004001 – 008000

Total Page:16

File Type:pdf, Size:1020Kb

004001 – 008000 ELEMENTS AND OPPOSITION DATES IN 2019 ecliptic and equinox 2000.0, epoch 2019 nov. 13.0 tt Planet H G M ω Ω i e µ a TE Oppos. V m ◦ ◦ ◦ ◦ ◦ 4001 Ptolemaeus 13.7 X 105.36152 204.20689 130.65831 5.45740 0.1720728 0.28489272 2.2874335 19 — — 4002 Shinagawa 11.7 X 84.10887 185.32482 116.84751 14.68807 0.0289138 0.24698257 2.5158911 19 10 24.2 15.3 4003 Schumann′ 11.2 X 107.24013 116.87559 189.30283 5.05755 0.0943929 0.15525080 3.4285737 19 11 29.1 16.3 4004 List ev 12.0 X 303.11841 347.46037 18.57178 15.65229 0.1984485 0.18000513 3.1065580 19 6 6.8 16.7 4005 Dyagilev 12.8 X 136.43830 266.01488 74.14310 6.84309 0.1482285 0.25673224 2.4517853 19 — — 4006 Sandler 12.6 X 301.43763 124.23291 293.70288 2.39152 0.1836014 0.24715045 2.5147517 19 8 6.9 15.7 4007 Euryalos 10.3 X 264.48905 77.30266 6.75100 11.00159 0.0558768 0.08365035 5.1779465 19 9 2.1 17.3 4008 Corbin 13.2 X 285.61166 327.22241 167.19496 25.51170 0.2101510 0.27204157 2.3589163 19 10 29.4 16.6 4009 Drobyshevskij′ 12.6 X 198.05798 181.33130 72.29778 2.29131 0.1324401 0.17708675 3.1405956 19 12 25.9 17.5 4010 Nikol skij 13.4 X 170.89065 340.01023 318.90603 5.41521 0.1260380 0.24211264 2.5495160 19 — — 4011 Bakharev 14.3 X 177.42911 46.79261 34.80941 1.17120 0.0500699 0.30287047 2.1959954 19 4 8.7 16.7 4012 Geballe 13.4 X 93.88974 133.81857 244.95054 4.57172 0.1632640 0.29259034 2.2471362 19 — — 4013 Ogiria 12.5 X 53.64226 159.05400 191.89967 0.58124 0.1746102 0.17616276 3.1515678 19 11 28.9 16.5 4014 Heizman 12.3 X 125.00885 106.57898 270.63578 1.10702 0.0315764 0.15567127 3.4223971 19 — — 4015 Wilson–Harrington 15.99 X 124.68820 95.37404 266.82044 2.79832 0.6310030 0.23158006 2.6262452 19 2 4.1 19.8 4016 Sambre 14.0 X 201.33515 35.83517 103.79825 0.78966 0.2291892 0.26370002 2.4084036 19 8 10.7 18.1 4017 Disneya 12.9 X 25.19707 312.91089 32.44151 3.01829 0.0980849 0.23700074 2.5860460 19 9 26.8 15.6 4018 Bratislava 13.5 X 179.89625 158.22751 252.28989 3.43380 0.1647984 0.23798753 2.5788925 19 3 29.6 17.4 4019 Klavetter 14.7 X 53.84927 146.14238 262.53084 2.48605 0.1284459 0.27575313 2.3377016 19 — — 4020 Dominique 12.9 X 293.65725 177.95734 194.82553 9.54625 0.1571353 0.21279984 2.7785732 19 6 7.7 17.0 4021 Dancey 13.5 X 2.82899 327.03093 49.56577 3.54236 0.1693693 0.28583018 2.2824293 19 9 25.9 15.0 4022 Nonna 13.1 X 263.02308 34.04309 278.34317 5.09195 0.1278290 0.27232759 2.3572643 19 2 5.9 16.8 4023 Jarn´ık 13.5 X 164.82254 127.67784 244.71966 1.85287 0.0933928 0.29525424 2.2335994 19 — — 4024 Ronan 13.1 X 300.75026 75.36521 54.44382 7.76457 0.1555428 0.28598843 2.2815872 19 11 18.4 15.4 4025 Ridley 13.7 X 100.90506 245.83442 147.31846 3.12859 0.1675946 0.29171529 2.2516277 19 — — 4026 Beet 13.6 X 330.46519 351.80005 137.43576 3.18398 