(Vismodegib) for Gleevec
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Potential High-Impact Interventions Report Priority Area 02: Cancer
AHRQ Healthcare Horizon Scanning System – Potential High-Impact Interventions Report Priority Area 02: Cancer Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. HHSA290201000006C Prepared by: ECRI Institute 5200 Butler Pike Plymouth Meeting, PA 19462 December 2012 Statement of Funding and Purpose This report incorporates data collected during implementation of the Agency for Healthcare Research and Quality (AHRQ) Healthcare Horizon Scanning System by ECRI Institute under contract to AHRQ, Rockville, MD (Contract No. HHSA290201000006C). The findings and conclusions in this document are those of the authors, who are responsible for its content, and do not necessarily represent the views of AHRQ. No statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. This report’s content should not be construed as either endorsements or rejections of specific interventions. As topics are entered into the System, individual topic profiles are developed for technologies and programs that appear to be close to diffusion into practice in the United States. Those reports are sent to various experts with clinical, health systems, health administration, and/or research backgrounds for comment and opinions about potential for impact. The comments and opinions received are then considered and synthesized by ECRI Institute to identify interventions that experts deemed, through the comment process, to have potential for high impact. Please see the methods section for more details about this process. This report is produced twice annually and topics included may change depending on expert comments received on interventions issued for comment during the preceding 6 months. -
Investigator Initiated Study IRB-29839 an Open-Label Pilot Study To
Investigator Initiated Study IRB-29839 An open-label pilot study to evaluate the efficacy and safety of a combination treatment of Sonidegib and BKM120 for the treatment of advanced basal cell carcinomas Version 05 September 2016 NCT02303041 DATE: 12Dec2018 1 Coordinating Center Stanford Cancer Center 875 Blake Wilbur Drive Stanford, CA 94305 And 450 Broadway, MC 5334 Redwood City, CA 94603 Protocol Director and Principal Investigator Anne Lynn S Chang, MD, Director of Dermatological Clinical Trials 450 Broadway St, MC 5334 Redwood City, CA 94603 [email protected] Co-Investigator Anthony Oro, MD PhD 450 Broadway St, MC 5334 Redwood City, CA 94603 [email protected] Biostatistician Shufeng Li, MS 450 Broadway St, MC 5334 Redwood City, CA 94603 [email protected] Study Coordinator Ann Moffat 450 Broadway St, MC 5334 Redwood City, CA 94603 [email protected] 2 Table of Contents 1 Background ................................................................. 7 1.1 Disease Background ..................................................... 7 1.2 Hedgehog Pathway and mechanism of action ............................... 7 1.3 PI3K Pathway and mechanism of action ................................... 9 1.4 Sonidegib Compound Information ............ Error! Bookmark not defined. 1.4.1 Preclinical Studies for Sonidegib ....................................................................11 1.4.2 Muscular system...............................................................................................13 1.4.3 Skeletal system ................................................................................................13 -
Tyrosine Kinase Inhibitors Ameliorate Autoimmune Encephalomyelitis in a Mouse Model of Multiple Sclerosis
J Clin Immunol DOI 10.1007/s10875-011-9579-6 Tyrosine Kinase Inhibitors Ameliorate Autoimmune Encephalomyelitis in a Mouse Model of Multiple Sclerosis Oliver Crespo & Stacey C. Kang & Richard Daneman & Tamsin M. Lindstrom & Peggy P. Ho & Raymond A. Sobel & Lawrence Steinman & William H. Robinson Received: 23 February 2011 /Accepted: 5 July 2011 # Springer Science+Business Media, LLC 2011 Abstract Multiple sclerosis is an autoimmune disease of development of disease and treat established disease in a the central nervous system characterized by neuroinflam- mouse model of multiple sclerosis. In vitro, imatinib and mation and demyelination. Although considered a T cell- sorafenib inhibited astrocyte proliferation mediated by the mediated disease, multiple sclerosis