List of Publications

Total Page:16

File Type:pdf, Size:1020Kb

List of Publications Patrick A. Taylor Contact Lunar and Planetary Institute Office: 281-486-2146 Information Universities Space Research Association Mobile: 443-254-7368 3600 Bay Area Blvd. [email protected] Houston, TX 77058 USA www.naic.edu/∼ptaylor ORCID: 0002-2493-943X Refereed Taylor, P.A., E.G. Rivera-Valent´ın,L.A.M. Benner, S.E. Marshall, A.K. Virkki, F.C.F. Publications Venditti, L.F. Zambrano-Marin, S.S. Bhiravarasu, B. Aponte-Hernandez, C. Rodriguez Sanchez-Vahamonde, and J.D. Giorgini, Arecibo Radar Observations of Near-Earth As- teroid (3200) Phaethon During the 2017 Apparition, Planetary and Space Science 167, 1-8, 2019. Taylor, P.A. and J.L. Margot, Tidal End States of Binary Asteroid Systems with a Nonspherical Component, Icarus 229, 418-422, 2014. Taylor, P.A., and J.L. Margot, Binary Asteroid Systems: Tidal End States and Esti- mates of Material Properties, Icarus 212, 661-676, 2011. Taylor, P.A., and J.L. Margot, Tidal Evolution of Close Binary Asteroid Systems, Celestial Mechanics and Dynamical Astronomy 108, 315-338, 2010. Taylor, P.A., J.L. Margot, D. Vokrouhlick´y,D.J. Scheeres, P. Pravec, S.C. Lowry, A. Fitzsimmons, M.C. Nolan, S.J. Ostro, L.A.M. Benner, J.D. Giorgini, and C. Magri, Spin Rate of Asteroid (54509) 2000 PH5 Increasing Due to the YORP Effect, Science 316, 274-277, 2007. Virkki, A.K., S.E. Marshall, F.C.F. Venditti, L.F. Zambrano-Marin, D.C. Hickson, A. McGilvray, P.A. Taylor, and 23 colleagues, Arecibo Planetary Radar Observations of Near-Earth Asteroids: 2017 December - 2019 December, submitted. Shepard, M.K., K. de Kleer, S. Cambioni, P.A. Taylor, A.K. Virkki, E.G. Rivera- Valent´ın,C. Rodriguez Sanchez-Vahamonde, L.F. Zambrano-Marin, C. Magri, D. Dun- ham, J. Moore, and M. Camarca, Asteroid 16 Psyche: Shape, Features, and Global Map, Planetary Science Journal, 2, 125, 2021. Brozovic, M., and 19 colleagues (including P.A. Taylor), Arecibo Radar Astrometry of the Galilean Satellites from 1999-2016 , Astronomical Journal 159, 149, 2020. Greenberg, A.H., J.L. Margot, A.K. Verma, P.A. Taylor, and S.E. Hodge, Measure- ment of Yarkovsky Drift Rates for 247 Near-Earth Asteroids, Astronomical Journal 159, 92, 2020. Rozek, A., S.C. Lowry, M.C. Nolan, P.A. Taylor, and 22 colleagues, Shape Model and Spin-State Analysis of PHA Contact Binary (85990) 1999 JV6 from Combined Radar and Optical Observations, Astronomy & Astrophysics, 631, A149, 2019. Bhiravarasu, S.S., E.G. Rivera-Valent´ın, P.A. Taylor, L.F. Zambrano-Marin, B. Aponte- Hernandez, and S.E. Marshall, Arecibo Radar Observations of Dwarf Planet 1 Ceres During the 2018 Apparition, Research Notes of the AAS 2, 232, 2018. Shepard, M.K., B. Timerson, D.J. Scheeres, L.A.M. Benner, J.D. Giorgini, E.S. Howell, C. Magri, M.C. Nolan, A. Springmann, P.A. Taylor and A.K. Virkki, A Revised Shape Model of Asteroid 216 Kleopatra, Icarus 311, 197-209, 2018. Howell, E.S., C. Magri, R.J. Vervack, Jr., M.C. Nolan, P.A. Taylor, Y.R. Fernandez, M.D. Hicks, J.M. Somers, K.J. Lawrence, A.S. Rivkin, S.E. Marshall, and