Pheromone Races of Cydia Splendana (Lepidoptera, Tortricidae) Overlap in Host Plant Association and Geographic Distribution

Total Page:16

File Type:pdf, Size:1020Kb

Pheromone Races of Cydia Splendana (Lepidoptera, Tortricidae) Overlap in Host Plant Association and Geographic Distribution http://www.diva-portal.org This is the published version of a paper published in Frontiers in Ecology and Evolution. Citation for the original published paper (version of record): Bengtsson, M., Boutitie, A., Jósvai, J., Toth, M., Andreadis, S. et al. (2014) Pheromone races of Cydia splendana (Lepidoptera, Tortricidae) overlap in host plant association and geographic distribution. Frontiers in Ecology and Evolution, 2: Article ID: 46 http://dx.doi.org/10.3389/fevo.2014.00046 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. This Document is Protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with permission. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-37511 ORIGINAL RESEARCH ARTICLE published: 06 August 2014 ECOLOGY AND EVOLUTION doi: 10.3389/fevo.2014.00046 Pheromone races of Cydia splendana (Lepidoptera, Tortricidae) overlap in host plant association and geographic distribution Marie Bengtsson 1, Anne Boutitie 2, Julia Jósvai 3, Miklos Toth 3, Stefanos Andreadis 1, Stefan Rauscher 4, C. Rikard Unelius 5 and Peter Witzgall 1* 1 Chemical Ecology Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden 2 SUAMME, Mas de Saporta, Lattes, France 3 Plant Protection Institute MTA ATK, Budapest, Hungary 4 Swiss Federal Research Station, Wädenswil, Switzerland 5 Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden Edited by: Identification of the sex pheromone of Cydia splendana (Lepidoptera, Tortricidae) by Stefano Colazza, University of pheromone gland analysis followed by field trapping with synthetic compounds shows Palermo, Italy the occurrence of two pheromone races. Acorn moth females from Sweden, where Reviewed by: oak Quercus robur is the only host plant, use a blend of the E,Z and E,E isomers of Nick Bos, University of Helsinki, Finland 8,10-dodecadien-1-yl acetate. In Central and Southern Europe, where C. splendana feeds Joachim Ruther, University of on chestnut Castanea sativa and several species of oak, males respond to another isomer Regensburg, Germany blend, E,E and Z,E. The distribution of the two pheromone races of C. splendana overlaps *Correspondence: in Northern France, where they share oak as plant host. Differences in sex communication Peter Witzgall, Chemical Ecology signals between these populations of C. splendana corroborate the role of specific mate Group, Department of Plant Protection Biology, Swedish recognition in speciation events. University of Agricultural Sciences, Keywords: specific mate recognition, reproductive isolation, sibling species, host plant, Castanea, Quercus, SLU, Box 102, Växtskyddsvägen 3, Fagaceae 23053 Alnarp, Sweden e-mail: [email protected] INTRODUCTION blends for isolation function in populations or related species. Sex pheromone communication in moths is the original An alternative explanation is that changes in pheromone blends, paradigm in chemical ecology (Fabre, 1879; Butenandt et al., resulting from saltational changes in female pheromone biosyn- 1959). Lepidopteran sex pheromones encode species and mate thesis, are tracked by the responding males, and thus lead to recognition, and taxonomically closely related species often use new pheromone communication channels (Phelan, 1992; Baker, specific blends of positional or geometric isomers of unsaturated 2002). This is in line with the specific mate recognition concept, straight-chain acetates (Arn et al., 1986; Wyatt, 2003; Johansson according to which sexual selection drives the optimization and Jones, 2007; El-Sayed, 2014). of communication and mate recognition; diversification of The geometric isomers of 8,10-dodecadien-1-yl acetate pheromone blends between populations, as an initial step toward (8,10-12Ac) are typical sex pheromone components in the reproductive isolation, is regarded merely as a by-product of tortricid subfamily Olethreutinae (Lepidoptera, Tortricidae). In selection on pheromone blends for optimal communication species communicating with 8,10-12Ac, each of these iso- (Paterson, 1985; Linn and Roelofs, 1995; Vrba, 1995; Mendelson mers is behaviorally active, either as main pheromone compound, and Shaw, 2012). attraction synergist or attraction inhibitor. A coincident and In nature, sex pheromone and host plant odors are perceived reciprocal, synergistic or antagonistic effect on male attraction as an ensemble. That mating and habitat cues are coded as blends enables specific communication and mate recognition with only in the male antennal lobe, the olfactory center of the insect four compounds, in 30 or more species of this subfamily (Witzgall brain, highlights the role of plant signals in habitat selection and et al., 1996, 2010; El-Sayed, 2014). Behavioral observations and in premating sexual communication (Trona et al., 2010, 2013; field trapping studies in several