0.1189659 0.25804541 2.4434603 19 — — 4027 Mitton 13.2 X 98.40837 15.77522 193.75620 1.78746 0.1674611 0.27209884 2.3585853 19 7 17.2 15.7 4028 Pancratz 12.9 X 136.57159 267.07129 177.39587 2.80690 0.1493189 0.24165882 2.5527069 19 3 22.6 16.1 4029 Bridges 12.8 X 124.59850 16.37856 214.77637 5.43792 0.1316019 0.24564563 2.5250115 19 9 17.1 16.4 4030 Archenhold 13.1 X 338.56777 303.00492 342.32290 6.52911 0.0933671 0.25529240 2.4609953 19 4 5.3 16.3 4031 Mueller 13.1 X 33.20204 69.59554 355.85224 18.90332 0.1011329 0.36638623 1.9342382 19 — — 4032 Chaplygin 14.4 X 223.14668 206.57833 167.26706 2.13206 0.1420265 0.30574871 2.1821920 19 3 9.9 17.3 4033 Yatsugatake 13.6 X 353.14719 163.59575 46.44114 5.12232 0.0912980 0.29401452 2.2398737 19 1 1.6 16.4 4034 Vishnu 18.4 X 73.90363 296.64113 157.94155 11.16931 0.4441757 0.90345250 1.0597396 19 — — 4035 1986 WD 9.6 X 262.13405 197.45562 233.72009 12.12889 0.0566823 0.08116460 5.2831341 19 8 8.6 16.8 4036 Whitehouse 13.0 X 3.92745 336.15148 157.95289 4.68041 0.1516923 0.21040713 2.7995985 19 — — 4037 Ikeya 12.6 X 90.46486 74.38540 13.49360 8.45362 0.1603809 0.21377067 2.7701544 19 1 30.8 15.7 4038 Kristina 13.4 X 264.17857 46.40840 334.29690 6.00078 0.1302486 0.27059838 2.3672961 19 5 5.2 17.1 4039 Souseki 12.8 X 161.19232 126.01759 275.45935 5.04415 0.0622228 0.26240194 2.4163399 19 2 4.1 15.9 4040 Purcell 12.8 X 157.37304 271.93238 55.70924 2.33710 0.0683486 0.22555785 2.6727854 19 — — 4041 Miyamotoyohko 11.2 X 293.41650 160.15477 101.50674 11.24355 0.0527603 0.18852764 3.0122154 19 2 8.6 15.6 4042 Okhotsk 14.2 X 86.24243 19.42840 69.32830 3.52605 0.1364337 0.26145651 2.4221614 19 — — 4043 Perolof 12.4 X 287.31112 13.27611 303.16170 6.56899 0.0982857 0.17941536 3.1133621 19 3 31.9 17.1 4044 Erikhøg 11.8 X 6.97205 251.72638 94.41159 10.69156 0.0844869 0.18591295 3.0403923 19 9 6.3 15.7 4045 Lowengrub 11.2 X 60.34928 245.33712 224.28406 21.32905 0.1014294 0.16988200 3.2287751 19 1 16.7 15.8 4046 Swain ′ 12.3 X 240.39192 79.42284 207.40441 7.85291 0.0657313 0.23040045 2.6352015 19 — — 4047 Chang E 13.5 X 25.09985 309.95116 31.89200 3.01593 0.2050832 0.23255774 2.6188795 19 9 28.5 15.6 4048 Samwestfall′ 14.0 X 173.50986 22.44113 355.91913 3.21155 0.1879048 0.29509665 2.2343946 19 1 29.3 16.6 4049 Noragal 12.3 X 220.12013 217.55878 97.32289 2.38315 0.2740025 0.18331574 3.0690423 19 1 28.0 17.7 4050 Mebailey 12.6 X 197.66056 246.89786 146.21858 1.47476 0.1398117 0.17367105 3.1816405 19 4 8.4 17.6 4051 Hatanaka 12.6 X 320.08882 86.86581 285.54591 2.72413 0.1093001 0.21153889 2.7896040 19 7 18.9 16.1 4052 Crovisier 12.0 X 228.50289 129.99673 305.70707 9.15775 0.0662964 0.18719769 3.0264654 19 6 28.5 16.5 4053 Cherkasov 13.4 X 282.10133 8.53400 334.04668 4.59951 0.0781653 0.27550906 2.3390820 19 4 7.7 16.5 4054 Turnov 13.0 X 274.12881 