Quantum Computing @ MIT: the Past, Present, and Future of the Second Revolution in Computing

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Computing @ MIT: the Past, Present, and Future of the Second Revolution in Computing Quantum Computing @ MIT: The Past, Present, and Future of the Second Revolution in Computing Francisca Vasconcelos, Massachusetts Institute of Technology Class of 2020 very school day, hundreds of MIT students, faculty, and staff file into 10-250 for classes, Eseminars, and colloquia. However, probably only a handful know that directly across from the lecture hall, in 13-2119, four cryogenic dilution fridges, supported by an industrial frame, end- lessly pump a mixture of helium-3 and helium-4 gases to maintain temperatures on the order of 10mK. This near-zero temperature is necessary to effectively operate non-linear, anharmonic, super- conducting circuits, otherwise known as qubits. As of now, this is one of the most widely adopted commercial approaches for constructing quantum processors, being used by the likes of Google, IBM, and Intel. At MIT, researchers are work- ing not just on superconducting qubits, but on a variety of aspects of quantum computing, both theoretical and experimental. In this article we hope to provide an overview of the history, theoretical basis, and different imple- mentations of quantum computers. In Fall 2018, we had the opportunity to interview four MIT fac- ulty at the forefront of this field { Isaac Chuang, Dirk Englund, Aram Harrow, and William Oliver { who gave personal perspectives on the develop- ment of the field, as well as insight to its near- term trajectory. There has been a lot of recent media hype surrounding quantum computation, so in this article we present an academic view of the matter, specifically highlighting progress be- Bluefors dilution refrigerators used in the MIT Engineering Quantum Systems group to operate superconducting qubits at ing made at MIT. near-zero temperatures. Credit: Nathan Fiske Quantum Computers: A Brief History computation. Additionally, David P. DiVincenzo, then at IBM Research, listed the five main requirements to realize The notion of a quantum computer was first introduced a physical quantum computer [8]. Among these included by Caltech Professor (and MIT alumnus) Richard Feyn- the challenges of isolating quantum systems from their man in his 1960 \There's Plenty of Room at the Bot- noisy environments and accurately controlling unitary tom" lecture [1], suggesting the use of quantum effects transformations of the system. 1997 witnessed the first for computation. However, it was not until the late 1970s publications of papers realizing physical gates for quan- that researchers truly began exploring the idea. By May tum computation, based on nuclear magnetic resonance 1980, Paul Benioff { then a researcher at the Centre de (NMR) [9, 10]. Three out of the five authors on these Physique Th´eorique,CNRS { published the first article transformative papers (Isaac Chuang, Neil Gershenfeld, on quantum computation, \The computer as a physical and David Cory) are current or previous MIT faculty. system: A microscopic quantum mechanical Hamiltonian Additionally, that year, two new physical approaches to model of computers as represented by Turing machines", quantum computing were proposed, making use of ma- in the Journal of Statistical Physics [2]. In the same year, jorana anyons [11] and quantum dots [12]. In 1998, the Russian mathematician and Steklov Mathematical Insti- University of Oxford, followed shortly after by a collabo- tute faculty, Yuri Manin published the book \Computable ration between IBM, UC Berkeley, and the MIT Media and Uncomputable" [3], motivating the development of Lab, ran the Deutsch-Jozsa algorithm on 2-qubit NMR quantum computers. In 1981, MIT held the very first devices [13]. These served as the very first demonstra- conference on the Physics of Computation at the Endi- tions of an algorithm implemented on a physical quantum cott House [4], where Benioff described computers which computer. This was soon followed by the development of could operate under the laws of quantum mechanics and a 3-qubit NMR quantum computer, a physical implemen- Feynman proposed one of the first models for a quantum tation of Grover's algorithm, and advances in quantum computer. Clearly, MIT had roots in the field from its annealing. Thus, by the end of the twentieth century, re- conception. searchers demonstrated the physical potential of quantum In 1992, David Deutsch and Richard Josza, proposed computing devices. the Deutsch-Josza algorithm [5]. Although the algorithm The turn of the century would mark a transition of in itself was not very useful, a toy problem some may say, focus towards improving and scaling these devices. The it was one of the first demonstrations of an algorithm early 2000s alone witnessed the scaling to 7-qubit NMR that could be solved far more efficiently on a quantum devices, an implementation of Shor's algorithm which computer than on a classical (or non-quantum) computer. could factor the number 15, the emergence of linear op- This idea, that quantum computers may exhibit a bet- tical quantum