species have shown that dis- Chaffiol et al., 2014; Deisig et al., 2014). Closely related tortricid tinct pheromone communication channels result in specific mate moths are often associated with taxonomically related host plant recognition in tortricid moths (Witzgall et al., 1993, 1996, 2010) species. However, species or pheromone races and plant hosts and most likely also in premating reproductive isolation, which do not always overlap congruently. The European Fagaceae, oak may give rise to speciation. Indeed, distinct pheromone races, Quercus spec., chestnut Castanea sativa and beech Fagus sylvatica, using specific isomer blends have been found in several of these are hosts for the phylogenetically closely related acorn moth or species (Witzgall et al., 1996). chestnut tortrix Cydia splendana and the beech tortrix C. fagiglan- A reciprocal synergistic/antagonistic behavioral role of dana. North of the geographical distribution of chestnut, the pheromone compounds may result from selection on pheromone larvae of C. fagiglandana feed on beech nuts and the larvae of www.frontiersin.org August 2014 | Volume 2 | Article 46 | 1 Bengtsson et al. Cydia splendana pheromone C. splendana on acorns. In southern Europe, both species are also of 2- to 3-day-old female moths, retrieved from field cages in found on chestnut, where they cause significant damage (Bovey, oak and chestnut trees close to the laboratory, were extracted 1966; Bradley et al., 1979). Pheromone-baited traps are increas- in batches of 20–80 (N = 7andN = 3 for insects from Sweden ingly important for monitoring the seasonal flight period and and Hungary, respectively), 1–3 h after onset of the scotophase. population density of these insects. Protecting chestnuts with Sex glands were detached with forceps from forcefully protruded insecticide sprays is technically difficult due to a large tree canopy, ovipositors, and were kept in a 3-ml reaction vial held in liquid and few efficient insecticides are available (Avtzis et al., 2013). air, and then extracted with ca. 5 µl redistilled heptane, contain- The female sex pheromone of C. splendana feeding on acorns ing heptyl acetate as internal standard, at ca. 20◦C during 2 min. or oak nuts of Quercus robur in Sweden is a blend of (E,Z)- and The extracts were stored in sealed glass capillaries at −19◦C. (E,E)-8,10-dodecadienyl acetate (EZ and EE). The main com- Compounds in gland extracts were identified on a coupled pound EZ alone is highly attractive to male moths, and trap cap- gas chromatography-mass spectrometer (GC-MS; 6890 GC and tures are further augmented by adding the EE isomer, which is a 5975 MS; Agilent Technologies, Palo Alto, CA, USA), operated pheromone synergist (Witzgall et al., 1996). However, the EZ/EE- in the electron impact ionization mode at 70 eV. The GC was pheromone blend of C. splendana from Swedish oak forests did equipped with fused silica capillary columns (30 m × 0.25 mm), not attract males in chestnut plantations in France. Host races DB-wax (J&W Scientific, Folsom, CA, USA) or HP-5MS (Agilent of several moths, including European corn borer, fall armyworm Technologies). Helium was used as the mobile phase at an average and larch budmoth are known to use different pheromone blends linear flow rate of 35 cm/s. Two µl of each sample were injected (Guerin et al., 1984; Leppik and Frerot, 2012; Unbehend et al., (splitless mode, injector temperature 225◦C). The GC oven tem- 2014).ThisledustoreinvestigatethesexpheromoneofC. splen- perature for both columns was programmed from 60◦C (2 min dana from chestnut, showing that C. splendana uses two differ- hold) at 10◦C/min 21–100◦C, at 1.5◦C/min to 150◦C, and at ent pheromone blends that probably contribute to reproductive 10–230◦C. isolation. For electroantennographic detection (EAD) (Arn et al., 1975), the DB-wax column in a Hewlett-Packard 6890 GC was split MATERIALS AND METHODS between the flame ionization detector (FID) and an electroan- CHEMICALS AND INSECTS tennogram (EAG) apparatus (IDAC-2; Syntech, Kirchzarten, (E,E)-8,10-dodecadien-1-yl acetate (E8,E10-12Ac) was pur- Germany). One arm of the split column led into a glass tube chased from S. Voerman (Institute for Pesticide Research, (Ø 8 mm), with a charcoal-filtered and humidified air stream Wageningen, The Netherlands). The EZ, ZE,andZZ isomers of (0.5 l/min). C. splendana male antennae were at 0.5 cm from the 8,10-dodecadien-1-yl acetate were synthesized, and purified by end of this glass tube, 30 cm from the EAD-outlet of the GC. high-pressure liquid chromatography (HPLC) (Witzgall et al., The antennae were mounted between two glass pipette electrodes 1993). Chemical purity of the four isomers was ≥99.6%, isomeric containing Ringer solution (Beadle-Ephrussi); one electrode was purity was ≥99.3% by capillary gas chromatography (GC). connected to ground and the other to an amplifier (Syntech). Insects were collected as last-instar larvae from acorns of The GC was operated in splitless injection mode and the oven was programmed from 50◦C (2 min hold) at 10◦C/min to 230◦C. Q.