26.99996 11.96545 4.82633 0.1707336 0.18491311 3.0513421 19 6 21.8 17.7 4055 Magellan 14.7 X 264.91706 154.38232 164.83413 23.25406 0.3262815 0.40136103 1.8201726 19 1 20.0 18.1 4056 Timwarner 12.5 X 54.84421 354.39704 142.36988 13.17758 0.1057616 0.22905207 2.6455333 19 1 20.7 15.5 4057 Demophon 10.1 X 246.73012 58.87066 24.32110 2.87077 0.1190154 0.08171680 5.2593064 19 8 4.8 17.4 4058 Cecilgreen 11.5 X 73.05267 251.19358 61.71134 10.79903 0.0926933 0.18846316 3.0129024 19 10 29.9 15.6 4059 Balder 11.4 X 131.59843 30.18212 238.07604 9.46616 0.0687486 0.18798125 3.0180496 19 11 6.8 15.8 4060 Deipylos 9.3 X 216.22649 307.25385 168.20106 16.15219 0.1538219 0.08196987 5.2484759 19 8 8.1 16.9 4061 Martelli 12.2 X 213.81801 250.11282 23.41068 1.66924 0.1315362 0.17878539 3.1206713 19 — — 4062 Schiaparelli 13.5 X 124.85228 70.73260 340.04514 6.90131 0.1502432 0.29361143 2.2419233 19 — — 4063 Euforbo 8.7 X 274.88205 318.31460 113.51264 18.94108 0.1183737 0.08346819 5.1854773 19 8 22.5 15.7 4064 Marjorie 13.5 X 21.96791 111.00893 341.50904 7.19257 0.0425624 0.25452407 2.4659455 19 — — 4065 Meinel 14.0 X 4.65963 102.27839 22.78048 5.16321 0.0763745 0.28872919 2.2671256 19 — — 4066 Haapavesi′ 13.4 X 218.93427 89.25637 241.12755 5.27942 0.2229378 0.29355773 2.2421967 19 1 17.1 16.9 4067 Mikhel son 12.7 X 144.11653 90.34645 328.42715 6.34110 0.1859344 0.23159312 2.6261465 19 3 5.9 16.3 4068 Menestheus 9.5 X 193.50438 316.62714 177.66143 17.56219 0.0726843 0.08440651 5.1469753 19 8 10.1 16.8 4069 Blakee 14.2 X 116.01059 5.77165 235.71164 2.18197 0.0740283 0.30804422 2.1713375 19 9 7.8 16.6 4070 Rozov 13.3 X 201.50804 124.00123 253.16391 3.78477 0.1677915 0.29190383 2.2506581 19 2 23.7 16.6 4071 Rostovdon 11.9 X 217.70210 126.61409 267.44828 10.99790 0.1619753 0.17195459 3.2027782 19 4 24.3 17.3 4072 Yayoi 13.4 X 304.90083 126.14598 21.29804 2.16111 0.0646117 0.31370694 2.1451284 19 — — 4073 Ruianzhongxue 12.2 X 307.87677 189.91053 144.25589 2.06829 0.1773548 0.17408611 3.1765812 19 5 11.3 16.7 4074 Sharkov 12.3 X 227.62819 61.26815 188.97058 9.84406 0.0356632 0.18738265 3.0244736 19 — — 4075 Sviridov 12.4 X 319.42405 82.29349 10.92426 7.77026 0.0484568 0.18733141 3.0250251 19 11 9.5 16.5 4076 D¨orffel 12.2 X 214.32857 62.10226 346.52551 1.35356 0.0693538 0.20438075 2.8543642 19 5 5.0 16.5 4077 Asuka 11.1 X 107.27445 242.85135 70.51501 11.41119 0.0850965 0.18767785 3.0213013 19 12 6.3 15.4 4078 Polakis 11.2 X 157.28235 228.86450 83.13284 11.60240 0.1041866 0.18780591 3.0199277 19 — — 4079 Britten 12.7 X 148.52517 66.60618 74.29185 2.38816 0.1141317 0.17316104 3.1878846 19 6 27.6 17.4 4080 Galinskij 13.3 X 57.42174 96.12853 222.04115 3.79891 0.2106086 0.30340518 2.1934146 19 10 25.9 15.0 – 1136 – ELEMENTS AND OPPOSITION DATES IN 2019 ecliptic and equinox 2000.0, epoch 2019 nov.