computation, an implementation of the ter computational complexity than classical computers, Deutsch-Jozsa algorithm on an ion-trap computer, and is known as quantum advantage. In the years that fol- the first demonstration of the quantum XOR (referred lowed, more work was done in the domain of quantum to as the CNOT gate). The following years consisted algorithms and in 1994 one of the biggest results in the of similarly remarkable developments in and scaling of field was achieved. Current MIT Professor of Applied quantum computation technology. In fact, this growth Mathematics, Peter Shor, who was then working at Bell has been so impressive, that it is reminiscent of an expo- Labs, proposed the now well-known Shor's algorithm [6]. nential Moore's-Law-type growth in qubit performance. This quantum algorithm reduced the runtime of integer This progress has resulted in excitement for quantum number factorization from exponential to polynomial time. computation far beyond the realm of academia. As men- While this may seem like a fairly abstract problem, the tioned earlier, several large tech companies now have assumption that integer factorization is hard is the foun- well-established research divisions for quantum technolo- dation of RSA security, the primary cryptosystem in use gies and the number of quantum startups seem to double today. As the first algorithm to demonstrate significant each year. Furthermore, there has been a large increase in quantum advantage for a very important problem without interest from both the government, with the approval of obvious connection to quantum mechanics (like quantum a $1.2 billion Quantum Initiative Act in 2018 { one of the simulation), Shor's algorithm caught the attention of the only bipartisan legislative acts passed in recent memory government, corporations, and academic scientists. This { and the general public, with Google's recent announce- created major interest in the field of quantum information ment of quantum supremacy [14]. However, with this and gave experimental researchers a strong justification increased interest and the desire for easily-approachable to develop quantum computers from the hardware end. explanations to complex research comes the tendency to The years following the announcement of Shor's al- hype the current state of the field. Thus, we interviewed gorithm witnessed significant developments in quantum four faculty at the forefront of academic research in quan- computation, from both the theoretical and experimental tum information and computation for their outlooks, to perspectives. In 1996, Lov Grover of Bell Labs developed see if we could make sense of where all these quantum the quantum Grover's algorithm [7], which provides a technologies are headed in the near- and long-term. quadratic speedup for search in unstructured problems, using a technique now known as amplitude amplification. That same year, the US Government issued its first pub- lic call for research proposals in the domain of quantum information, signifying the growing interest in quantum December 2019 Quantum Computing @ MIT page 2 of 19 Professor William Oliver – Superconducting Quantum Processors William Oliver is the current Associate Director of the MIT Research Laboratory of Electronics (RLE), an As- sociate Professor of EECS, a Physics Professor of the Practice, and a Fellow of the MIT Lincoln Laboratory. He is also a Principal Investigator in the Engineering Quan- tum Systems Group (MIT campus) and the Quantum Information and Integrated Nanosystems Group (MIT Lincoln Laboratory), where he leads research on the ma- terials growth, fabrication, design, and measurement of superconducting qubits. How would Prof. Oliver explain his research to a non-expert? When we asked Professor Oliver to explain his research in general terms, he described superconducting qubits as “artificial atoms." Like natural atoms, they have discrete quantum energy levels, in which transitions can be driven. One key difference, however, is that these artificial atoms are macroscopic electrical circuits comprising an Avo- grado's number of actual atoms. Given that a qubit is a circuit, its energy levels can be engineered to be more Professor William Oliver, PI of the MIT Engineering Quantum optimally suited for quantum computation. Systems group. Credit: Nathan Fiske At a high level, a superconducting qubit is an LC-circuit solid-state systems to demonstrate quantum mechanical { an inductor and capacitor in parallel { like you might behavior. Although they were not long-lived enough for see in an E&M course, such as 8.02. This type of circuit quantum computation, electrons in 2D electron gasses is a simple harmonic oscillator with a harmonic potential, were sufficiently coherent to do the experiments he was meaning an equal energy spacing between all the energy interested in at the time. Professor Oliver claims that, levels. However, quantum bits are generally built from during his PhD, he was motivated solely by \blue-sky the ground and first excited energy levels, correspond- physics" rather than engineering applications like quan- ing to the two possible bit states (0 and 1). In order tum computation.