involves the activation tyrosine kinase platelet-derived growth factor receptor of both adaptive and innate immune cells, as well as (PDGFR), whereas GW2580 and sorafenib inhibited resident cells of the central nervous system, which macrophage tumor necrosis factor (TNF) production medi- synergize in inducing inflammation and thereby demyelin- ated by the tyrosine kinases c-Fms and PDGFR, respec- ation. Differentiation, survival, and inflammatory functions tively. In vivo, amelioration of disease by GW2580 was of innate immune cells and of astrocytes of the central associated with a reduction in the proportion of macro- nervous system are regulated by tyrosine kinases. Here, we phages and T cells in the CNS infiltrate, as well as a show that imatinib, sorafenib, and GW2580—small mole- reduction in the levels of circulating TNF. Our findings cule tyrosine kinase inhibitors—can each prevent the suggest that GW2580 and the FDA-approved drugs imatinib and sorafenib have potential as novel therapeu- : : : tics for the treatment of autoimmune demyelinating O. -
Management of Chronic Myelogenous Leukemia in Pregnancy
ANTICANCER RESEARCH 35: 1-12 (2015) Review Management of Chronic Myelogenous Leukemia in Pregnancy AMIT BHANDARI, KATRINA ROLEN and BINAY KUMAR SHAH Cancer Center and Blood Institute, St. Joseph Regional Medical Center, Lewiston, ID, U.S.A. Abstract. Discovery of tyrosine kinase inhibitors has led to Leukemia in pregnancy is a rare condition, with an annual improvement in survival of chronic myelogenous leukemia incidence of 1-2/100,000 pregnancies (8). Since the first (CML) patients. Many young CML patients encounter administration of imatinib (the first of the TKIs) to patients pregnancy during their lifetime. Tyrosine kinase inhibitors with CML in June 1998, it is estimated that there have now inhibit several proteins that are known to have important been 250,000 patient years of exposure to the drug (mostly functions in gonadal development, implantation and fetal in patients with CML) (9). TKIs not only target BCR-ABL development, thus increasing the risk of embryo toxicities. tyrosine kinase but also c-kit, platelet derived growth factors Studies have shown imatinib to be embryotoxic in animals with receptors α and β (PDGFR-α/β), ARG and c-FMS (10). varying effects in fertility. Since pregnancy is rare in CML, Several of these proteins are known to have functions that there are no randomized controlled trials to address the may be important in gonadal development, implantation and optimal management of this condition. However, there are fetal development (11-15). Despite this fact, there is still only several case reports and case series on CML in pregnancy. At limited information on the effects of imatinib on fertility the present time, there is no consensus on how to manage and/or pregnancy. -
Nilotinib (Tasigna®) EOCCO POLICY
nilotinib (Tasigna®) EOCCO POLICY Policy Type: PA/SP Pharmacy Coverage Policy: EOCCO136 Description Nilotinib (Tasigna) is a Bcr-Abl kinase inhibitor that binds to, and stabilizes, the inactive conformation of the kinase domain of the Abl protein. Length of Authorization Initial: Three months Renewal: 12 months Quantity Limits Product Name Dosage Form Indication Quantity Limit Newly diagnosed OR resistant/ intolerant 50 mg capsules 112 capsules/28 days Ph+ CML in chronic phase nilotinib 150 mg capsules Newly diagnosed Ph+ CML in chronic phase 112 capsules/28 days (Tasigna) Resistant or intolerant Ph + CML 200 mg capsules 112 capsules/28 days Gastrointestinal Stromal Tumors (GIST) Initial Evaluation I. Nilotinib (Tasigna) may be considered medically necessary when the following criteria are met: A. Medication is prescribed by, or in consultation with, an oncologist; AND B. Medication will not be used in combination with other oncologic medications (i.e., will be used as monotherapy); AND C. A diagnosis of one of the following: 1. Chronic myelogenous leukemia (CML) ; AND i. Member is newly diagnosed with Philadelphia chromosome-positive (Ph+) or BCR-ABL1 mutation positive CML in chronic phase; OR ii. Member is diagnosed with chronic OR accelerated phase Ph+ or BCR-ABL1 mutation positive CML; AND a. Member is 18 years of age or older; AND b. Treatment with a tyrosine kinase inhibitor [e.g. imatinib (Gleevec)] has been ineffective, contraindicated, or not tolerated; OR iii. Member is diagnosed with chronic phase Ph+ or BCR-ABL1 mutation positive CML; AND a. Member is one year of age or older; AND 1 nilotinib (Tasigna®) EOCCO POLICY b. -