Recommended publications
  • CHESTNUT (CASTANEA Spp.) CULTIVAR EVALUATION for COMMERCIAL CHESTNUT PRODUCTION
    CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE By Ana Maria Metaxas Approved: James Hill Craddock Jennifer Boyd Professor of Biological Sciences Assistant Professor of Biological and Environmental Sciences (Director of Thesis) (Committee Member) Gregory Reighard Jeffery Elwell Professor of Horticulture Dean, College of Arts and Sciences (Committee Member) A. Jerald Ainsworth Dean of the Graduate School CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE by Ana Maria Metaxas A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science May 2013 ii ABSTRACT Chestnut cultivars were evaluated for their commercial applicability under the environmental conditions in Hamilton County, TN at 35°13ꞌ 45ꞌꞌ N 85° 00ꞌ 03.97ꞌꞌ W elevation 230 meters. In 2003 and 2004, 534 trees were planted, representing 64 different cultivars, varieties, and species. Twenty trees from each of 20 different cultivars were planted as five-tree plots in a randomized complete block design in four blocks of 100 trees each, amounting to 400 trees. The remaining 44 chestnut cultivars, varieties, and species served as a germplasm collection. These were planted in guard rows surrounding the four blocks in completely randomized, single-tree plots. In the analysis, we investigated our collection predominantly with the aim to: 1) discover the degree of acclimation of grower- recommended cultivars to southeastern Tennessee climatic conditions and 2) ascertain the cultivars’ ability to survive in the area with Cryphonectria parasitica and other chestnut diseases and pests present.
    [Show full text]
  • Habitat Heterogeneity Induces Rapid Changes in the Feeding Behaviour of Generalist Arthropod Predators
    Received: 6 January 2017 | Accepted: 29 November 2017 DOI: 10.1111/1365-2435.13028 RESEARCH ARTICLE Habitat heterogeneity induces rapid changes in the feeding behaviour of generalist arthropod predators Karin Staudacher1* | Oskar Rennstam Rubbmark1* | Klaus Birkhofer2,3 | Gerard Malsher4 | Daniela Sint1 | Mattias Jonsson4 | Michael Traugott1 1Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Abstract Austria 1. The “habitat heterogeneity hypothesis” predicts positive effects of structural com- 2 Department of Biology, Lund University, plexity on species coexistence. Increasing habitat heterogeneity can change the Lund, Sweden diversity (number of species, abundances) and the functional roles of communities. 3Chair of Ecology, Brandenburg University of Technology, Cottbus, Germany The latter, however, is not well understood as species and individuals may respond 4Department of Ecology, Swedish University very differently and dynamically to a changing environment. of Agricultural Sciences, Uppsala, Sweden 2. Here, we experimentally test how habitat heterogeneity affects generalist ar- Correspondence thropod predators, including epigaeic spiders, carabid and staphylinid beetles, Karin Staudacher Emails: [email protected], under natural conditions by assessing their diversity and directly measuring [email protected] their trophic interactions (which provide a proxy for their functional roles). The Funding information experiment was conducted in spring barley fields in Southern Sweden where Austrian Science Fund, Grant/Award Number: habitat heterogeneity was manipulated by increasing within-field plant FWF: I786 diversity. Handling Editor: Rana El-Sabaawi 3. Increased habitat heterogeneity triggered rapid changes in the feeding behav- iour of generalist predators characterized by lower trophic specialization at both network (H2’, degree of interaction specialization in the entire network) and species level (d’, degree of interaction specialization at the species level).