Recommended publications
  • Everettian Probabilities, the Deutsch-Wallace Theorem and the Principal Principle
    Everettian probabilities, the Deutsch-Wallace theorem and the Principal Principle Harvey R. Brown and Gal Ben Porath Chance, when strictly examined, is a mere negative word, and means not any real power which has anywhere a being in nature. David Hume (Hume, 2008) [The Deutsch-Wallace theorem] permits what philosophy would hitherto have regarded as a formal impossibility, akin to deriving an ought from an is, namely deriving a probability statement from a factual statement. This could be called deriving a tends to from a does. David Deutsch (Deutsch, 1999) [The Deutsch-Wallace theorem] is a landmark in decision theory. Nothing comparable has been achieved in any chance theory. [It] is little short of a philosophical sensation . it shows why credences should conform to [quantum chances]. Simon Saunders (Saunders, 'The Everett interpretation: probability' [unpublished manuscript]) Abstract This paper is concerned with the nature of probability in physics, and in quantum mechanics in particular. It starts with a brief discussion of the evolution of Itamar Pitowsky's thinking about probability in quantum theory from 1994 to 2008, and the role of Gleason's 1957 theorem in his derivation of the Born Rule. Pitowsky's defence of probability therein as a logic of partial belief leads us into a broader discussion of probability in physics, in which the existence of objective \chances" is questioned, and the status of David Lewis influential Principal Principle is critically examined. This is followed by a sketch of the work by David Deutsch and David Wallace which resulted in the Deutsch-Wallace (DW) theorem in Everettian quantum mechanics.
    [Show full text]
  • Four Results of Jon Kleinberg a Talk for St.Petersburg Mathematical Society
    Four Results of Jon Kleinberg A Talk for St.Petersburg Mathematical Society Yury Lifshits Steklov Institute of Mathematics at St.Petersburg May 2007 1 / 43 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 / 43 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 2 / 43 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 2 / 43 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 2 / 43 Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams 2 / 43 Part I History of Nevanlinna Prize Career of Jon Kleinberg 3 / 43 Nevanlinna Prize The Rolf Nevanlinna Prize is awarded once every 4 years at the International Congress of Mathematicians, for outstanding contributions in Mathematical Aspects of Information Sciences including: 1 All mathematical aspects of computer science, including complexity theory, logic of programming languages, analysis of algorithms, cryptography, computer vision, pattern recognition, information processing and modelling of intelligence.
