The Volcanology Revolution

Total Page:16

File Type:pdf, Size:1020Kb

The Volcanology Revolution Feature NURUL HIDAYAT/ANTARA FOTO/BISNIS INDONESIA VIA REUTERS FOTO/BISNIS HIDAYAT/ANTARA NURUL When Anak Krakatau in Indonesia erupted on 22 December 2018, part of the island collapsed into the ocean, causing a deadly tsunami. THE VOLCANOLOGY REVOLUTION Forty years after the Mount St Helens eruption galvanized volcano science, researchers are harnessing powerful new tools to forecast and understand eruptions. By Jane Palmer arly in 2018, the volcano Anak Krakatau the mountain began showing obvious signs of killed at least 430 people along the nearby in Indonesia started falling apart. It was unrest. It spewed fiery ash and rocks into the sky coasts of Java and Sumatra. Although nobody a subtle transformation — one that in a series of small eruptions. And it was heating foresaw that disaster, a 2019 study found that nobody noticed at the time. The south- up. Another satellite instrument recorded ther- satellite and ground-based instruments had ern and southwestern flanks of the vol- mal emissions from Anak Krakatau that reached picked up a suite of precursory signals that cano were slipping towards the ocean 146 megawatts — more than 100 times the could help forecast similar events in the future at a rate of about 4 millimetres per normal value. With the increased activity, the at Anak Krakatau and other peaks. month, a shift so small that research- slippage jumped to 10 millimetres per month. The unexpected collapse at Anak Krakatau Eers only saw it after the fact as they combed Then, on 22 December, the southern flank shows some of the challenges facing research- through satellite radar data. By June, though, crashed into the sea, triggering a tsunami that ers as they try to monitor thousands of 256 | Nature | Vol 581 | 21 May 2020 ©2020 Spri nger Nature Li mited. All rights reserved. ©2020 Spri nger Nature Li mited. All rights reserved. potentially dangerous volcanoes around the time frame, much as meteorologists dole out hummocks — large hills and mounds that had world — each one unique. But it also highlights the chances of rain or snow on any specific day. been transported downslope in intact blocks. several advances in the field that promise to “I think that when people look back on this These features matched those found near give scientists a much better chance of fore- period, they will imagine this is the golden era many volcanoes around the world. And from casting disasters. of physical volcanology,” says volcanologist the historical record, volcanologists recog- Volcanologists are making substantial Christopher Kilburn at University College nized that around 1,000 similar landslides had headway, thanks to a torrent of data from sat- London. taken place on more than 550 volcanoes. “Tall ellites that can detect subtle movements of volcanoes collapse, they’re not just growing, mountains, ground-based sensors that track Historic blast they’re collapsing,” says volcanologist Thomas molten rock moving deep underground, and The first hints of trouble at Mount St Helens Walter at the German Research Centre for gas-sniffing devices that drones can carry over came on 16 March 1980, with a series of small Geosciences in Potsdam. seething mountains. And the theoretical under- earthquakes. Then, a week later, steam explo- The eruption of Mount St Helens taught other standing of volcanoes has grown markedly as sions burst through the ice on top of the volcano, lessons, such as the deadly impact of super- researchers have learnt to combine all these carving out a crater that grew to 400 metres heated volcanic ash and gas racing down the data into models of what is happening within across within days. Teams of researchers mountain at hurricane speeds, and the power volcanic systems. Researchers are now exper- arrived from the USGS and other institutions of mudslides that destroyed everything in their imenting with machine learning to sift through to keep vigil over the mountain. Planes flew path. The eruption also spurred a huge growth the flood of data to identify subtle patterns, in volcanology. In the decade after the blast, the such as the early movement of Anak Krakatau “Tall volcanoes collapse. USGS established volcano observatories in the months before it showed signs of waking. Pacific Northwest, Hawaii and Alaska. The field has made huge strides since the They are not just growing, Funding for the USGS’s volcanic hazards greatest volcanic crisis in US history exactly they’re collapsing.” programme today is nearly ten times what 40 years ago — the eruption of Mount St Helens it was before the Mount St Helens blast. And on 18 May 1980 in Washington state. That after a volcanic mudslide in Colombia killed event — which started with the largest land- over the smoking crater to measure the gases 23,000 people in 1985, the USGS established slide in recorded history — killed 57 people and escaping from the volcano, and