Recommended publications
  • The Minor Planet Bulletin 44 (2017) 142
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 44, NUMBER 2, A.D. 2017 APRIL-JUNE 87. 319 LEONA AND 341 CALIFORNIA – Lightcurves from all sessions are then composited with no TWO VERY SLOWLY ROTATING ASTEROIDS adjustment of instrumental magnitudes. A search should be made for possible tumbling behavior. This is revealed whenever Frederick Pilcher successive rotational cycles show significant variation, and Organ Mesa Observatory (G50) quantified with simultaneous 2 period software. In addition, it is 4438 Organ Mesa Loop useful to obtain a small number of all-night sessions for each Las Cruces, NM 88011 USA object near opposition to look for possible small amplitude short [email protected] period variations. Lorenzo Franco Observations to obtain the data used in this paper were made at the Balzaretto Observatory (A81) Organ Mesa Observatory with a 0.35-meter Meade LX200 GPS Rome, ITALY Schmidt-Cassegrain (SCT) and SBIG STL-1001E CCD. Exposures were 60 seconds, unguided, with a clear filter. All Petr Pravec measurements were calibrated from CMC15 r’ values to Cousins Astronomical Institute R magnitudes for solar colored field stars. Photometric Academy of Sciences of the Czech Republic measurement is with MPO Canopus software. To reduce the Fricova 1, CZ-25165 number of points on the lightcurves and make them easier to read, Ondrejov, CZECH REPUBLIC data points on all lightcurves constructed with MPO Canopus software have been binned in sets of 3 with a maximum time (Received: 2016 Dec 20) difference of 5 minutes between points in each bin.
    [Show full text]
  • Rotation Period Determination for 5143 Heracles
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 39, NUMBER 3, A.D. 2012 JULY-SEPTEMBER 99. Minor Planet Bulletin 39 (2012) Available on line http://www.minorplanet.info/mpbdownloads.html 148 ROTATION PERIOD DETERMINATION FOR 5143 HERACLES Frederick Pilcher 4438 Organ Mesa Loop Las Cruces, NM 88011 USA John W. Briggs HUT Observatory H16 P. O. Box 5320 Eagle, CO 81631 USA Lorenzo Franco A81 Balzaretto Observatory Rome, ITALY Raguli Ya. Inasaridze Abastumani Astrophysical Observatory of Ilia State University G. Tsereteli St. 3, Tbilisi 0162, GEORGIA REPUBLIC Yurij N. Krugly Institute of Astronomy of Kharkiv National University Sumska str. 35, Kharkiv 61022 UKRAINE Igor E. Molotov Keldysh Institute of Applied Mathematics, RAS Miusskaya sq. 4, Moscow 125047 RUSSIA Daniel A. Klinglesmith III New Mexico Institute of Mining and Technology Etscorn Campus Observatory 801 Leroy Place Socorro, NM 87801 USA Joe Pollock Appalachian State University 525 Rivers Street Boone, NC 28608 USA Petr Pravec Astronomical Institute, Academy of Sciences Ondrejov, CZECH REPUBLIC (Received: 17 March) The Earth crossing minor planet 5143 Heracles made in late 2011 its closest approach to Earth since discovery. A consortium of observers found a synodic rotation period near 2.706 hours and amplitude increasing from 0.08 ±0.02 magnitudes at phase angle 20 degrees to 0.18 ±0.03 magnitudes at phase angle 87 degrees, with 3 unequal maxima and minima per cycle. Magnitude parameters H = 14.10 ±0.04 and G = 0.08 ±0.02 are found, and the color index V-R = 0.42 ±0.07.