J.L. Crow- ell, SHERMAN - A Shape-Based Thermophysical Model II. Application to 8567 (1996 HW1), Icarus 303, 220-233, 2018. Brozovic, M., and 17 colleagues (including P.A. Taylor), Goldstone and Arecibo Radar Observations of (99942) Apophis in 2012-2013 , Icarus 300, 115-128, 2018. Lawrence, K.J., L.A.M. Benner, M. Brozovic, S.J. Ostro, J.S. Jao, J.D. Giorgini, M.A. Slade, R.F. Jurgens, M.C. Nolan, E.S. Howell, and P.A. Taylor, Arecibo and Goldstone Radar Images of Near-Earth Asteroid (469896) 2005 WC1, Icarus 300, 12-20, 2018. Marshall, S.E., E.S. Howell, C. Magri, R.J. Vervack, Jr., D.B. Campbell, Y.R. Fernan- dez, M.C. Nolan, J.L. Crowell, M.D. Hicks, K.J. Lawrence, and P.A. Taylor, Thermal Properties and an Improved Shape Model for Near-Earth Asteroid (162421) 2000 ET70, Icarus 292, 22-35, 2017. Brozovic, M., and 19 colleagues (including P.A. Taylor), Goldstone Radar Evidence for Short-Axis Non-Principal-Axis Rotation of Near-Earth Asteroid (214869) 2007 PA8, Icarus 286, 314-329, 2017. Greenberg, A.H., J.L. Margot, A.K. Verma, P.A. Taylor, S.P. Naidu, M. Brozovic, and L.A.M. Benner, Asteroid 1566 Icarus' Size, Shape, Orbit, and Yarkovsky Drift from Radar Observations, Astronomical Journal 153, 3, 2017. Shepard, M.K., J.E. Richardson, P.A. Taylor, and 19 colleagues, Radar Observations and Shape Model of Asteroid 16 Psyche, Icarus 281, 388-403, 2017. Reddy, V., and 13 colleagues (including P. A. Taylor), Physical Characterization of 2-meter Diameter Near-Earth Asteroid 2015 TC25: A Possible Boulder from E-type Asteroid (44) Nysa, Astronomical Journal 152, 6, 2016. Naidu, S.P., L.A.M. Benner, J.L. Margot, M.W. Busch, and P.A. Taylor, Capabilities of Earth-Based Radar Facilities for Near-Earth Asteroid Observations, Astronomical Journal 152, 99, 2016. Benner, L.A.M., M.W. Busch, J.D. Giorgini, P.A. Taylor, and J.L. Margot, Radar Observations of Near-Earth and Main-Belt Asteroids, in Asteroids IV , Eds. P. Michel, F.E. DeMeo, and W.F. Bottke, University of Arizona Press, 2015. Margot, J.L., P. Pravec, P.A. Taylor, B. Carry, and S.A. Jacobson, Asteroid Systems: Binaries, Triples, and Pairs, in Asteroids IV , Eds. P. Michel, F.E. DeMeo, and W.F. Bottke, University of Arizona Press, 2015. Naidu, S.P., J.L. Margot, P.A. Taylor, M.C. Nolan, M.W. Busch, L.A.M. Benner, M. Brozovic, J.D. Giorgini, J.S. Jao, and C. Magri, Radar Imaging and Characterization of the Binary Near-Earth Asteroid (185851) 2000 DP107, Astronomical Journal 150, 54, 2015. Becker, T.M., E.S. Howell, M.C. Nolan, C. Magri, P. Pravec, P.A. Taylor, and 13 colleagues, Physical Modeling of Triple Near-Earth Asteroid (153591) 2001 SN263 from Radar and Optical Light Curve Observations, Icarus 248, 499-515, 2015. Shepard, M.K., P.A. Taylor, and 14 colleagues, A Radar Survey of M- and X-Class Asteroids. III. Insights into Their Composition, Hydration State, and Structure, Icarus 245, 38-55, 2015. Chesley, S.R., and 15 colleagues (including P.A. Taylor), Orbit and