seismometers the Volcano Disaster Assistance Program to blanketed much of Washington and nearby registered the tremors from magma — molten help other countries prepare for volcanic states with ash, shutting down the region for rock — moving beneath the surface. Volcanolo- crises — a project that soon proved its worth days. But it was also a turning point for vol- gists climbed the mountain’s slopes to measure when USGS researchers worked with scientists canic science, sparking a huge influx of money the bulging northern flank using tape measures in the Philippines in 1991 to assess the risk from and people into the field and setting the stage and laser-surveying equipment. Mount Pinatubo. Tens of thousands of people for rapid improvements in understanding. Magma was clearly rising high in the volcano were evacuated from the region before the Scientists had flocked to the mountain in and pushing against the slope, and research- volcano’s cataclysmic eruption. the months before the blast and had carefully ers warned that a major eruption could hap- Researchers today rely on many of the tracked its behaviour, including frequent pen soon. But what happened next caught lessons learnt at St Helens, Pinatubo and dozens earthquakes, gases fuming from its crater and scientists by surprise. of other volcanoes. Typically, seismic shaking an ominous bulge that swelled from its north- At 8:32 a.m. on 18 May, a massive landslide is the first sign that a volcano is stirring. Erup- ern flank. “It was the first really significant crashed down the mountainside, taking the tions occur when magma pushes to the surface, eruption that was captured by modern-day summit and snow and ice with it. The release but even as magma begins to rise from Earth’s scientific instrumentation,” says Seth Moran, in pressure uncorked the volcano, triggering mantle, it can trigger quakes. Today, seismic scientist-in-charge at the US Geological Sur- a powerful explosion. A blast of rocks, ash, gas networks are monitoring dozens of some of the vey (USGS) Cascades Volcano Observatory and steam was propelled upwards and out- most dangerous volcanoes around the world. in Vancouver, Washington. “And so, in a lot of wards at supersonic speeds, and travelled as That same magma movement can cause ways, it’s become a benchmark for the ways far as 25 kilometres northwards. volcanoes to inflate, as Mount St Helens did that people go about looking at volcanoes “We learnt from the May 18th eruption how before its blast. Researchers can now record around the world.” unstable steep-sided volcanoes are, and how movements safely and continuously, using The proliferation of ground- and space- they can fail and generate a big surge or lateral GPS receivers and, more recently, satel- based monitoring data since then, coupled blast,” says Don Swanson, a research geologist lite-borne radar — which detected the move- with increases in computing power, has revolu- at the USGS Hawaiian Volcano Observatory, ment at Anak Krakatau. tionized scientists’ understanding of volcanic who was involved in monitoring the 1980 Even before warning signs can be seen or systems. Ultimately, researchers are hoping eruption. “What seems so obvious now, wasn’t felt, rising levels of carbon dioxide from a that new tools and techniques will nudge them obvious before that time.” volcano’s crater or vents can hint at trouble closer to being able to assign probabilities to After the eruption, scientists analysed ahead. Magma contains dissolved gases and the chances of a volcano erupting in a given the landscape and found it littered with as this molten material rises and the pressure 10 s 42 s 52 s 60 s USGS On 18 May 1980, a giant landslide — the largest in recorded history — carried away the north flank of Mount St Helens, triggering an eruption. Nature | Vol 581 | 21 May 2020 | 257 ©2020 Spri nger Nature Li mited. All rights reserved. ©2020 Spri nger Nature Li mited. All rights reserved. Feature decreases, gases separate off and travel programmed the system to send automatic activity ever recorded,” says Walter. “So, this upwards. Carbon dioxide, one of the least e-mail and text-message alerts to the civil-pro- was clearly anomalous behaviour.” soluble of the volcanic gases, escapes first, tection department in Rome and to the city of The researchers also used satellite radar while the magma is still deep in the volcano. Catania close to the volcano. observations, which can detect small changes “In principle, you should get a gas signal The researchers’ original motivation for in vertical and horizontal motion, to find that long before the magma reaches the surface developing the system was to find a way to the volcano’s flank was already slipping at a rate in an eruption,” says volcanic-gas geochem- detect eruptions at unmonitored volcanoes, of 10 millimetres per month before it collapsed ist Alessandro Aiuppa at the University of because even remote blasts can have far-reach- (see ‘Island on the move’).
