accompanied by the following documents 1.1 This Design and Access Statement has been prepared by seeking to avoid adverse environmental effects. The Design which should be read together: Energiekontor UK Ltd (“EK”) to accompany a planning and Access Statement is seen as having an important role application for the construction, 25 year operation and in contributing to the design process through the clear Environmental Statement Vol 1; subsequent decommissioning of a wind farm consisting of documentation of design evolution.
    [Show full text]
  • The Prediction Model of Characteristics for Wind Turbines Based on Meteorological Properties Using Neural Network Swarm Intelligence
    sustainability Article The Prediction Model of Characteristics for Wind Turbines Based on Meteorological Properties Using Neural Network Swarm Intelligence Tugce Demirdelen 1 , Pırıl Tekin 2,* , Inayet Ozge Aksu 3 and Firat Ekinci 4 1 Department of Electrical and Electronics Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey 2 Department of Industrial Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey 3 Department of Computer Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey 4 Department of Energy Systems Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey * Correspondence: [email protected]; Tel.: +90-322-455-0000 (ext. 2411) Received: 17 July 2019; Accepted: 29 August 2019; Published: 3 September 2019 Abstract: In order to produce more efficient, sustainable-clean energy, accurate prediction of wind turbine design parameters provide to work the system efficiency at the maximum level. For this purpose, this paper appears with the aim of obtaining the optimum prediction of the turbine parameter efficiently. Firstly, the motivation to achieve an accurate wind turbine design is presented with the analysis of three different models based on artificial neural networks comparatively given for maximum energy production. It is followed by the implementation of wind turbine model and hybrid models developed by using both neural network and optimization models. In this study, the ANN-FA hybrid structure model is firstly used and also ANN coefficients are trained by FA to give a new approach in literature for wind turbine parameters’ estimation. The main contribution of this paper is that seven important wind turbine parameters are predicted.
    [Show full text]
  • Wind Energy & Wildlife
    WIND ENERGY & WILDLIFE: Benefits for companies purchasing wind energy, wind Site it Right energy developers and financiers, consumers, and wildlife. central great plains grasslandscollaborating to conserve America’s most impacted habitat THE CHALLENGE The Nature Conservancy supports the development of A REAL LIFE EXAMPLE: renewable energy, such as wind, as an emission-free source of electricity. Economically viable wind resources Company XYZ was looking to purchase wind-generated and ecologically important areas, however, show some electricity, both to meet forecasted energy needs, and to overlap in the Central Great Plains. This overlap raises satisfy the company’s own initiative for sustainability, concerns that wildlife populations may be seriously which promotes the use of renewable energy, along impacted by commercial wind energy development. As a with other sustainable practices. XYZ issued a request for proposals for 100 megawatts (MW) of wind energy, result, power purchasers should be aware of this overlap, beginning in 2017. Several proposals were received and and more importantly, know how to avoid wildlife XYZ reviewed them, selecting company “ABC” as the impacts and the risks of procuring wind power from lowest-cost provider. A power purchase agreement was projects sited in sensitive habitat areas. signed, and XYZ’s CEO was pleased. rasslands are an important part of Gthe country’s cultural, economic and natural history, and are the most altered and least conserved landscapes on earth. The results of this decline are staggering. Almost three-quarters of the breeding bird species in the United States survive in the prairies of the Great Plains. Historically, some of these birds were widely distributed and found in vast numbers.
    [Show full text]
  • Wind Power: Energy of the Future It’S Worth Thinking About
    Wind power: energy of the future It’s worth thinking about. »Energy appears to me to be the first and unique virtue of man.« Wilhelm von Humboldt 2 3 »With methods from the past, there will be no future.« Dr. Bodo Wilkens Wind power on the increase »Environmental protection is an opportunity and not a burden we have to carry.« Helmut Sihler When will the oil run out? Even if experts cannot agree on an exact date, one thing is certain: the era of fossil fuels is coming to an end. In the long term we depend on renewable sources of energy. This is an irrefutable fact, which has culminated in a growing ecological awareness in industry as well as in politics: whereas renewable sources of energy accounted for 4.2 percent of the total consumption of electricity in 1996, the year 2006 registered a proportion of 12 per- cent. And by 2020 this is to be pushed up to 30 percent. The growth of recent years has largely been due to the use of wind power. The speed of technical development over the past 15 years has brought a 20-fold rise in efficiency and right now wind power is the most economical regenerat- ive form there is to produce electricity. In this respect, Germany leads the world: since 1991 more than 19.460 wind power plants have been installed with a wind power capacity of 22.247 MW*. And there is more still planned for the future: away from the coastline, the offshore plants out at sea will secure future electricity supplies.