    [Show full text]
  • Updated on 1 September 2018
    20813 Aakashshah 12608 Aesop 17225 Alanschorn 266 Aline 31901 Amitscheer 30788 Angekauffmann 2341 Aoluta 23325 Arroyo 15838 Auclair 24649 Balaklava 26557 Aakritijain 446 Aeternitas 20341 Alanstack 8651 Alineraynal 39678 Ammannito 11911 Angel 19701 Aomori 33179 Arsenewenger 9117 Aude 16116 Balakrishnan 28698 Aakshi 132 Aethra 21330 Alanwhitman 214136 Alinghi 871 Amneris 28822 Angelabarker 3810 Aoraki 29995 Arshavsky 184535 Audouze 3749 Balam 28828 Aalamiharandi 1064 Aethusa 2500 Alascattalo 108140 Alir 2437 Amnestia 129151 Angelaboggs 4094 Aoshima 404 Arsinoe 4238 Audrey 27381 Balasingam 33181 Aalokpatwa 1142 Aetolia 19148 Alaska 14225 Alisahamilton 32062 Amolpunjabi 274137 Angelaglinos 3400 Aotearoa 7212 Artaxerxes 31677 Audreyglende 20821 Balasridhar 677 Aaltje 22993 Aferrari 200069 Alastor 2526 Alisary 1221 Amor 16132 Angelakim 9886 Aoyagi 113951 Artdavidsen 20004 Audrey-Lucienne 26634 Balasubramanian 2676 Aarhus 15467 Aflorsch 702 Alauda 27091 Alisonbick 58214 Amorim 30031 Angelakong 11258 Aoyama 44455 Artdula 14252 Audreymeyer 2242 Balaton 129100 Aaronammons 1187 Afra 5576 Albanese 7517 Alisondoane 8721 AMOS 22064 Angelalewis 18639 Aoyunzhiyuanzhe 1956 Artek 133007 Audreysimmons 9289 Balau 22656 Aaronburrows 1193 Africa 111468 Alba Regia 21558 Alisonliu 2948 Amosov 9428 Angelalouise 90022 Apache Point 11010 Artemieva 75564 Audubon 214081 Balavoine 25677 Aaronenten 6391 Africano 31468 Albastaki 16023 Alisonyee 198 Ampella 25402 Angelanorse 134130 Apaczai 105 Artemis 9908 Aue 114991 Balazs 11451 Aarongolden 3326 Agafonikov 10051 Albee
    [Show full text]
  • An Extension of the Bus Asteroid Taxonomy Into the Near-Infrared Francesca E
    An extension of the Bus asteroid taxonomy into the near-infrared Francesca E. Demeo, Richard P. Binzel, Stephen M. Slivan, Schelte J. Bus To cite this version: Francesca E. Demeo, Richard P. Binzel, Stephen M. Slivan, Schelte J. Bus. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, Elsevier, 2009, 202 (1), pp.160. 10.1016/j.icarus.2009.02.005. hal-00545286 HAL Id: hal-00545286 https://hal.archives-ouvertes.fr/hal-00545286 Submitted on 10 Dec 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript An extension of the Bus asteroid taxonomy into the near-infrared Francesca E. DeMeo, Richard P. Binzel, Stephen M. Slivan, Schelte J. Bus PII: S0019-1035(09)00055-4 DOI: 10.1016/j.icarus.2009.02.005 Reference: YICAR 8908 To appear in: Icarus Received date: 30 October 2008 Revised date: 6 February 2009 Accepted date: 9 February 2009 Please cite this article as: F.E. DeMeo, R.P. Binzel, S.M. Slivan, S.J. Bus, An extension of the Bus asteroid taxonomy into the near-infrared, Icarus (2009), doi: 10.1016/j.icarus.2009.02.005 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • The EURONEAR Lightcurve Survey of Near Earth Asteroids
    Earth Moon Planets DOI 10.1007/s11038-017-9506-9 The EURONEAR Lightcurve Survey of Near Earth Asteroids 1,2,3 4 1 O. Vaduvescu • A. Aznar Macias • V. Tudor • 5 6 6 6 M. Predatu • A. Gala´d • Sˇ. Gajdosˇ • J. Vila´gi • 1,7 1 8 H. F. Stevance • R. Errmann • E. Unda-Sanzana • 8 8,9 10,11 10 F. Char • N. Peixinho • M. Popescu • A. Sonka • 12 12 12,13 14 R. Cornea • O. Suciu • R. Toma • P. Santos-Sanz • 14 2,3 2,3 A. Sota • J. Licandro • M. Serra-Ricart • 2,3 1,15 1,16 D. Morate • T. Mocnik • M. Diaz Alfaro • 1,17 1 1 F. Lopez-Martinez • J. McCormac • N. Humphries Received: 31 March 2017 / Accepted: 13 July 2017 Ó Springer Science+Business Media B.V. 2017 Abstract This data paper presents lightcurves of 101 near Earth asteroids (NEAs) observed mostly between 2014 and 2017 as part of the EURONEAR photometric survey using 11 telescopes with diameters between 0.4 and 4.2 m located in Spain, Chile, Slo- vakia and Romania. Most targets had no published data at the time of observing, but some objects were observed in the same period mainly by B. Warner, allowing us to confirm or improve the existing results. To plan the runs and select the targets, we developed the public Long Planning tool in PHP. For preliminary data reduction and rapid follow-up planning we developed the LiDAS pipeline in Python and IRAF. For final data reduction, flux calibration, night linkage and Fourier fitting, we used mainly MPO Canopus.