    [Show full text]
  • Recerca I Territori V12 B (002)(1).Pdf
    Butterfly and moths in l’Empordà and their response to global change Recerca i territori Volume 12 NUMBER 12 / SEPTEMBER 2020 Edition Graphic design Càtedra d’Ecosistemes Litorals Mediterranis Mostra Comunicació Parc Natural del Montgrí, les Illes Medes i el Baix Ter Museu de la Mediterrània Printing Gràfiques Agustí Coordinadors of the volume Constantí Stefanescu, Tristan Lafranchis ISSN: 2013-5939 Dipòsit legal: GI 896-2020 “Recerca i Territori” Collection Coordinator Printed on recycled paper Cyclus print Xavier Quintana With the support of: Summary Foreword ......................................................................................................................................................................................................... 7 Xavier Quintana Butterflies of the Montgrí-Baix Ter region ................................................................................................................. 11 Tristan Lafranchis Moths of the Montgrí-Baix Ter region ............................................................................................................................31 Tristan Lafranchis The dispersion of Lepidoptera in the Montgrí-Baix Ter region ...........................................................51 Tristan Lafranchis Three decades of butterfly monitoring at El Cortalet ...................................................................................69 (Aiguamolls de l’Empordà Natural Park) Constantí Stefanescu Effects of abandonment and restoration in Mediterranean meadows .......................................87
    [Show full text]
  • Effect of Different Mowing Regimes on Butterflies and Diurnal Moths on Road Verges A
    Animal Biodiversity and Conservation 29.2 (2006) 133 Effect of different mowing regimes on butterflies and diurnal moths on road verges A. Valtonen, K. Saarinen & J. Jantunen Valtonen, A., Saarinen, K. & Jantunen, J., 2006. Effect of different mowing regimes on butterflies and diurnal moths on road verges. Animal Biodiversity and Conservation, 29.2: 133–148. Abstract Effect of different mowing regimes on butterflies and diurnal moths on road verges.— In northern and central Europe road verges offer alternative habitats for declining plant and invertebrate species of semi– natural grasslands. The quality of road verges as habitats depends on several factors, of which the mowing regime is one of the easiest to modify. In this study we compared the Lepidoptera communities on road verges that underwent three different mowing regimes regarding the timing and intensity of mowing; mowing in mid–summer, mowing in late summer, and partial mowing (a narrow strip next to the road). A total of 12,174 individuals and 107 species of Lepidoptera were recorded. The mid–summer mown verges had lower species richness and abundance of butterflies and lower species richness and diversity of diurnal moths compared to the late summer and partially mown verges. By delaying the annual mowing until late summer or promoting mosaic–like mowing regimes, such as partial mowing, the quality of road verges as habitats for butterflies and diurnal moths can be improved. Key words: Mowing management, Road verge, Butterfly, Diurnal moth, Alternative habitat, Mowing intensity. Resumen Efecto de los distintos regímenes de siega de los márgenes de las carreteras sobre las polillas diurnas y las mariposas.— En Europa central y septentrional los márgenes de las carreteras constituyen hábitats alternativos para especies de invertebrados y plantas de los prados semi–naturales cuyas poblaciones se están reduciendo.