    [Show full text]
  • Quantum Computing
    International Journal of Information Science and System, 2018, 6(1): 21-27 International Journal of Information Science and System ISSN: 2168-5754 Journal homepage: www.ModernScientificPress.com/Journals/IJINFOSCI.aspx Florida, USA Article Quantum Computing Adfar Majid*, Habron Rasheed Department of Electrical Engineering, SSM College of Engineering & Technology, Parihaspora, Pattan, J&K, India, 193121 * Author to whom correspondence should be addressed; E-Mail: [email protected] . Article history: Received 26 September 2018, Revised 2 November 2018, Accepted 10 November 2018, Published 21 November 2018 Abstract: Quantum Computing employs quantum phenomenon such as superposition and entanglement for computing. A quantum computer is a device that physically realizes such computing technique. They are different from ordinary digital electronic computers based on transistors that are vastly used today in a sense that common digital computing requires the data to be encoded into binary digits (bits), each of which is always in one of two definite states (0 or 1), whereas quantum computation uses quantum bits, which can be in superposition of states. The field of quantum computing was initiated by the work of Paul Benioff and Yuri Manin in 1980, Richard Feynman in 1982, and David Deutsch in 1985. Quantum computers are incredibly powerful machines that take this new approach to processing information. As such they exploit complex and fascinating laws of nature that are always there, but usually remain hidden from view. By harnessing such natural behavior (of qubits), quantum computing can run new, complex algorithms to process information more holistically. They may one day lead to revolutionary breakthroughs in materials and drug discovery, the optimization of complex manmade systems, and artificial intelligence.
    [Show full text]
  • Navigability of Small World Networks
    Navigability of Small World Networks Pierre Fraigniaud CNRS and University Paris Sud http://www.lri.fr/~pierre Introduction Interaction Networks • Communication networks – Internet – Ad hoc and sensor networks • Societal networks – The Web – P2P networks (the unstructured ones) • Social network – Acquaintance – Mail exchanges • Biology (Interactome network), linguistics, etc. Dec. 19, 2006 HiPC'06 3 Common statistical properties • Low density • “Small world” properties: – Average distance between two nodes is small, typically O(log n) – The probability p that two distinct neighbors u1 and u2 of a same node v are neighbors is large. p = clustering coefficient • “Scale free” properties: – Heavy tailed probability distributions (e.g., of the degrees) Dec. 19, 2006 HiPC'06 4 Gaussian vs. Heavy tail Example : human sizes Example : salaries µ Dec. 19, 2006 HiPC'06 5 Power law loglog ppk prob{prob{ X=kX=k }} ≈≈ kk-α loglog kk Dec. 19, 2006 HiPC'06 6 Random graphs vs. Interaction networks • Random graphs: prob{e exists} ≈ log(n)/n – low clustering coefficient – Gaussian distribution of the degrees • Interaction networks – High clustering coefficient – Heavy tailed distribution of the degrees Dec. 19, 2006 HiPC'06 7 New problematic • Why these networks share these properties? • What model for – Performance analysis of these networks – Algorithm design for these networks • Impact of the measures? • This lecture addresses navigability Dec. 19, 2006 HiPC'06 8 Navigability Milgram Experiment • Source person s (e.g., in Wichita) • Target person t (e.g., in Cambridge) – Name, professional occupation, city of living, etc. • Letter transmitted via a chain of individuals related on a personal basis • Result: “six degrees of separation” Dec.
    [Show full text]
  • A Decade of Lattice Cryptography
    Full text available at: http://dx.doi.org/10.1561/0400000074 A Decade of Lattice Cryptography Chris Peikert Computer Science and Engineering University of Michigan, United States Boston — Delft Full text available at: http://dx.doi.org/10.1561/0400000074 Foundations and Trends R in Theoretical Computer Science Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is C. Peikert. A Decade of Lattice Cryptography. Foundations and Trends R in Theoretical Computer Science, vol. 10, no. 4, pp. 283–424, 2014. R This Foundations and Trends issue was typeset in LATEX using a class file designed by Neal Parikh. Printed on acid-free paper. ISBN: 978-1-68083-113-9 c 2016 C. Peikert All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for in- ternal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on the internet at: www.copyright.com For those organizations that have been granted a photocopy license, a separate system of payment has been arranged.