    [Show full text]
  • FINAL REPORT NASA Grant NAGW-3044 Observations of Spacecraft Targets, Unusual Asteroids, and Targets of Opportunity David J
    FINAL REPORT NASA Grant NAGW-3044 Observations of Spacecraft Targets, Unusual Asteroids, and Targets of Opportunity David J. Tholen, P.I. Dates 1992 April 1 to 1998 March 31 Location University of Hawaii Institute for Astronomy 2680 Woodlawn Drive Honolulu, HI 96822 Goals Obtain physical and astrometric observations of (a) spacecraft targets to support mission operations, (b) known asteroids with unusual orbits to help determine their origin, and (c) newly discovered minor planets (including both asteroids and comets) that represent a particular opportunity to add significant new knowledge of the Solar System. Observations and Data Analysis Priority was given to the acquisition and analysis of observations of spacecraft targets, including (951) Gaspra and (243) Ida, both flyby targets of the Galileo spacecraft, (1620) Geographos, a flyby target for the Clementine spacecraft, (253) Mathilde and (433) Eros, both targets of the NEAR spacecraft, (4660) Nereus, a target for both the MUSES-C and NEAP missions, P/Wild 2, a target for the Stardust mission, and P/Wirtanen, a target for the Rosetta mission. Although the observations of Gaspra were obtained under an earlier grant, the analysis and publication of those data continued under this grant. Observations of Ida included both lightcurve data that were combined with similar data obtained by others to develop a pre-encounter shape and spin axis orientation model, thermal infrared data to determined a radiometric size and geometric albedo for the asteroid, and astrometry to assist with the spacecraft navigation effort, which had been compromised by the high-gain antenna problem. Although Clementine did not succeed in getting to Geographos, a wealth of new ground-based lightcurve observations, including some obtained with support from this grant, were used to develop a shape and spin model for the asteroid, comparable to the one done for Ida.
    [Show full text]
  • Phd. Compositional Variation of Small Bodies Across the Solar System
    Observatoire de Paris Ecole´ Doctorale Astronomie et Astrophysique d'^Ile-de-France THESE` DE DOCTORAT pr´esent´eepour obtenir le grade de DOCTEUR DE L'OBSERVATOIRE DE PARIS Sp´ecialit´e:Astronomie & Astrophysique par Francesca E. DeMeo La variation compositionnelle des petits corps `atravers le syt`emesolaire soutenue le 16 juin 2010 devant le jury: Dr. Bruno Sicardy Pr´esident Dr. Hermann Boehnhardt Rapporteur Dr. Alberto Cellino Rapporteur Dr. Humberto Campins Examinateur Dr. Beth Clark Examinateur Dr. Daniel Hestroffer Examinateur Dr. M. Antonietta Barucci Co-Directrice de th`ese Dr. Richard P. Binzel Co-Directeur de th`ese LESIA, Observatoire de Paris-Meudon [email protected] The Paris Observatory Doctoral School of Astronomy and Astrophysics of ^Ile-de-France DOCTORAL THESIS presented to obtain the degree of DOCTOR OF THE PARIS OBSERVATORY Specialty: Astronomy & Astrophysics by Francesca E. DeMeo The compositional variation of small bodies across the Solar System defended the 16th of June 2010 before the jury: Dr. Bruno Sicardy President Dr. Hermann Boehnhardt Reviewer Dr. Alberto Cellino Reviewer Dr. Humberto Campins Examiner Dr. Beth Clark Examiner Dr. Daniel Hestroffer Examiner Dr. M. Antonietta Barucci Co-Advisor Dr. Richard P. Binzel Co-Advisor LESIA, Observatoire de Paris-Meudon [email protected] Abstract Small bodies hold keys to our understanding of the Solar System. By studying these populations we seek the information on the conditions and structure of the primordial and current Solar System, its evolution, and the formation process of the planets. Constraining the surface composition of small bodies provides us with the ingredients and proportions for this cosmic recipe.