Recommended publications
  • 1350-5 Geologist
    POSITION DESCRIPTION 1. Position Number 2. Explanation (show any positions replaced) 3. Reason for Submission New Redescription Reestablishment Standardized PD Other 4. Service 5. Subject to Identical Addition (IA) Action HQ Field Yes (multiple use) No (single incumbent) 6. Position Specifications 7. Financial Statement Required 10. Position Sensitivity and Risk Designation Subject to Random Drug Testing Yes No Executive Personnel-OGE-278 Non-Sensitive Employment and Financial Interest-OGE-450 Non-Sensitive: Low-Risk Subject to Medical Standards/Surveillance Yes No None required Public Trust Telework Suitable Yes No 8. Miscellaneous 9. Full Performance Level Non-Sensitive: Moderate-Risk Fire Position Yes No Functional Code: -- Pay Plan: Non-Sensitive: High-Risk Law Enforcement Position Yes No BUS: - - Grade: National Security 11. Position is 12. Position Status Noncritical-Sensitive: Moderate-Risk Competitive SES Noncritical-Sensitive: High-Risk 2-Supervisory Excepted (specify in remarks) SL/ST Critical-Sensitive: High-Risk 4-Supervisor (CSRA) 13. Duty Station Special Sensitive: High-Risk 5-Management Official 6-Leader: Type I 14. Employing Office Location 15. Fair Labor Standards Act Exempt Nonexempt 7-Leader: Type II 16. Cybersecurity Code 17. Competitive Area Code: 8-Non-Supervisory #1: #2: - - #3: - - Competitive Level Code: 18. Classified/Graded by Official Title of Position Pay Plan Occupational Code Grade Initial Date a. Department, Bureau, or Office b. Second Level Review -- -- 19. Organizational Title of Position (if different from, or in addition to, official title) 20. Name of Employee (if vacant, specify) 21. Department, Agency, or Establishment c. Third Subdivision U.S. Department of the Interior a. Bureau/First Subdivision d.
    [Show full text]
  • Volcanic Gases and Aerosols Guidelines Introduction
    IVHHN Gas Guidelines www.ivhhn.org/gas/guidelines.html Volcanic Gases and Aerosols Guidelines The following pages contain information relating to the health hazards of gases and aerosols typically emitted during volcanic activity. Each section outlines the properties of the emission; its impacts on health; international guidelines for concentrations; and examples of concentrations and effects in volcanic contexts, including casualties. Before looking at the emissions data, we recommend that you read the general introduction to volcanic gases and aerosols first. A glossary to some of the terms used in the explanations and guidelines is also provided at the end of this document. Introduction An introduction to the aims and purpose of the Gas and Aerosol Guidelines is given here, as well as further information on international guideline levels and the units used in the website. A brief review of safety procedures currently implemented by volcanologists and volcano observatories is also provided. General Introduction Gas and aerosol hazards are associated with all volcanic activity, from diffuse soil gas emissions to 2- plinian eruptions. The volcanic emissions of most concern are SO2, HF, sulphate (SO4 ), CO2, HCl and H2S, although, there are other volcanic volatile species that may have human health implications, including mercury and other metals. Since 1900, there have been at least 62 serious volcanic-gas related incidents. Of these, the gas-outburst at Lake Nyos in 1986 was the most disastrous, causing 1746 deaths, >845 injuries and the evacuation of 4430 people. Other volcanic-gas related incidents have been responsible for more than 280 deaths and 1120 injuries, and contributed to the evacuation or ill health of >53,700 people (Witham, in review).
    [Show full text]
  • GEOLOGY What Can I Do with This Major?