    [Show full text]
  • Qblade Guidelines V0.6
    QBlade Guidelines v0.6 David Marten Juliane Wendler January 18, 2013 Contact: david.marten(at)tu-berlin.de Contents 1 Introduction 5 1.1 Blade design and simulation in the wind turbine industry . 5 1.2 The software project . 7 2 Software implementation 9 2.1 Code limitations . 9 2.2 Code structure . 9 2.3 Plotting results / Graph controls . 11 3 TUTORIAL: How to create simulations in QBlade 13 4 XFOIL and XFLR/QFLR 29 5 The QBlade 360◦ extrapolation module 30 5.0.1 Basics . 30 5.0.2 Montgomery extrapolation . 31 5.0.3 Viterna-Corrigan post stall model . 32 6 The QBlade HAWT module 33 6.1 Basics . 33 6.1.1 The Blade Element Momentum Method . 33 6.1.2 Iteration procedure . 33 6.2 The blade design and optimization submodule . 34 6.2.1 Blade optimization . 36 6.2.2 Blade scaling . 37 6.2.3 Advanced design . 38 6.3 The rotor simulation submodule . 39 6.4 The multi parameter simulation submodule . 40 6.5 The turbine definition and simulation submodule . 41 6.6 Simulation settings . 43 6.6.1 Simulation Parameters . 43 6.6.2 Corrections . 47 6.7 Simulation results . 52 6.7.1 Data storage and visualization . 52 6.7.2 Variable listings . 53 3 Contents 7 The QBlade VAWT Module 56 7.1 Basics . 56 7.1.1 Method of operation . 56 7.1.2 The Double-Multiple Streamtube Model . 57 7.1.3 Velocities . 59 7.1.4 Iteration procedure . 59 7.1.5 Limitations . 60 7.2 The blade design and optimization submodule .
    [Show full text]
  • Challenges for the Commercialization of Airborne Wind Energy Systems
    first save date Wednesday, November 14, 2018 - total pages 53 Reaction Paper to the Recent Ecorys Study KI0118188ENN.en.pdf1 Challenges for the commercialization of Airborne Wind Energy Systems Draft V0.2.2 of Massimo Ippolito released the 30/1/2019 Comments to [email protected] Table of contents Table of contents Abstract Executive Summary Differences Between AWES and KiteGen Evidence 1: Tether Drag - a Non-Issue Evidence 2: KiteGen Carousel Carousel Addendum Hypothesis for Explanation: Evidence 3: TPL vs TRL Matrix - KiteGen Stem TPL Glass-Ceiling/Threshold/Barrier and Scalability Issues Evidence 4: Tethered Airfoils and the Power Wing Tethered Airfoil in General KiteGen’s Giant Power Wing Inflatable Kites Flat Rigid Wing Drones and Propellers Evidence 5: Best Concept System Architecture KiteGen Carousel 1 Ecorys AWE report available at: https://publications.europa.eu/en/publication-detail/-/publication/a874f843-c137-11e8-9893-01aa75ed 71a1/language-en/format-PDF/source-76863616 or ​ https://www.researchgate.net/publication/329044800_Study_on_challenges_in_the_commercialisatio n_of_airborne_wind_energy_systems 1 FlyGen and GroundGen KiteGen remarks about the AWEC conference Illogical Accusation in the Report towards the developers. The dilemma: Demonstrate or be Committed to Design and Improve the Specifications Continuous Operation as a Requirement Other Methodological Errors of the Ecorys Report Auto-Breeding Concept Missing EroEI Energy Quality Concept Missing Why KiteGen Claims to be the Last Energy Reservoir Left to Humankind
    [Show full text]
  • Assessment of the Effects of Noise and Vibration from Offshore Wind Farms on Marine Wildlife
    ASSESSMENT OF THE EFFECTS OF NOISE AND VIBRATION FROM OFFSHORE WIND FARMS ON MARINE WILDLIFE ETSU W/13/00566/REP DTI/Pub URN 01/1341 Contractor University of Liverpool, Centre for Marine and Coastal Studies Environmental Research and Consultancy Prepared by G Vella, I Rushforth, E Mason, A Hough, R England, P Styles, T Holt, P Thorne The work described in this report was carried out under contract as part of the DTI Sustainable Energy Programmes. The views and judgements expressed in this report are those of the contractor and do not necessarily reflect those of the DTI. First published 2001 i © Crown copyright 2001 EXECUTIVE SUMMARY Main objectives of the report Energy Technology Support Unit (ETSU), on behalf of the Department of Trade and Industry (DTI) commissioned the Centre for Marine and Coastal Studies (CMACS) in October 2000, to assess the effect of noise and vibration from offshore wind farms on marine wildlife. The key aims being to review relevant studies, reports and other available information, identify any gaps and uncertainties in the current data and make recommendations, with outline methodologies, to address these gaps. Introduction The UK has 40% of Europe ’s total potential wind resource, with mean annual offshore wind speeds, at a reference of 50m above sea level, of between 7m/s and 9m/s. Research undertaken by the British Wind Energy Association suggests that a ‘very good ’ site for development would have a mean annual wind speed of 8.5m/s. The total practicable long-term energy yield for the UK, taking limiting factors into account, would be approximately 100 TWh/year (DTI, 1999).