    [Show full text]
  • Constraint Based Dimension Correlation and Distance
    Preface The papers in this volume were presented at the Fourteenth Annual IEEE Conference on Computational Complexity held from May 4-6, 1999 in Atlanta, Georgia, in conjunction with the Federated Computing Research Conference. This conference was sponsored by the IEEE Computer Society Technical Committee on Mathematical Foundations of Computing, in cooperation with the ACM SIGACT (The special interest group on Algorithms and Complexity Theory) and EATCS (The European Association for Theoretical Computer Science). The call for papers sought original research papers in all areas of computational complexity. A total of 70 papers were submitted for consideration of which 28 papers were accepted for the conference and for inclusion in these proceedings. Six of these papers were accepted to a joint STOC/Complexity session. For these papers the full conference paper appears in the STOC proceedings and a one-page summary appears in these proceedings. The program committee invited two distinguished researchers in computational complexity - Avi Wigderson and Jin-Yi Cai - to present invited talks. These proceedings contain survey articles based on their talks. The program committee thanks Pradyut Shah and Marcus Schaefer for their organizational and computer help, Steve Tate and the SIGACT Electronic Publishing Board for the use and help of the electronic submissions server, Peter Shor and Mike Saks for the electronic conference meeting software and Danielle Martin of the IEEE for editing this volume. The committee would also like to thank the following people for their help in reviewing the papers: E. Allender, V. Arvind, M. Ajtai, A. Ambainis, G. Barequet, S. Baumer, A. Berthiaume, S.
    [Show full text]
  • The Beginning of Infinity: Explanations That Transform the World Pdf, Epub, Ebook
    THE BEGINNING OF INFINITY: EXPLANATIONS THAT TRANSFORM THE WORLD PDF, EPUB, EBOOK David Deutsch | 487 pages | 29 May 2012 | Penguin Putnam Inc | 9780143121350 | English | New York, NY, United States The Beginning of Infinity: Explanations That Transform the World PDF Book Every argument includes premises in support of a conclusion, but the premises themselves are left unargued. Nov 12, Gary rated it it was amazing Shelves: science. In other words we must have some form of evidence, and it must be coherent with our other beliefs. Nov 12, Gary rated it it was amazing Shelves: science. I can't say why exactly. It seems more to the point to think of it as something emotive — as the expression of a mood. This will lead to the development of explanatory theories variation , which can then be criticized and tested selection. Accuracy and precision are important standards in our evaluation of explanations; standards that are absent in bad explanations. Every argument includes premises in support of a conclusion, but the premises themselves are left unargued. Deutsch starts with explanations being the basis for knowledge, and builds up basic, hard-to-argue-with principles into convincing monoliths that smash some conventional interpretations of knowledge, science and philosophy to tiny pieces. His reliance on Popper is problematic. I will be re-reading them again until it really sinks in. Evolution, in contrast, represents a good explanation because it not only fits the evidence but the details are hard to vary. Barefoot Season Susan Mallery. But the "Occam's Razor" described by the author is not the one practiced in reality.
    [Show full text]
  • Inter Actions Department of Physics 2015
    INTER ACTIONS DEPARTMENT OF PHYSICS 2015 The Department of Physics has a very accomplished family of alumni. In this issue we begin to recognize just a few of them with stories submitted by graduates from each of the decades since 1950. We want to invite all of you to renew and strengthen your ties to our department. We would love to hear from you, telling us what you are doing and commenting on how the department has helped in your career and life. Alumna returns to the Physics Department to Implement New MCS Core Education When I heard that the Department of Physics needed a hand implementing the new MCS Core Curriculum, I couldn’t imagine a better fit. Not only did it provide an opportunity to return to my hometown, but Carnegie Mellon itself had been a fixture in my life for many years, from taking classes as a high school student to teaching after graduation. I was thrilled to have the chance to return. I graduated from Carnegie Mellon in 2008, with a B.S. in physics and a B.A. in Japanese. Afterwards, I continued to teach at CMARC’s Summer Academy for Math and Science during the summers while studying down the street at the University of Pittsburgh. In 2010, I earned my M.A. in East Asian Studies there based on my research into how cultural differences between Japan and America have helped shape their respective robotics industries. After receiving my master’s degree and spending a summer studying in Japan, I taught for Kaplan as graduate faculty for a year before joining the Department of Physics at Cornell University.