    GEOLOGY What can I do with this major? AREAS EMPLOYERS STRATEGIES Some employment areas follow. Many geolo- gists specialize at the graduate level. ENERGY (Oil, Coal, Gas, Other Energy Sources) Stratigraphy Petroleum industry including oil and gas explora- Geologists working in the area of energy use vari- Sedimentology tion, production, storage and waste disposal ous methods to determine where energy sources are Structural Geology facilities accumulated. They may pursue work tasks including Geophysics Coal industry including mining exploration, grade exploration, well site operations and mudlogging. Geochemistry assessment and waste disposal Seek knowledge in engineering to aid communication, Economic Geology Federal government agencies: as geologists often work closely with engineers. Geomorphology National Labs Coursework in geophysics is also advantageous Paleontology Department of Energy for this field. Fossil Energy Bureau of Land Management Gain experience with computer modeling and Global Hydrogeology Geologic Survey Positioning System (GPS). Both are used to State government locate deposits. Consulting firms Many geologists in this area of expertise work with oil Well services and drilling companies and gas and may work in the geographic areas Oil field machinery and supply companies where deposits are found including offshore sites and in overseas oil-producing countries. This industry is subject to fluctuations, so be prepared to work on a contract basis. Develop excellent writing skills to publish reports and to solicit grants from government, industry and private foundations. Obtain leadership experience through campus organi- zations and work experiences for project man- agement positions. (Geology, Page 2) AREAS EMPLOYERS STRATEGIES ENVIRONMENTAL GEOLOGY Sedimentology Federal government agencies: Geologists in this category may focus on studying, Hydrogeology National Labs protecting and reclaiming the environment.
    [Show full text]
  • GY 111: Physical Geology
    UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 9: Extrusive Igneous Rocks Instructor: Dr. Douglas W. Haywick Last Time 1) The chemical composition of the crust 2) Crystallization of molten rock 3) Bowen's Reaction Series Web notes 8 Chemical Composition of the Crust Element Wt% % of atoms Oxygen 46.6 60.5 Silicon 27.7 20.5 Aluminum 8.1 6.2 Iron 5.0 1.9 Calcium 3.6 1.9 Sodium 2.8 2.5 Potassium 2.6 1.8 Magnesium 2.1 1.4 All other elements 1.5 3.3 Crystallization of Magma http://myweb.cwpost.liu.edu/vdivener/notes/igneous.htm Bowen’s Reaction Series Source http://www.ltcconline.net/julian Igneous Rock Composition Source: http://hyperphysics.phy-astr.gsu.edu Composition Formation Dominant Silica content Temperature Minerals Ultramafic Very high Olivine, pyroxene Very low (<45%) Mafic High Olivine, pyroxene, low Ca-plagioclase Intermediate Medium Na-Plagioclase, moderate amphibole, biotite Felsic Medium-low Orthoclase, quartz, high (>65%) muscovite, biotite Igneous Rock Texture Extrusive Rocks (Rapid Cooling; non visible* crystals) Intrusive Rocks (slow cooling; 100 % visible crystals) *with a hand lens Igneous Rock Texture Igneous Rock Texture Today’s Agenda 1) Pyro-what? (air fall volcanic rocks) 2) Felsic and Intermediate Extrusive Rocks 3) Mafic Extrusive Rocks Web notes 9 Pyroclastic Igneous Rocks Pyroclastic Igneous Rocks Pyroclastic: Pyro means “fire”. Clastic means particles; both are of Greek origin. Pyroclastic Igneous Rocks Pyroclastic: Pyro means “fire”. Clastic means particles; both are of Greek origin. Pyroclastic rocks are usually erupted from composite volcanoes (e.g., they are produced via explosive eruptions from viscous, “cool” lavas) Pyroclastic Igneous Rocks Pyroclastic: Pyro means “fire”.