    [Show full text]
  • Micro Moths on Great Cumbrae Island (Vc100)
    The Glasgow Naturalist (online 2017) Volume 26, xx-xx Micro moths on Great Cumbrae Island (vc100) P. G. Moore 32 Marine Parade, Millport, Isle of Cumbrae KA28 0EF E-mail: [email protected] ABSTRACT Forsythia sp. Behind the office is a large mature Few previous records exist for miCro-moths from black mulberry tree (Morus nigra) and to one side is vC100. Data are presented from the first year-round a tall privet hedge (Ligustrum ovalifolium). To the moth-trapping exerCise accomplished on Great rear of my property is a wooded escarpment with Cumbrae Island; one of the least studied of the old-growth ash (Fraxinus excelsior) frequently ivy- Clyde Isles (vC100). Data from a Skinner-type light- Covered (Hedera helix), sycamore (Acer trap, supplemented by Collection of leaf mines from pseudoplatanus) and rowan (Sorbus aucuparia), local trees, revealed the presence of 71 species of with an undergrowth of hawthorn (Crataegus miCro moths, representing 20 new records for the monogyna), wild garliC (Allium ursinum), nettle vice-County. (Urtica dioica), bracken (Pteridium aquilinum) and bramble (Rubus fructicosus). Rhind (1988) detailed INTRODUCTION the vasCular plants found on Great Cumbrae Island The extensive nineteenth-century list of between 1985 and 1987 and delineated the history Lepidoptera in the 1901 handbook on the natural of the island's botanical investigations. Leaves of history of Glasgow and the West of SCotland issued brambles in my garden, beech trees (Fagus for the Glasgow meeting of the British AssoCiation sylvatica) and hazel (Corylus avellana) at other for the Advancement of SCience (Elliot et al., 1901) locations on the island (respectively Craiglea Wood inCluded few Cumbrae records.
    [Show full text]
  • Artemisia Vulgaris (Mugwort)
    Artemisia vulgaris Artemisia vulgaris Mugwort Introduction The genus Artemisia includes more than 300 species, which are distributed Photo unavailable primarily in temperate regions and subtropics of Asia, Europe and North America. In China, there are 186 species and 44 varieties belonging to 2 subgenera with a nationwide distribution. Members of the genus Artemisia are well-known as aromatic herbs[103]. Species of Artemisia in China (see next page) long densely ciliate hairs at the top of Leaves of Artemisia vulgaris. Taxonomy the style. Fruits, appearing from August Family: Compositae to October together with flowers, are [103] Economic Importance (Asteraceae) obovate or ovate achenes . In addition to the volatile oil psilostachyin, Genus: Artemisia L. which contributes to its strong aroma, Habitat mugwort also contains other medically Description Mugwort grows in high-elevation pastures, active ketones and alkaloids. Mugwort Commonly known as mugwort, Artemisia forest edges, valleys, hillside wasteland, is also used as a livestock feed[103]. [112][103] vulgaris is a perennial herb that can ditches, and roadsides . reach 60-160 cm high, with many thin Related Species lateral roots. The branched, purplish- Distribution In China, mugwort, the common name brown stems are parallel grooved, with In China, mugwort has been reported of Artemisia vulgaris is often confused ascending twigs covered with short to occur in Shaanxi and Qinghai at with A. argyi, which is a common hairs. Leaves are papery, pubescent, elevations above 2,500 m, as well inhabitant of wastelands, roadsides, dark green on the upper surface, and as in western Gansu and Xinjiang at riversides, and hilly slopes, as well [103] have various shapes depending on elevations of 1,500 to 2,100 m .
    [Show full text]
  • Additions, Deletions and Corrections to An
    Bulletin of the Irish Biogeographical Society No. 36 (2012) ADDITIONS, DELETIONS AND CORRECTIONS TO AN ANNOTATED CHECKLIST OF THE IRISH BUTTERFLIES AND MOTHS (LEPIDOPTERA) WITH A CONCISE CHECKLIST OF IRISH SPECIES AND ELACHISTA BIATOMELLA (STAINTON, 1848) NEW TO IRELAND K. G. M. Bond1 and J. P. O’Connor2 1Department of Zoology and Animal Ecology, School of BEES, University College Cork, Distillery Fields, North Mall, Cork, Ireland. e-mail: <[email protected]> 2Emeritus Entomologist, National Museum of Ireland, Kildare Street, Dublin 2, Ireland. Abstract Additions, deletions and corrections are made to the Irish checklist of butterflies and moths (Lepidoptera). Elachista biatomella (Stainton, 1848) is added to the Irish list. The total number of confirmed Irish species of Lepidoptera now stands at 1480. Key words: Lepidoptera, additions, deletions, corrections, Irish list, Elachista biatomella Introduction Bond, Nash and O’Connor (2006) provided a checklist of the Irish Lepidoptera. Since its publication, many new discoveries have been made and are reported here. In addition, several deletions have been made. A concise and updated checklist is provided. The following abbreviations are used in the text: BM(NH) – The Natural History Museum, London; NMINH – National Museum of Ireland, Natural History, Dublin. The total number of confirmed Irish species now stands at 1480, an addition of 68 since Bond et al. (2006). Taxonomic arrangement As a result of recent systematic research, it has been necessary to replace the arrangement familiar to British and Irish Lepidopterists by the Fauna Europaea [FE] system used by Karsholt 60 Bulletin of the Irish Biogeographical Society No. 36 (2012) and Razowski, which is widely used in continental Europe.