    [Show full text]
  • Cumulative Index to Volumes 1-45
    The Minor Planet Bulletin Cumulative Index 1 Table of Contents Tedesco, E. F. “Determination of the Index to Volume 1 (1974) Absolute Magnitude and Phase Index to Volume 1 (1974) ..................... 1 Coefficient of Minor Planet 887 Alinda” Index to Volume 2 (1975) ..................... 1 Chapman, C. R. “The Impossibility of 25-27. Index to Volume 3 (1976) ..................... 1 Observing Asteroid Surfaces” 17. Index to Volume 4 (1977) ..................... 2 Tedesco, E. F. “On the Brightnesses of Index to Volume 5 (1978) ..................... 2 Dunham, D. W. (Letter regarding 1 Ceres Asteroids” 3-9. Index to Volume 6 (1979) ..................... 3 occultation) 35. Index to Volume 7 (1980) ..................... 3 Wallentine, D. and Porter, A. Index to Volume 8 (1981) ..................... 3 Hodgson, R. G. “Useful Work on Minor “Opportunities for Visual Photometry of Index to Volume 9 (1982) ..................... 4 Planets” 1-4. Selected Minor Planets, April - June Index to Volume 10 (1983) ................... 4 1975” 31-33. Index to Volume 11 (1984) ................... 4 Hodgson, R. G. “Implications of Recent Index to Volume 12 (1985) ................... 4 Diameter and Mass Determinations of Welch, D., Binzel, R., and Patterson, J. Comprehensive Index to Volumes 1-12 5 Ceres” 24-28. “The Rotation Period of 18 Melpomene” Index to Volume 13 (1986) ................... 5 20-21. Hodgson, R. G. “Minor Planet Work for Index to Volume 14 (1987) ................... 5 Smaller Observatories” 30-35. Index to Volume 15 (1988) ................... 6 Index to Volume 3 (1976) Index to Volume 16 (1989) ................... 6 Hodgson, R. G. “Observations of 887 Index to Volume 17 (1990) ................... 6 Alinda” 36-37. Chapman, C. R. “Close Approach Index to Volume 18 (1991) ..................
    [Show full text]
  • Spectral Properties of the Largest Asteroids Associated with Taurid Complex
    Astronomy & Astrophysics manuscript no. AST3TC c ESO 2021 June 28, 2021 Spectral properties of the largest asteroids associated with Taurid Complex M. Popescu1, 2, M. Birlan1, D. A. Nedelcu2, J. Vaubaillon1, and C. P. Cristescu3 1 Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCE) CNRS-UMR8028, Observatoire de Paris, 77 avenue Denfert-Rochereau, 75014 Paris Cedex, France 2 Astronomical Institute of the Romanian Academy, 5 Cu¸titul de Argint, 040557 Bucharest, Romania 3 Department of Physics, University Politehnica of Bucharest, Romania June 28, 2021 ABSTRACT Context. The Taurid Complex is a massive stream of material in the inner part of the Solar System. It contains objects spanning the range of 10−6–103m, considered by some authors to have a common cometary origin. The asteroids belonging to Taurid Complex are on Apollo type orbit, with most of them being flagged as potentially hazardous asteroids. In this context, understanding the nature and the origin of this asteroidal population is not only of scientific interest but also of practical importance. Aims. We aim to investigate the surface mineralogy of the asteroids associated with Taurid Complex using visible and near-infrared spectral data. Compositional linking between these asteroids and meteorites can be derived based on the obtained spectra. Methods. We obtained spectra of six of the largest asteroids (2201, 4183, 4486, 5143, 6063, and 269690) associated with Taurid complex. The observations were made with the IRTF telescope equipped with the spectro-imager SpeX. Their taxonomic classifi- cation is made using Bus-DeMeo taxonomy. The asteroid spectra are compared with the meteorite spectra from the Relab database.
    [Show full text]
  • Solar Radiation and Near-Earth Asteroids: Thermophysical Modeling and New Measurements of the Yarkovsky Effect
    University of California Los Angeles Solar Radiation and Near-Earth Asteroids: Thermophysical Modeling and New Measurements of the Yarkovsky Effect A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Geophysics and Space Physics by Carolyn Rosemary Nugent 2013 c Copyright by Carolyn Rosemary Nugent 2013 Abstract of the Dissertation Solar Radiation and Near-Earth Asteroids: Thermophysical Modeling and New Measurements of the Yarkovsky Effect by Carolyn Rosemary Nugent Doctor of Philosophy in Geophysics and Space Physics University of California, Los Angeles, 2013 Professor Jean-Luc Margot, Chair This dissertation examines the influence of solar radiation on near-Earth asteroids (NEAs); it investigates thermal properties and examines changes to orbits caused by the process of anisotropic re-radiation of sunlight called the Yarkovsky effect. For the first portion of this dissertation, we used geometric albedos (pV ) and diameters derived from the Wide-Field Infrared Survey Explorer (WISE), as well as geometric albedos and diameters from the literature, to produce more accurate diurnal Yarkovsky drift predic- tions for 540 NEAs out of the current sample of ∼ 8800 known objects. These predictions are intended to assist observers, and should enable future Yarkovsky detections. The second portion of this dissertation introduces a new method for detecting the Yarkovsky drift. We identified and quantified semi-major axis drifts in NEAs by performing orbital fits to optical and radar astrometry of all numbered NEAs. We discuss on a subset of 54 NEAs that exhibit some of the most reliable and strongest drift rates. Our selection criteria include a Yarkovsky sensitivity metric that quantifies the detectability of semi-major axis drift in any given data set, a signal-to-noise metric, and orbital coverage requirements.