    [Show full text]
  • High Energy Physics Quantum Computing
    High Energy Physics Quantum Computing Quantum Information Science in High Energy Physics at the Large Hadron Collider PI: O.K. Baker, Yale University Unraveling the quantum structure of QCD in parton shower Monte Carlo generators PI: Christian Bauer, Lawrence Berkeley National Laboratory Co-PIs: Wibe de Jong and Ben Nachman (LBNL) The HEP.QPR Project: Quantum Pattern Recognition for Charged Particle Tracking PI: Heather Gray, Lawrence Berkeley National Laboratory Co-PIs: Wahid Bhimji, Paolo Calafiura, Steve Farrell, Wim Lavrijsen, Lucy Linder, Illya Shapoval (LBNL) Neutrino-Nucleus Scattering on a Quantum Computer PI: Rajan Gupta, Los Alamos National Laboratory Co-PIs: Joseph Carlson (LANL); Alessandro Roggero (UW), Gabriel Purdue (FNAL) Particle Track Pattern Recognition via Content-Addressable Memory and Adiabatic Quantum Optimization PI: Lauren Ice, Johns Hopkins University Co-PIs: Gregory Quiroz (Johns Hopkins); Travis Humble (Oak Ridge National Laboratory) Towards practical quantum simulation for High Energy Physics PI: Peter Love, Tufts University Co-PIs: Gary Goldstein, Hugo Beauchemin (Tufts) High Energy Physics (HEP) ML and Optimization Go Quantum PI: Gabriel Perdue, Fermilab Co-PIs: Jim Kowalkowski, Stephen Mrenna, Brian Nord, Aris Tsaris (Fermilab); Travis Humble, Alex McCaskey (Oak Ridge National Lab) Quantum Machine Learning and Quantum Computation Frameworks for HEP (QMLQCF) PI: M. Spiropulu, California Institute of Technology Co-PIs: Panagiotis Spentzouris (Fermilab), Daniel Lidar (USC), Seth Lloyd (MIT) Quantum Algorithms for Collider Physics PI: Jesse Thaler, Massachusetts Institute of Technology Co-PI: Aram Harrow, Massachusetts Institute of Technology Quantum Machine Learning for Lattice QCD PI: Boram Yoon, Los Alamos National Laboratory Co-PIs: Nga T. T. Nguyen, Garrett Kenyon, Tanmoy Bhattacharya and Rajan Gupta (LANL) Quantum Information Science in High Energy Physics at the Large Hadron Collider O.K.
    [Show full text]
  • Creativity and Untidiness
    Search Creativity and Untidiness Submitted by Sarah Fitz-Claridge on 13 September, 2003 - 22:59 A Taking Children Seriously interview from TCS 21 by Sarah Fitz-Claridge (http://www.fitz-claridge.com/) Many TCS readers will know David Deutsch for his contributions to Taking Children Seriously and to the TCS List on the Internet, and perhaps as co-author of Home Education and the Law. Some will also know that he is a theoretical physicist who has, among other things, pioneered the new field of quantum computation. There is a major article about his work in the October 1995 Discover magazine (the issue was devoted to “Seven Ideas that could Change the World”). He is often quoted in the media and regularly makes appearances on television and radio programmes. You may have seen his programme on the physics of time travel in BBC 2's Antenna series. Recently, David was featured in the Channel 4 science documentary series, Reality on the Rocks, in which the actor, Ken Campbell, asked leading scientists about the nature of reality. Those who saw Reality on the Rocks may have caught a glimpse of David's extraordinarily untidy study, at his home in Oxford. Ken Campbell was so struck by its untidiness that he talks about it in his one-man show, Mystery Bruises. He relates the story of the Japanese film crew who, upon asking to tidy up David's home before filming there, were told that they could do so, on condition that they returned everything – every piece of paper, every book, every computer disk – to the exact position where it had been on the floor or wherever, and how they did just that! I put it to David that some might be surprised that someone so untidy could be so successful.