Bulk Density of the OSIRIS-REx Target Asteroid (101955) Bennu, Icarus 235, 5-22, 2014. Naidu, S.P., J.L. Margot, M.W. Busch, P.A. Taylor, M.C. Nolan, M. Brozovic, L.A.M. Benner, J.D. Giorgini, and C. Magri, Radar Imaging and Physical Characterization of Near-Earth Asteroid (162421) 2000 ET70, Icarus 226, 323-335, 2013. Brozovic, M., L.A.M. Benner, P.A. Taylor, and 20 colleagues, Radar and Optical Observations and Physical Modeling of Triple Near-Earth Asteroid (136617) 1994 CC , Icarus 216, 241-256, 2011. Shepard, M.K., A.W. Harris, P.A. Taylor, B.E. Clark, M. Ockert-Bell, M.C. Nolan, E.S. Howell, C. Magri, J.D. Giorgini, and L.A.M. Benner, Radar Observations of As- teroids 64 Angelina and 69 Hesperia, Icarus 215, 547-551, 2011. Magri, C., E.S. Howell, M.C. Nolan, P.A. Taylor, and 22 colleagues, Radar and Photo- metric Observations and Shape Modeling of Contact Binary Near-Earth Asteroid (8567) 1996 HW1, Icarus 214, 210-227, 2011. Meech, K.J., and 196 colleagues (including P.A. Taylor), EPOXI: Comet 103P/Hartley 2 Observations From a Worldwide Campaign, Astrophysical Journal 734, L1, 2011. Harmon, J.K., M.C. Nolan, E.S. Howell, J.D. Giorgini, and P.A. Taylor, Radar Ob- servations of Comet 103P/Hartley 2 , Astrophysical Journal 734, L2, 2011. Busch, M.W., S.J. Ostro, L.A.M. Benner, M. Brozovic, J.D. Giorgini, J.S. Jao, D.J. Scheeres, C. Magri, M.C. Nolan, E.S. Howell, P.A. Taylor, J.L. Margot, and W. Brisken, Radar Observations and the Shape of Near-Earth Asteroid 2008 EV5, Icarus 212, 649-660, 2011. Fang, J., J.L. Margot, M. Brozovic, M.C. Nolan, L.A.M. Benner, and P.A. Taylor, Orbits of Near-Earth Asteroid Triples 2001 SN263 and 1994 CC: Properties, Origin, and Evolution, Astronomical Journal 141, 154-168, 2011. Benner, L.A.M., S.J. Ostro, C. Magri, M.C. Nolan, E.S. Howell, J.D. Giorgini, J.L. Margot, M.W. Busch, M.K. Shepard, P.A. Taylor, and R.F. Jurgens, Near-Earth Asteroid Surface Roughness Depends on Compositional Class, Icarus 198, 294-304, 2008. Petit, J.-M., J.J. Kavelaars, B.J. Gladman, J.L. Margot, P.D. Nicholson, R.L. Jones, J.W. Parker, M.L.N. Ashby, A. Campo Bagatin, P. Benavidez, J. Coffey, P. Rousselot, O. Mousis, and P.A. Taylor, The Extreme Kuiper Belt Binary 2001 QW322, Science 322, 432-434, 2008. Lowry, S.C., A. Fitzsimmons, P. Pravec, D. Vokrouhlick´y,H. Boehnhardt, P.A. Taylor, J.L. Margot, A. Gal´ad,M. Irwin, J. Irwin, and P. Kusnir´ak, Direct Detection of the Asteroidal YORP Effect, Science 316, 272-274, 2007. Ipatov, S.I., J.C. Mather, and P.A. Taylor, Migration of Interplanetary Dust Astro- dynamics, Space Missions, and Chaos, Annals of the New York Academy of Sciences, 1019, 2004. Ipatov, S.I., J.C. Mather, and P.A. Taylor, Migration of Asteroidal Dust, Proceedings of the New Trends in Astrodynamics and Applications Conference, 2003. Manuscripts in Reddy, V., and 24 colleagues (including P.A. Taylor, Near-Earth Asteroid (66391) Preparation Moshup (1999 KW4) Observing Campaign: Results from a Global Planetary Defense Characterization Exercise, submitted.
