Vertex Algebras and Quantum Groups
Vertex Algebras and Quantum Groups Yuly Billig (Carleton University), Michael Lau (Laval University), Antun Milas (SUNY-Albany), Kailash Misra (North Carolina State University) February 7 – February 12, 2016. 1 Overview of the Field During the twentieth century, the theory of Lie algebras, both finite- and infinite-dimensional, has been a major area of mathematical research with numerous applications. In particular, during the late 1970s and early 1980s, the representation theory of Kac-Moody Lie algebras (analogs of finite-dimensional semisimple Lie algebras) generated intense interest. The early development of the subject was driven by its remarkable connections with combinatorics, group theory, number theory, partial differential equations, and topology, as well as by its deep links with areas of physics, including integrable systems, statistical mechanics, and two-dimensional conformal field theory. In particular, the representation theory of an important class of infinite-dimensional Lie algebras known as affine Lie algebras led to the discovery of both vertex algebras and quantum groups in the mid-1980s. Motivated by the appearance of vertex operators in the construc- tion of the Moonshine module, Borcherds introduced vertex operator algebras as part of his proof of the Moonshine Conjectures in 1986. (He received the Fields Medal for this accomplishment in 1998.) These are the precise algebraic counterparts to chiral algebras in 2-dimensional conformal field theory as formalized by Belavin, Polyakov, and Zamolodchikov. Among other applications, these algebras play a crucial role in string theory, integrable systems, M-theory, and quantum gravity. In 1985, the interaction of affine Lie alge- bras with integrable systems led Drinfeld and Jimbo to introduce quantized universal enveloping algebras, or quantum groups, associated with symmetrizable Kac-Moody algebras.
[Show full text]