Genomic Oncology: Moving Beyond the Tip of the Iceberg Jane De Lartigue, Phd
FeatureCommunity Report Genomic oncology: moving beyond the tip of the iceberg Jane de Lartigue, PhD istorically, cancer has been diagnosed and in patients with lung cancer, even the most efec- treated on the basis of the tissue of ori- tive targeted therapies can fail if used in the wrong Hgin. Te promise of personalized therapy, patient population.5,6 matched more precisely to an individual’s tumor, In recognition of this issue, the oncology feld has was ushered in with the development of molecularly developed molecular biomarkers that can predict targeted therapies, based on a greater understanding response, or lack thereof, to targeted therapy. Drugs of cancer as a genomic-driven disease. Here, we dis- are now commonly being evaluated in trials that cuss some of the evolution of genomic oncology, the select eligible patients on the basis of biomarker pos- inherent complexities and challenges, and how novel itivity, and a number of companion diagnostics have clinical trial designs are among the strategies being been codeveloped to assist in these eforts (Table 1). developed to address them and shape the future of Notable successes include the development of the personalized medicine in cancer. monoclonal antibody trastuzumab for patients with breast cancers that have human epidermal growth The evolution of genomic oncology factor receptor 2 (HER2) gene amplifcation or In the 15 years since the frst map of the human HER2 protein overexpression,7 and the small mol- genome emerged, genetics has become an inte- ecule BRAF kinase inhibitor -
Partial Response to Erlotinib in a Patient with Imatinib-Refractory
Verma et al. Clin Sarcoma Res (2020) 10:28 https://doi.org/10.1186/s13569-020-00149-1 Clinical Sarcoma Research CASE REPORT Open Access Partial response to erlotinib in a patient with imatinib-refractory sacral chordoma Saurav Verma1, Surya Prakash Vadlamani1, Shamim Ahmed Shamim2, Adarsh Barwad3, Sameer Rastogi4* and S. T. Arun Raj2 Abstract Background: Chordoma is a rare, slow growing and locally aggressive mesenchymal neoplasm with uncommon distant metastases. It is a chemo-resistant disease with surgery and radiotherapy being the mainstay in treatment of localized disease. In advanced disease imatinib has a role. We report a case of metastatic sacral chordoma with symp- tomatic and radiological response to erlotinib post-progression on imatinib. Case presentation: A 48-year-old male with a sacral chordoma underwent partial sacrectomy followed by post- operative radiotherapy. Upon recurrence he received palliative radiotherapy to hemipelvis and was ofered therapy with imatinib. However, the disease was refractory to imatinib and he was started on treatment with erlotinib—show- ing a partial response on imaging at two months. He is currently doing well at 13 months since start of erlotinib. Conclusions: As seen in previously reported cases, erlotinib is a therapeutic option in advanced chordoma, even in imatinib refractory cases and thus warrants exploration of its therapeutic role in prospective clinical trials. Keywords: Chordoma, EGFR, Erlotinib Background adjuvant setting after a full or subtotal resection, and as Chordoma is a rare mesenchymal neoplasm which arises the primary treatment in unresectable disease. from the remnants of primitive notochord [1]. It accounts Chordoma responds poorly to cytotoxic chemotherapy. -
Overcoming the Challenges of Oral Oncolytic Therapies with a Specialized Crew
Navigating Safely Through Uncharted Waters: Overcoming the Challenges of Oral Oncolytic Therapies with a Specialized Crew Mitchell E. Hughes, PharmD, BCPS, BCOP Clinical Pharmacy Specialist-Hematology/Oncology The Abramson Cancer Center for Advanced Medicine at Penn Medicine Objectives At the completion of this activity, the participant will be able to: 1. List risks associated with dispensing oral oncolytic agent 2. Recognize potential barriers to implementation of a vigilance program for oral oncolytic agents 3. Discuss strategies to improve safety and communications involved with dispensing oral oncolytic agents 2 Disclosure “I have not received any commercial or financial support for this program” 3 Oral