    [Show full text]
  • Deep Carbon Emissions from Volcanoes Michael R
    Reviews in Mineralogy & Geochemistry Vol. 75 pp. 323-354, 2013 11 Copyright © Mineralogical Society of America Deep Carbon Emissions from Volcanoes Michael R. Burton Istituto Nazionale di Geofisica e Vulcanologia Via della Faggiola, 32 56123 Pisa, Italy [email protected] Georgina M. Sawyer Laboratoire Magmas et Volcans, Université Blaise Pascal 5 rue Kessler, 63038 Clermont Ferrand, France and Istituto Nazionale di Geofisica e Vulcanologia Via della Faggiola, 32 56123 Pisa, Italy Domenico Granieri Istituto Nazionale di Geofisica e Vulcanologia Via della Faggiola, 32 56123 Pisa, Italy INTRODUCTION: VOLCANIC CO2 EMISSIONS IN THE GEOLOGICAL CARBON CYCLE Over long periods of time (~Ma), we may consider the oceans, atmosphere and biosphere as a single exospheric reservoir for CO2. The geological carbon cycle describes the inputs to this exosphere from mantle degassing, metamorphism of subducted carbonates and outputs from weathering of aluminosilicate rocks (Walker et al. 1981). A feedback mechanism relates the weathering rate with the amount of CO2 in the atmosphere via the greenhouse effect (e.g., Wang et al. 1976). An increase in atmospheric CO2 concentrations induces higher temperatures, leading to higher rates of weathering, which draw down atmospheric CO2 concentrations (Ber- ner 1991). Atmospheric CO2 concentrations are therefore stabilized over long timescales by this feedback mechanism (Zeebe and Caldeira 2008). This process may have played a role (Feulner et al. 2012) in stabilizing temperatures on Earth while solar radiation steadily increased due to stellar evolution (Bahcall et al. 2001). In this context the role of CO2 degassing from the Earth is clearly fundamental to the stability of the climate, and therefore to life on Earth.
    [Show full text]
  • East-African Rift System Geological Settings of Geothermal Resources and Their Prospects
    Presented at Short Course III on Exploration for Geothermal Resources, organized by UNU-GTP and KenGen, at Lake Naivasha, Kenya, October 24 - November 17, 2008. GEOTHERMAL TRAINING PROGRAMME Kenya Electricity Generating Co., Ltd. EAST-AFRICAN RIFT SYSTEM GEOLOGICAL SETTINGS OF GEOTHERMAL RESOURCES AND THEIR PROSPECTS Kristján Saemundsson ISOR – Iceland GeoSurvey Grensásvegur 9 108 Reykjavík ICELAND [email protected] 1. INTRODUCTION The geothermal areas of the East-African Rift System are not all of the same type. Even though related to the Rift the geological settings are different. Some are volcanic, others are not. Parts of the rift zones are highly volcanic but large segments of them are sediment or lake filled grabens. Extreme cases are also found where rift-related fractures produce permeability in basement rocks. In retrospect it may be useful to point out the differences and likely resource characteristics. Below seven types are described, and in which countries they occur as the dominant type. Three of those types are genuine high-temperature geothermal resources. Two may be accessible only in the off flow zone of high-temperature geothermal fields. One is of the sedimentary basin type resource of low to medium temperature, and one other of the low-temperature type is related to fractured basement rock. 2. OFF RIFT VOLCANOES Eritrea (Alid), Yemen (Al Lisi): Volcanic HT-systems suitable for back pressure turbines Main resource at rather high ground (Eritrea) Off flow probably present, perhaps suitable for binary In case of off flow temperature inversion likely Research methods: Geology/volcanology, hydrology, geochemistry, TEM/MT, airborne magnetics, seismicity, gravity 3.
    [Show full text]
  • Journal of Volcanology and Geothermal Research
    JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH An International Journal on the Geophysical, Geochemical, Petrological, Economic and Environmental Aspects of Volcanology and Geothermal Research AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.1 • Impact Factor p.1 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.4 ISSN: 0377-0273 DESCRIPTION . An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society. Submission of papers covering the following aspects of volcanology and geothermal research are encouraged: (1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations. (2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis. (3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization. (4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing. (5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts. (6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact. The journal does not accept geothermal research papers not related to volcanism. AUDIENCE . Volcanologists, petrologists, geochemists, geothermics.