    [Show full text]
  • Monitoring Report Spring/Summer 2015 Contents
    Wimbledon and Putney Commons Monitoring Report Spring/Summer 2015 Contents CONTEXT 1 A. SYSTEMATIC RECORDING 3 METHODS 3 OUTCOMES 6 REFLECTIONS AND RECOMMENDATIONS 18 B. BIOBLITZ 19 REFLECTIONS AND LESSONS LEARNT 21 C. REFERENCES 22 LIST OF FIGURES Figure 1 Location of The Plain on Wimbledon and Putney Commons 2 Figure 2 Experimental Reptile Refuge near the Junction of Centre Path and Somerset Ride 5 Figure 3 Contrasting Cut and Uncut Areas in the Conservation Zone of The Plain, Spring 2015 6/7 Figure 4 Notable Plant Species Recorded on The Plain, Summer 2015 8 Figure 5 Meadow Brown and white Admiral Butterflies 14 Figure 6 Hairy Dragonfly and Willow Emerald Damselfly 14 Figure 7 The BioBlitz Route 15 Figure 8 Vestal and European Corn-borer moths 16 LIST OF TABLES Table 1 Mowing Dates for the Conservation Area of The Plain 3 Table 2 Dates for General Observational Records of The Plain, 2015 10 Table 3 Birds of The Plain, Spring - Summer 2015 11 Table 4 Summary of Insect Recording in 2015 12/13 Table 5 Rare Beetles Living in the Vicinity of The Plain 15 LIST OF APPENDICES A1 The Wildlife and Conservation Forum and Volunteer Recorders 23 A2 Sward Height Data Spring 2015 24 A3 Floral Records for The Plain : Wimbledon and Putney Commons 2015 26 A4 The Plain Spring and Summer 2015 – John Weir’s General Reports 30 A5 a Birds on The Plain March to September 2015; 41 B Birds on The Plain - summary of frequencies 42 A6 ai Butterflies on The Plain (DW) 43 aii Butterfly long-term transect including The Plain (SR) 44 aiii New woodland butterfly transect
    [Show full text]
  • Botolph's Bridge, Hythe Redoubt, Hythe Ranges West And
    Folkestone and Hythe Birds Tetrad Guide: TR13 G (Botolph’s Bridge, Hythe Redoubt, Hythe Ranges West, and Nickolls Quarry) The tetrad TR13 G contains a number of major local hotspots, with Nickolls Quarry, the Botolph’s Bridge area and part of Hythe Ranges located within its boundaries. As a consequence the tetrad has the richest diversity of breeding birds in the local area, with 71 species having a status of at least possible in the latest BTO Atlas survey. It also had the highest total of species (125) in the winter Atlas survey. Sadly a major housing development is now in progress at the Nickolls Quarry site and much of the best habitat is now being disturbed or lost. Nickolls Quarry has been watched since the late 1940s, though early coverage was patchy, particularly in the 1960s and 1970s. As a working quarry the site has undergone significant changes during this time, expanding from two small pits to a much larger area of open water, some of which has since been backfilled. During 2001 to 2004 a series of shallow pools were created which proved particularly attractive to waders. Nickolls Quarry in 1952 Nickolls Quarry in 1998 Looking roughly northwards across the 'old pit' Looking south-west across the site towards the Hythe Roughs towards Dungeness Although a major housing development is underway on the site it still contains some interesting habitats. The lake is easily the largest area of open water in the local area and so remains one of the best areas for wildfowl, particularly during cold weather, for example in December 2010 when there were peak counts of 170 Wigeon, 107 Coot, 104 Pochard, 100 Teal, 53 Tufted Duck, 34 Gadwall, 18 Mute Swan, 12 Pintail, 10 Bewick’s Swan, 8 Shoveler, singles of Goldeneye and Goosander, and 300 White-fronted Geese flew over.