Chemotherapy Definition “Any drug you take by mouth to treat cancer. Oral chemo is not given to you with a needle. It’s a liquid or pill that you swallow.” “Chemo you swallow is as strong as other forms of chemo and works just as well. You take oral chemo at home” “But oral chemo drugs cost a lot” –The American Cancer Society 4 Image available from: https://localtvwiti.files.wordpress.com/2014/03/chemo-pills.jpg?quality=85&strip=all https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/chemotherapy/oral-chemotherapy.html Misconceptions Oral chemotherapy is less toxic than intravenous (IV) chemotherapy Oral chemotherapy requires less monitoring than IV Patients will be able to start therapy the day oral chemotherapy is prescribed Oral chemotherapy does not involve any hazardous precautions 5 Image available -
The Effects of Combination Treatments on Drug Resistance in Chronic Myeloid Leukaemia: an Evaluation of the Tyrosine Kinase Inhibitors Axitinib and Asciminib H
Lindström and Friedman BMC Cancer (2020) 20:397 https://doi.org/10.1186/s12885-020-06782-9 RESEARCH ARTICLE Open Access The effects of combination treatments on drug resistance in chronic myeloid leukaemia: an evaluation of the tyrosine kinase inhibitors axitinib and asciminib H. Jonathan G. Lindström and Ran Friedman* Abstract Background: Chronic myeloid leukaemia is in principle a treatable malignancy but drug resistance is lowering survival. Recent drug discoveries have opened up new options for drug combinations, which is a concept used in other areas for preventing drug resistance. Two of these are (I) Axitinib, which inhibits the T315I mutation of BCR-ABL1, a main source of drug resistance, and (II) Asciminib, which has been developed as an allosteric BCR-ABL1 inhibitor, targeting an entirely different binding site, and as such does not compete for binding with other drugs. These drugs offer new treatment options. Methods: We measured the proliferation of KCL-22 cells exposed to imatinib–dasatinib, imatinib–asciminib and dasatinib–asciminib combinations and calculated combination index graphs for each case. Moreover, using the median–effect equation we calculated how much axitinib can reduce the growth advantage of T315I mutant clones in combination with available drugs. In addition, we calculated how much the total drug burden could be reduced by combinations using asciminib and other drugs, and evaluated which mutations such combinations might be sensitive to. Results: Asciminib had synergistic interactions with imatinib or dasatinib in KCL-22 cells at high degrees of inhibition. Interestingly, some antagonism between asciminib and the other drugs was present at lower degrees on inhibition. -
Pulmonary Toxicities of Tyrosine Kinase Inhibitors
Pulmonary Toxicities of Tyrosine Kinase Inhibitors Maajid Mumtaz Peerzada, MD, Timothy P. Spiro, MD, FACP, and Hamed A. Daw, MD Dr. Peerzada is a Resident in the Depart- Abstract: The incidence of pulmonary toxicities with the use of ment of Internal Medicine at Fairview tyrosine kinase inhibitors (TKIs) is not very high; however, various Hospital in Cleveland, Ohio. Dr. Spiro and case reports and studies continue to show significant variability in Dr. Daw are Staff Physicians at the Cleve- the incidence of these adverse events, ranging from 0.2% to 10.9%. land Clinic Foundation Cancer Center, in Cleveland, Ohio. Gefitinib and erlotinib are orally active, small-molecule inhibitors of the epidermal growth factor receptor tyrosine kinase that are mainly used to treat non-small cell lung cancer. Imatinib is an inhibitor of BCR-ABL tyrosine kinase that is used to treat various leukemias, gastrointestinal stromal tumors, and other cancers. In this article, we Address correspondence to: review data to identify the very rare but fatal pulmonary toxicities Maajid Mumtaz Peerzada, MD Medicor Associates of Chautauqua (mostly interstitial lung disease) caused by these drugs. Internal Medicine 12 Center Street Fredonia, NY 14063 Introduction Phone: 716-679-2233 E-mail: [email protected] Tyrosine kinases are enzymes that activate the phosphorylation of tyro- sine residues by transferring the terminal phosphate of ATP. Some of the tyrosine kinase inhibitors (TKIs) currently used in the treatment of various malignancies include imatinib (Gleevec, Novartis), erlotinib (Tarceva, Genentech/OSI), and gefitinib (Iressa, AstraZeneca). This article presents a basic introduction (mechanism of action and indi- cations of use) of these TKIs and summarizes the incidence, various clinical presentations, diagnosis, treatment options, and outcomes of patients around the world that presented with pulmonary toxicities caused by these drugs. -