    [Show full text]
  • Offshore Wind Turbine Installation Analyses
    = Offshore Wind Turbine Transportation & Installation Analyses Planning Optimal Marine Operations for Offshore Wind Projects EMRE URAZ Master Thesis Visby, Sweden 2011 Offshore Wind Turbine Transportation & Installation Analyses Planning Optimal Marine Operations for Offshore Wind Projects Master Thesis by Emre URAZ Master Thesis written at Gotland University, June 2011, Department of Wind Energy Supervisor: Richard Koehler HGO, Department of Wind Energy Examiner: Dr. Bahri Uzunoğlu HGO, Department of Wind Energy Abstract Transportation and installation of offshore wind turbines (Tower, Nacelle and Rotor) is a complete process conducted over several phases, usually in sequence. There are several factors that can turn this process into a challenge. These factors can either be due to offshore site conditions or the technical limitations of the installation vessels. Each project has its own characteristic parameters and requires a unique optimum solution. This paper identifies the dynamics of the installation process and analyzes the effects of each phase on the progression of events. The challenges in wind turbine installations due to offshore environment were investigated, the effects of each were explained and their significances were stressed. Special installation vessels were examined and their technical specifications were analyzed in terms of working conditions, dimensions, service performances, and crane capacities as well as projecting future design trends. Several offshore wind farm projects were analyzed; their installation methods were specified, and compared to each other to determine advantages and disadvantages of different pre-assembly concepts. The durations of the sub-phases of the process were defined in terms of different variables such as site conditions and individual vessel performance. These definitions were used for making time estimations, and conducting further analyses regarding the effects of different site specific parameters on the overall project duration.
    [Show full text]
  • Selection Guidelines for Wind Energy Technologies
    energies Review Selection Guidelines for Wind Energy Technologies A. G. Olabi 1,2,*, Tabbi Wilberforce 2, Khaled Elsaid 3,* , Tareq Salameh 1, Enas Taha Sayed 4,5, Khaled Saleh Husain 1 and Mohammad Ali Abdelkareem 1,4,5,* 1 Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; [email protected] (T.S.); [email protected] (K.S.H.) 2 Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK; [email protected] 3 Chemical Engineering Program, Texas A & M University at Qatar, Doha P.O. Box 23874, Qatar 4 Centre for Advanced Materials Research, University of Sharjah, Sharjah 27272, United Arab Emirates; [email protected] 5 Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 615193, Egypt * Correspondence: [email protected] (A.G.O.); [email protected] (K.E.); [email protected] (M.A.A.) Abstract: The building block of all economies across the world is subject to the medium in which energy is harnessed. Renewable energy is currently one of the recommended substitutes for fossil fuels due to its environmentally friendly nature. Wind energy, which is considered as one of the promising renewable energy forms, has gained lots of attention in the last few decades due to its sustainability as well as viability. This review presents a detailed investigation into this technology as well as factors impeding its commercialization. General selection guidelines for the available wind turbine technologies are presented. Prospects of various components associated with wind energy conversion systems are thoroughly discussed with their limitations equally captured in this report.
    [Show full text]
  • Optimal Wind Turbine Control Vestas Wind Systems A/S Is the Global Leader in Wind Technology, the Only Global Energy Company
    embotech GmbH Physikstrasse 3, ETL K10.1 CH-8092 Zurich Tel. +41 632 6298 e-mail: [email protected] Optimal wind turbine control Vestas Wind Systems A/S is the global leader in wind technology, the only global energy company solely dedicat- ed to renewable wind energy, and continually innovating to lower the cost of energy for its customers. This in- cludes offering modularized configurations of wind turbines that can be adapted to meet the unique require- ments and environmental conditions of a new wind turbine’s site. Control of wind turbines should maximize power extraction from the wind while minimizing structural loads. Appropriately tuned control systems are cru- cial in this. At a high level, a wind turbine control system can be divided into a yaw controller, responsible for aligning the wind turbine with the wind direction, and a production controller, responsible for setting the desired pitch angle of the blades and the desired power output from the electrical converter. Measurements available to the pro- duction controller include the wind speed and the speed of the wind turbine generator. Traditionally, a wind turbine is operated in different modes depending on the wind speed: Low wind speed High wind speed Objective Maximize power out- Minimize vibrations and put structural load Constraint Observe structural and Stay at rated power electrical limits output and shaft speed Vestas was able to implement their novel, unified controller formu- lation, eliminating the switching between different modes by using FORCES Pro from embotech. Using this model-based design ap- Courtesy of Vestas Wind Systems A/S proach significantly limits the number of tuning parameters consid- Courtesy of Vestas Wind Systems A/S ered by engineers, and exposes in an intuitive manner the trade-offs between power output and structural loads that are inherent to any turbine design.
    [Show full text]