    [Show full text]
  • The Isabella Plantation Conservation Management Plan February 2012
    The Isabella Plantation Conservation Management Plan February 2012 Isabella Plantation Landscape Conservation Management Plan 2012 Prepared by The Royal Parks January 2012 The Royal Parks Rangers Lodge Hyde Park London W2 2UH Tel: 020 7298 2000 Fax: 020 7402 3298 [email protected] i Isabella Plantation Conservation Management Plan CONTENTS 1.0 INTRODUCTION .............................................................................. 3 Richmond Park ............................................................................................................................................. 3 The Management Plan ................................................................................................................................ 4 Aims of the Isabella Plantation Management Plan ................................................................................ 4 Structure of the Plan .................................................................................................................................. 6 2.0 GENERAL AND MANAGEMENT CONTEXT ............................... 7 Location ......................................................................................................................................................... 7 Existing TRP Management Framework ................................................................................................ 10 Management Structure of Richmond Park .......................................................................................... 10 Landscape Management
    [Show full text]
  • Giovanny Fagua González
    Phylogeny, evolution and speciation of Choristoneura and Tortricidae (Lepidoptera) by Giovanny Fagua González A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Systematics and Evolution Department of Biological Sciences University of Alberta © Giovanny Fagua González, 2017 Abstract Leafrollers moths are one of the most ecologically and economically important groups of herbivorous insects. These Lepidoptera are an ideal model for exploring the drivers that modulate the processes of diversification over time. This thesis analyzes the evolution of Choristoneura Lederer, a well known genus because of its pest species, in the general context of the evolution of Tortricidae. It takes an inductive view, starting with analysis of phylogenetic, biogeographic and diversification processes in the family Tortricidae, which gives context for studying these processes in the genus Choristoneura. Tectonic dynamics and niche availability play intertwined roles in determining patterns of diversification; such drivers explain the current distribution of many clades, whereas events like the rise of angiosperms can have more specific impacts, such as on the diversification rates of herbivores. Tortricidae are a diverse group suited for testing the effects of these determinants on the diversification of herbivorous clades. To estimate ancestral areas and diversification patterns in Tortricidae, a complete tribal-level dated tree was inferred using molecular markers and calibrated using fossil constraints. The time-calibrated phylogeny estimated that Tortricidae diverged ca. 120 million years ago (Mya) and diversified ca. 97 Mya, a timeframe synchronous with the rise of angiosperms in the Early-Mid Cretaceous. Ancestral areas analysis supports a Gondwanan origin of Tortricidae in the South American plate.
    [Show full text]
  • Redalyc.Catalogue of Eucosmini from China (Lepidoptera: Tortricidae)
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Zhang, A. H.; Li, H. H. Catalogue of Eucosmini from China (Lepidoptera: Tortricidae) SHILAP Revista de Lepidopterología, vol. 33, núm. 131, septiembre, 2005, pp. 265-298 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45513105 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 265 Catalogue of Eucosmini from 9/9/77 12:40 Página 265 SHILAP Revta. lepid., 33 (131), 2005: 265-298 SRLPEF ISSN:0300-5267 Catalogue of Eucosmini from China1 (Lepidoptera: Tortricidae) A. H. Zhang & H. H. Li Abstract A total of 231 valid species in 34 genera of Eucosmini (Lepidoptera: Tortricidae) are included in this catalo- gue. One new synonym, Zeiraphera hohuanshana Kawabe, 1986 syn. n. = Zeiraphera thymelopa (Meyrick, 1936) is established. 28 species are firstly recorded for China. KEY WORDS: Lepidoptera, Tortricidae, Eucosmini, Catalogue, new synonym, China. Catálogo de los Eucosmini de China (Lepidoptera: Tortricidae) Resumen Se incluyen en este Catálogo un total de 233 especies válidas en 34 géneros de Eucosmini (Lepidoptera: Tor- tricidae). Se establece una nueva sinonimia Zeiraphera hohuanshana Kawabe, 1986 syn. n. = Zeiraphera thymelopa (Meyrick, 1938). 28 especies se citan por primera vez para China. PALABRAS CLAVE: Lepidoptera, Tortricidae, Eucosmini, catálogo, nueva sinonimia, China. Introduction Eucosmini is the second largest tribe of Olethreutinae in Tortricidae, with about 1000 named spe- cies in the world (HORAK, 1999).
    [Show full text]