An Investigator-Initiated Open-Label Trial of Sonidegib in Advanced Basal Cell Carcinoma Patients Resistant to Vismodegib Christina Danial, Kavita Y
Published OnlineFirst November 6, 2015; DOI: 10.1158/1078-0432.CCR-15-1588 Clinical Trial Brief Report Clinical Cancer Research An Investigator-Initiated Open-Label Trial of Sonidegib in Advanced Basal Cell Carcinoma Patients Resistant to Vismodegib Christina Danial, Kavita Y. Sarin, Anthony E. Oro, and Anne Lynn S. Chang Abstract Purpose: To assess the tumor response to the smoothened sive disease with sonidegib. Three patients experienced stable (SMO) inhibitor, sonidegib (LDE225), in patients with an disease and discontinued sonidegib either due to adverse events advanced basal cell carcinoma (BCC) resistant to treatment with (n ¼ 1) or due to election for surgery (n ¼ 2). The response of one vismodegib (GDC0449). patient was not evaluable. SMO mutations with in vitro data Experimental Design: Nine patients with an advanced suggesting resistance to Hh pathway inhibition were identified BCC that was previously resistant to treatment with vismode- in 5 patients, and none of these patients experienced responses gib were given sonidegib in this investigational, open- while on sonidegib. label study. Tumor response was determined using the Conclusion: Patients with advanced BCCs that were response evaluation criteria in solid tumors. SMO mutations previously resistant to treatment with vismodegib similarly were identified using biopsy samples from the target BCC demonstrated treatment resistance with sonidegib. Patients location. who have developed treatment resistance to an SMO inhibitor Results: The median duration of treatment with sonidegib was may continue to experience tumor progression in response to 6 weeks (range, 3–58 weeks). Five patients experienced progres- other SMO inhibitors. Clin Cancer Res; 1–5. Ó2015 AACR. Introduction Sonidegib (LDE225) is a new SMO inhibitor approved in 2015 by the FDA for locally advanced BCCs. -
Guideline for Preoperative Medication Management
Guideline: Preoperative Medication Management Guideline for Preoperative Medication Management Purpose of Guideline: To provide guidance to physicians, advanced practice providers (APPs), pharmacists, and nurses regarding medication management in the preoperative setting. Background: Appropriate perioperative medication management is essential to ensure positive surgical outcomes and prevent medication misadventures.1 Results from a prospective analysis of 1,025 patients admitted to a general surgical unit concluded that patients on at least one medication for a chronic disease are 2.7 times more likely to experience surgical complications compared with those not taking any medications. As the aging population requires more medication use and the availability of various nonprescription medications continues to increase, so does the risk of polypharmacy and the need for perioperative medication guidance.2 There are no well-designed trials to support evidence-based recommendations for perioperative medication management; however, general principles and best practice approaches are available. General considerations for perioperative medication management include a thorough medication history, understanding of the medication pharmacokinetics and potential for withdrawal symptoms, understanding the risks associated with the surgical procedure and the risks of medication discontinuation based on the intended indication. Clinical judgement must be exercised, especially if medication pharmacokinetics are not predictable or there are significant risks associated with inappropriate medication withdrawal (eg, tolerance) or continuation (eg, postsurgical infection).2 Clinical Assessment: Prior to instructing the patient on preoperative medication management, completion of a thorough medication history is recommended – including all information on prescription medications, over-the-counter medications, “as needed” medications, vitamins, supplements, and herbal medications. Allergies should also be verified and documented.