Recommended publications
  • BENNU from OSIRIS-Rex APPROACH and PRELIMINARY SURVEY OBSERVATIONS
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1956.pdf VNIR AND TIR SPECTRAL CHARACTERISTICS OF (101955) BENNU FROM OSIRIS-REx APPROACH AND PRELIMINARY SURVEY OBSERVATIONS. V. E. Hamilton1, A. A. Simon2, P. R. Christensen3, D. C. Reuter2, D. N. Della Giustina4, J. P. Emery5, R. D. Hanna6, E. Howell4, H. H. Kaplan1, B. E. Clark7, B. Rizk4, D. S. Lauretta4, and the OSIRIS-REx Team, 1Southwest Research Institute, 1050 Walnut St. #300, Boulder, CO 80302 ([email protected]), 2NASA Goddard Space Flight Center, Greenbelt, MD, 3School of Earth & Space Ex- ploration, Arizona State University, Tempe, AZ 85287, 4Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, 5Dept. Earth & Planetary Science, University of Tennessee, Knoxville, TN 37996, 6University of Texas, Austin, TX, 78712, 7Dept. Physics & Astronomy, Ithaca College, Ithaca, NY 14850. Introduction: Visible to near infrared (VNIR) and generation and application of a photometric model, thermal infrared (TIR) spectrometers onboard the Ori- production of bolometric Bond albedo, reflectance gins, Spectral Interpretation, Resource Identification, factor spectra, and the calculation of spectral indices. Security–Regolith Explorer (OSIRIS-REx) spacecraft For OTES, this includes deriving emissivity spectra have revealed evidence of hydrated phases across the and temperature information with emissivity being an surface of asteroid (101955) Bennu. Here we describe input into a linear least squares mixing model and a spectral features identified
    [Show full text]
  • AAS SFMC Manuscript Format Template
    AAS 13-484 PASSIVE SORTING OF ASTEROID MATERIAL USING SOLAR RADIATION PRESSURE D. García Yárnoz,* J. P. Sánchez Cuartielles,† and C. R. McInnes ‡ Understanding dust dynamics in asteroid environments is key for future science missions to asteroids and, in the long-term, also for asteroid exploitation. This paper proposes a novel way of manipulating asteroid material by means of solar radiation pressure (SRP). We envisage a method for passively sorting material as a function of its grain size where SRP is used as a passive in-situ ‘mass spec- trometer’. The analysis shows that this novel method allows an effective sorting of regolith material. This has immediate applications for sample return, and in- situ resource utilisation to separate different regolith particle sizes INTRODUCTION Asteroids have lately become prime targets for space exploration missions. This interest is jus- tified as asteroids are among the least evolved bodies in the Solar System and they can provide a better understanding of its formation from the solar nebula. Under NASA’s flexible path plan,1 asteroids have also become one of the feasible “planetary” surfaces to be visited by crewed mis- sions, with the benefit of not requiring the capability to land and take-off from a deep gravity well. In addition, they may well be the most affordable source of in-situ resources to underpin future space exploration ventures. Considerable efforts have been made in the study of the perturbing forces and space environ- ment around cometary and asteroid bodies.2, 3 These forces and harsh environments need to be considered and will have direct implications for the operations of spacecraft around and on small bodies.
    [Show full text]
  • On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko
    On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko Martin Rubin, Cécile Engrand, Colin Snodgrass, Paul Weissman, Kathrin Altwegg, Henner Busemann, Alessandro Morbidelli, Michael Mumma To cite this version: Martin Rubin, Cécile Engrand, Colin Snodgrass, Paul Weissman, Kathrin Altwegg, et al.. On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko. Space Sci.Rev., 2020, 216 (5), pp.102. 10.1007/s11214-020-00718-2. hal-02911974 HAL Id: hal-02911974 https://hal.archives-ouvertes.fr/hal-02911974 Submitted on 9 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Space Sci Rev (2020) 216:102 https://doi.org/10.1007/s11214-020-00718-2 On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko Martin Rubin1 · Cécile Engrand2 · Colin Snodgrass3 · Paul Weissman4 · Kathrin Altwegg1 · Henner Busemann5 · Alessandro Morbidelli6 · Michael Mumma7 Received: 9 September 2019 / Accepted: 3 July 2020 / Published online: 30 July 2020 © The Author(s) 2020 Abstract Primitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes.