    [Show full text]
  • Adobe Acrobat PDF Document
    BIOGRAPHICAL SKETCH of HUGH EVERETT, III. Eugene Shikhovtsev ul. Dzerjinskogo 11-16, Kostroma, 156005, Russia [email protected] ©2003 Eugene B. Shikhovtsev and Kenneth W. Ford. All rights reserved. Sources used for this biographical sketch include papers of Hugh Everett, III stored in the Niels Bohr Library of the American Institute of Physics; Graduate Alumni Files in Seeley G. Mudd Manuscript Library, Princeton University; personal correspondence of the author; and information found on the Internet. The author is deeply indebted to Kenneth Ford for great assistance in polishing (often rewriting!) the English and for valuable editorial remarks and additions. If you want to get an interesting perspective do not think of Hugh as a traditional 20th century physicist but more of a Renaissance man with interests and skills in many different areas. He was smart and lots of things interested him and he brought the same general conceptual methodology to solve them. The subject matter was not so important as the solution ideas. Donald Reisler [1] Someone once noted that Hugh Everett should have been declared a “national resource,” and given all the time and resources he needed to develop new theories. Joseph George Caldwell [1a] This material may be freely used for personal or educational purposes provided acknowledgement is given to Eugene B. Shikhovtsev, author ([email protected]), and Kenneth W. Ford, editor ([email protected]). To request permission for other uses, contact the author or editor. CONTENTS 1 Family and Childhood Einstein letter (1943) Catholic University of America in Washington (1950-1953). Chemical engineering. Princeton University (1953-1956).
    [Show full text]
  • High Energy Physics Quantum Information Science Awards Abstracts
    High Energy Physics Quantum Information Science Awards Abstracts Towards Directional Detection of WIMP Dark Matter using Spectroscopy of Quantum Defects in Diamond Ronald Walsworth, David Phillips, and Alexander Sushkov Challenges and Opportunities in Noise‐Aware Implementations of Quantum Field Theories on Near‐Term Quantum Computing Hardware Raphael Pooser, Patrick Dreher, and Lex Kemper Quantum Sensors for Wide Band Axion Dark Matter Detection Peter S Barry, Andrew Sonnenschein, Clarence Chang, Jiansong Gao, Steve Kuhlmann, Noah Kurinsky, and Joel Ullom The Dark Matter Radio‐: A Quantum‐Enhanced Dark Matter Search Kent Irwin and Peter Graham Quantum Sensors for Light-field Dark Matter Searches Kent Irwin, Peter Graham, Alexander Sushkov, Dmitry Budke, and Derek Kimball The Geometry and Flow of Quantum Information: From Quantum Gravity to Quantum Technology Raphael Bousso1, Ehud Altman1, Ning Bao1, Patrick Hayden, Christopher Monroe, Yasunori Nomura1, Xiao‐Liang Qi, Monika Schleier‐Smith, Brian Swingle3, Norman Yao1, and Michael Zaletel Algebraic Approach Towards Quantum Information in Quantum Field Theory and Holography Daniel Harlow, Aram Harrow and Hong Liu Interplay of Quantum Information, Thermodynamics, and Gravity in the Early Universe Nishant Agarwal, Adolfo del Campo, Archana Kamal, and Sarah Shandera Quantum Computing for Neutrino‐nucleus Dynamics Joseph Carlson, Rajan Gupta, Andy C.N. Li, Gabriel Perdue, and Alessandro Roggero Quantum‐Enhanced Metrology with Trapped Ions for Fundamental Physics Salman Habib, Kaifeng Cui1,
    [Show full text]