    [Show full text]
  • 1350-13 Geologist
    POSITION DESCRIPTION 1. Position Number 2. Explanation (show any positions replaced) 3. Reason for Submission New Redescription Reestablishment Standardized PD Other 4. Service 5. Subject to Identical Addition (IA) Action HQ Field Yes (multiple use) No (single incumbent) 6. Position Specifications 7. Financial Statement Required 10. Position Sensitivity and Risk Designation Subject to Random Drug Testing Yes No Executive Personnel-OGE-278 Non-Sensitive Employment and Financial Interest-OGE-450 Non-Sensitive: Low-Risk Subject to Medical Standards/Surveillance Yes No None required Public Trust Telework Suitable Yes No 8. Miscellaneous 9. Full Performance Level Non-Sensitive: Moderate-Risk Fire Position Yes No Functional Code: -- Pay Plan: Non-Sensitive: High-Risk Law Enforcement Position Yes No BUS: - - Grade: National Security 11. Position is 12. Position Status Noncritical-Sensitive: Moderate-Risk Competitive SES Noncritical-Sensitive: High-Risk 2-Supervisory Excepted (specify in remarks) SL/ST Critical-Sensitive: High-Risk 4-Supervisor (CSRA) 13. Duty Station Special Sensitive: High-Risk 5-Management Official 6-Leader: Type I 14. Employing Office Location 15. Fair Labor Standards Act Exempt Nonexempt 7-Leader: Type II 16. Cybersecurity Code 17. Competitive Area Code: 8-Non-Supervisory #1: #2: - - #3: - - Competitive Level Code: 18. Classified/Graded by Official Title of Position Pay Plan Occupational Code Grade Initial Date a. Department, Bureau, or Office b. Second Level Review -- -- 19. Organizational Title of Position (if different from, or in addition to, official title) 20. Name of Employee (if vacant, specify) 21. Department, Agency, or Establishment c. Third Subdivision U.S. Department of the Interior a. Bureau/First Subdivision d.
    [Show full text]
  • GEOLOGY THEME STUDY Page 1
    NATIONAL HISTORIC LANDMARKS Dr. Harry A. Butowsky GEOLOGY THEME STUDY Page 1 Geology National Historic Landmark Theme Study (Draft 1990) Introduction by Dr. Harry A. Butowsky Historian, History Division National Park Service, Washington, DC The Geology National Historic Landmark Theme Study represents the second phase of the National Park Service's thematic study of the history of American science. Phase one of this study, Astronomy and Astrophysics: A National Historic Landmark Theme Study was completed in l989. Subsequent phases of the science theme study will include the disciplines of biology, chemistry, mathematics, physics and other related sciences. The Science Theme Study is being completed by the National Historic Landmarks Survey of the National Park Service in compliance with the requirements of the Historic Sites Act of l935. The Historic Sites Act established "a national policy to preserve for public use historic sites, buildings and objects of national significance for the inspiration and benefit of the American people." Under the terms of the Act, the service is required to survey, study, protect, preserve, maintain, or operate nationally significant historic buildings, sites & objects. The National Historic Landmarks Survey of the National Park Service is charged with the responsibility of identifying America's nationally significant historic property. The survey meets this obligation through a comprehensive process involving thematic study of the facets of American History. In recent years, the survey has completed National Historic Landmark theme studies on topics as diverse as the American space program, World War II in the Pacific, the US Constitution, recreation in the United States and architecture in the National Parks.
    [Show full text]
  • Tectonics, Volcanology and Geothermal Activity
    Presented at Short Course II on Surface Exploration for Geothermal Resources, organized by UNU-GTP and KenGen, at Lake Naivasha, Kenya, 2-17 November, 2007. GEOTHERMAL TRAINING PROGRAMME Kenya Electricity Generating Co., Ltd. STRUCTURAL GEOLOGY – TECTONICS, VOLCANOLOGY AND GEOTHERMAL ACTIVITY Kristján Saemundsson ISOR – Iceland GeoSurvey Grensásvegur 9 108 Reykjavík ICELAND [email protected] ABSTRACT Discussion will concentrate on rift zone geothermal systems, continental and oceanic, with side look on the hotspot environment. “Volcanology” is contained in the title of this summary/lecture because the discussion will be limited to high- temperature geothermal systems which might as well be called volcanic geothermal systems. The volcanic systems concept is introduced as “a system including the plumbing, intrusions and other expressions of volcanism as well as the volcanic edifice” (Walker 1993). Hotspot is referred to because gross differences in magma supply rate are related to position of volcanic systems on the hotspot and hence may determine the life and power of the geothermal system. 1. INTRODUCTION The intrusive part of a volcanic system is most important as a potential heat source for high- temperature geothermal systems. (Figure 1) The intrusions form a dense complex at a few km depth. They maintain and drive geothermal circulation. Underneath a volcanic centre they include dykes and sheets which are relatively shallow. With increasing distance from them dykes become dominant. Concentration of dykes and clustering of volcanic eruptions may occur away from the centre and a geothermal system may develop. How and why do the intrusions form at preferred levels? Walker´s (1989) ideas about the significance of neutral buoyancy in distributing incoming magma between magma chamber, rift zones, intrusions and surface flow are discussed.