    [Show full text]
  • New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period
    Hayabusa2 Extended Mission: New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period M. Hirabayashi1, Y. Mimasu2, N. Sakatani3, S. Watanabe4, Y. Tsuda2, T. Saiki2, S. Kikuchi2, T. Kouyama5, M. Yoshikawa2, S. Tanaka2, S. Nakazawa2, Y. Takei2, F. Terui2, H. Takeuchi2, A. Fujii2, T. Iwata2, K. Tsumura6, S. Matsuura7, Y. Shimaki2, S. Urakawa8, Y. Ishibashi9, S. Hasegawa2, M. Ishiguro10, D. Kuroda11, S. Okumura8, S. Sugita12, T. Okada2, S. Kameda3, S. Kamata13, A. Higuchi14, H. Senshu15, H. Noda16, K. Matsumoto16, R. Suetsugu17, T. Hirai15, K. Kitazato18, D. Farnocchia19, S.P. Naidu19, D.J. Tholen20, C.W. Hergenrother21, R.J. Whiteley22, N. A. Moskovitz23, P.A. Abell24, and the Hayabusa2 extended mission study group. 1Auburn University, Auburn, AL, USA ([email protected]) 2Japan Aerospace Exploration Agency, Kanagawa, Japan 3Rikkyo University, Tokyo, Japan 4Nagoya University, Aichi, Japan 5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan 6Tokyo City University, Tokyo, Japan 7Kwansei Gakuin University, Hyogo, Japan 8Japan Spaceguard Association, Okayama, Japan 9Hosei University, Tokyo, Japan 10Seoul National University, Seoul, South Korea 11Kyoto University, Kyoto, Japan 12University of Tokyo, Tokyo, Japan 13Hokkaido University, Hokkaido, Japan 14University of Occupational and Environmental Health, Fukuoka, Japan 15Chiba Institute of Technology, Chiba, Japan 16National Astronomical Observatory of Japan, Iwate, Japan 17National Institute of Technology, Oshima College, Yamaguchi, Japan 18University of Aizu, Fukushima, Japan 19Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 20University of Hawai’i, Manoa, HI, USA 21University of Arizona, Tucson, AZ, USA 22Asgard Research, Denver, CO, USA 23Lowell Observatory, Flagstaff, AZ, USA 24NASA Johnson Space Center, Houston, TX, USA 1 Highlights 1.
    [Show full text]
  • Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur
    Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur To cite this version: Alex Soumbatov-Gur. Phobos, Deimos: Formation and Evolution. [Research Report] Karpov institute of physical chemistry. 2019. hal-02147461 HAL Id: hal-02147461 https://hal.archives-ouvertes.fr/hal-02147461 Submitted on 4 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur The moons are confirmed to be ejected parts of Mars’ crust. After explosive throwing out as cone-like rocks they plastically evolved with density decays and materials transformations. Their expansion evolutions were accompanied by global ruptures and small scale rock ejections with concurrent crater formations. The scenario reconciles orbital and physical parameters of the moons. It coherently explains dozens of their properties including spectra, appearances, size differences, crater locations, fracture symmetries, orbits, evolution trends, geologic activity, Phobos’ grooves, mechanism of their origin, etc. The ejective approach is also discussed in the context of observational data on near-Earth asteroids, main belt asteroids Steins, Vesta, and Mars. The approach incorporates known fission mechanism of formation of miniature asteroids, logically accounts for its outliers, and naturally explains formations of small celestial bodies of various sizes.