    [Show full text]
  • Spectral Properties of the Largest Asteroids Associated with Taurid Complex
    A&A 572, A106 (2014) Astronomy DOI: 10.1051/0004-6361/201424064 & c ESO 2014 Astrophysics Spectral properties of the largest asteroids associated with Taurid Complex M. Popescu1,2, M. Birlan1, D. A. Nedelcu2, J. Vaubaillon1, and C. P. Cristescu3 1 Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCE) CNRS-UMR 8028, Observatoire de Paris, 77 avenue Denfert-Rochereau, 75014 Paris Cedex, France e-mail: [email protected] 2 Astronomical Institute of the Romanian Academy, 5 Cu¸titul de Argint, 040557 Bucharest, Romania 3 Department of Physics, University Politehnica of Bucharest, Romania Received 25 April 2014 / Accepted 1 September 2014 ABSTRACT Context. The Taurid Complex is a massive stream of material in the inner part of the Solar System. It contains objects spanning the range of 10−6–103 m, considered by some authors to have a common cometary origin. The asteroids belonging to Taurid Complex are on Apollo type orbit, with most of them being flagged as potentially hazardous asteroids. In this context, understanding the nature and the origin of this asteroidal population is not only of scientific interest but also of practical importance. Aims. We aim to investigate the surface mineralogy of the asteroids associated with Taurid Complex using visible and near-infrared spectral data. Compositional linking between these asteroids and meteorites can be derived based on the obtained spectra. Methods. We obtained spectra of six of the largest asteroids (2201, 4183, 4486, 5143, 6063, and 269690) associated with Taurid complex. The observations were made with the IRTF telescope equipped with the spectro-imager SpeX. Their taxonomic classifi- cation is made using Bus-DeMeo taxonomy.
    [Show full text]
  • The Properties of the Nucleus of Short-Period Comets Dangerous for the Earth
    Catastrophic Events Conference 3009.pdf THE PROPERTIES OF THE NUCLEUS OF SHORT-PERIOD COMETS DANGEROUS FOR THE EARTH. Kh.I. Ibadinov, Institute of Astrophysics of the Tajik Academy of Sciences, Bukhoro Str. 22, Dushanbe 734042, Tajikistan ([email protected]). A part of short-period comets is a Near Earth comet turned into asteroid-like body 16–18 magnitudes Objects (NEO) and be of great danger for the Earth. At (Ibadinov, 1999). time (once in 50–100 years) the Earth collide with big Observations support the existence of comet- fragment of cometary nucleus and as is generally asteroid (Comastr) objects. First, we have asteroid known this collision is catasatrophic for the Earth. Chiron and comet Harrington-Wilson. Serious Therefore it is very important to know of the orbit and arguments exist to suggest that the objects 1992 AD, the physical properties and chemical copmosition of 5441 Pholus, 1992 QB, and 1993 FW, recorded as nucleus of such Near Earth Comets (NEC) in detail. asteroids, as well as near Earth asteroids of Taurid The physical properties and the chemical complex, 2101 Adonis, 2202 Oljato, 2212 Hephaistos, composition of cometary nucleus were studied by 4183 Cuno, 4179 TA, 4341 Poseidon, 4486 Mithra, different methods in the Institute of Astrophysics of the 5143 Heracles, 5731 Zeus, and 6063 Jason, are extinct Tajik Academy of Sciences. This report include the short-period comets. The Encke's comet is potential new results of our investigations of the nucleus of stort-period asteroid. short-period comets. These results considerable Thus, a part of Near Earth Objects dangerous for supplemented our notion about short-period comets the Earth is a comet-asteroid objects.
    [Show full text]