    [Show full text]
  • Insights Into the Recurrent Energetic Eruptions That Drive Awu Among the Deadliest Volcanoes on Earth
    Insights into the recurrent energetic eruptions that drive Awu among the deadliest volcanoes on earth Philipson Bani1, Kristianto2, Syegi Kunrat2, Devy Kamil Syahbana2 5 1- Laboratoire Magmas et Volcans, Université Blaise Pascal - CNRS -IRD, OPGC, Aubière, France. 2- Center for Volcanology and Geological Hazard Mitigation (CVGHM), Jl. Diponegoro No. 57, Bandung, Indonesia Correspondence to: Philipson Bani ([email protected]) 10 Abstract The little known Awu volcano (Sangihe island, Indonesia) is among the deadliest with a cumulative death toll of 11048. In less than 4 centuries, 18 eruptions were recorded, including two VEI-4 and three VEI-3 eruptions with worldwide impacts. The regional geodynamic setting is controlled by a divergent-double-subduction and an arc-arc collision. In that context, the slab stalls in the mantle, undergoes an increase of temperature and becomes prone to 15 melting, a process that sustained the magmatic supply. Awu also has the particularity to host alternatively and simultaneously a lava dome and a crater lake throughout its activity. The lava dome passively erupted through the crater lake and induced strong water evaporation from the crater. A conduit plug associated with this dome emplacement subsequently channeled the gas emission to the crater wall. However, with the lava dome cooling, the high annual rainfall eventually reconstituted the crater lake and created a hazardous situation on Awu. Indeed with a new magma 20 injection, rapid pressure buildup may pulverize the conduit plug and the lava dome, allowing lake water injection and subsequent explosive water-magma interaction. The past vigorous eruptions are likely induced by these phenomena, a possible scenario for the future events.
    [Show full text]
  • Volcano Hazards at Newberry Volcano, Oregon
    Volcano Hazards at Newberry Volcano, Oregon By David R. Sherrod1, Larry G. Mastin2, William E. Scott2, and Steven P. Schilling2 1 U.S. Geological Survey, Hawaii National Park, HI 96718 2 U.S. Geological Survey, Vancouver, WA 98661 OPEN-FILE REPORT 97-513 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1997 U.S. Department of the Interior U.S. Geological Survey CONTENTS Introduction 1 Hazardous volcanic phenomena 2 Newberry's volcanic history is a guide to future eruptions 2 Flank eruptions would most likely be basaltic 3 The caldera would be the site of most rhyolitic eruptions—and other types of dangerously explosive eruptions 3 The presence of lakes may add to the danger of eruptions in the caldera 5 The most damaging lahars and floods at Newberry volcano would be limited to the Paulina Creek area 5 Small to moderate-size earthquakes are commonly associated with volcanic activity 6 Volcano hazard zonation 7 Hazard zone for pyroclastic eruptions 7 Regional tephra hazards 8 Hazard zone for lahars or floods on Paulina Creek 8 Hazard zone for volcanic gases 10 Hazard zones for lava flows 10 Large-magnitude explosive eruptions of low probability 11 Monitoring and warnings 12 Suggestions for further reading 12 Endnotes 13 ILLUSTRATIONS Plate 1. Volcano hazards at Newberry volcano, Oregon in pocket Figure 1. Index map showing Newberry volcano and vicinity 1 Figure 2.
    [Show full text]