    [Show full text]
  • Observation of Near-Earth Object (1566) Icarus and the Split Candidate 2007 MK6
    PPS07-P07 JpGU-AGU Joint Meeting 2017 Observation of near-earth object (1566) Icarus and the split candidate 2007 MK6 *Seitaro Urakawa1, Katsutoshi Ohtsuka2, Shinsuke Abe3, Daisuke Kinoshita4, Hidekazu Hanayama 5, Takeshi Miyaji5, Shin-ichiro Okumura1, Kazuya Ayani6, Syouta Maeno6, Daisuke Kuroda5, Akihiko Fukui5, Norio Narita5,7,8, George HASHIMOTO9, Yuri SAKURAI9, Sayuri Nakamura9, Jun Takahashi10, Tomoyasu Tanigawa11, Otabek Burhonov12, Kamoliddin Ergashev12, Takashi Ito5, Fumi Yoshida5, Makoto Watanabe13, Masataka Imai14, Kiyoshi Kuramoto14, Tomohiko Sekiguchi15 , MASATERU ISHIGURO16 1. Japan Spaceguard Association, 2. Tokyo Meteor Network, 3. Nihon University, 4. National Central University, 5. National Astronomical Observatory of Japan, 6. Bisei Observatory, 7. Astrobiology Center, 8. University of Tokyo, 9. Okayama University, 10. University of Hyogo, 11. Sanda Shounkan Highschool, 12. Ulugh Beg Astronomical Institute Uzbekistan Academy of Science , 13. Okayama University of Science, 14. Hokkaido University, 15. Hokkaido University of Education, 16. Seoul National University Background & Aim: A numerical simulation proposes that the origin of near-Earth object 2007 MK6 (hereafter, MK6) is a near-Earth object (1566) Icarus (hereafter, Icarus) [1]. In addition to it, the orbital parameters of the daytime Taurid-Perseid meteor swarm are in good agreement with those of Icarus. Thus, it is considered that MK6 is split from the parent object Icarus by a rotational fission and/or an impact event, and the produced dust became to the daytime Taurid-Perseid meteor swarm. To confirm such a hypothesis, we need to obtain the observational evidence that the color indices of Icarus and MK6 are same. Moreover, if MK6 split by the rotational fission due to the YORP effect, the rotation period of Icarus would be shorten compared with the past rotation period.
    [Show full text]
  • Bennu: Implications for Aqueous Alteration History
    RESEARCH ARTICLES Cite as: H. H. Kaplan et al., Science 10.1126/science.abc3557 (2020). Bright carbonate veins on asteroid (101955) Bennu: Implications for aqueous alteration history H. H. Kaplan1,2*, D. S. Lauretta3, A. A. Simon1, V. E. Hamilton2, D. N. DellaGiustina3, D. R. Golish3, D. C. Reuter1, C. A. Bennett3, K. N. Burke3, H. Campins4, H. C. Connolly Jr. 5,3, J. P. Dworkin1, J. P. Emery6, D. P. Glavin1, T. D. Glotch7, R. Hanna8, K. Ishimaru3, E. R. Jawin9, T. J. McCoy9, N. Porter3, S. A. Sandford10, S. Ferrone11, B. E. Clark11, J.-Y. Li12, X.-D. Zou12, M. G. Daly13, O. S. Barnouin14, J. A. Seabrook13, H. L. Enos3 1NASA Goddard Space Flight Center, Greenbelt, MD, USA. 2Southwest Research Institute, Boulder, CO, USA. 3Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA. 4Department of Physics, University of Central Florida, Orlando, FL, USA. 5Department of Geology, School of Earth and Environment, Rowan University, Glassboro, NJ, USA. 6Department of Astronomy and Planetary Sciences, Northern Arizona University, Flagstaff, AZ, USA. 7Department of Geosciences, Stony Brook University, Stony Brook, NY, USA. 8Jackson School of Geosciences, University of Texas, Austin, TX, USA. 9Smithsonian Institution National Museum of Natural History, Washington, DC, USA. 10NASA Ames Research Center, Mountain View, CA, USA. 11Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA. 12Planetary Science Institute, Tucson, AZ, Downloaded from USA. 13Centre for Research in Earth and Space Science, York University, Toronto, Ontario, Canada. 14John Hopkins University Applied Physics Laboratory, Laurel, MD, USA. *Corresponding author. E-mail: Email: [email protected] The composition of asteroids and their connection to meteorites provide insight into geologic processes that occurred in the early Solar System.
    [Show full text]
  • (101955) Bennu from OSIRIS-Rex Imaging and Thermal Analysis
    ARTICLES https://doi.org/10.1038/s41550-019-0731-1 Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis D. N. DellaGiustina 1,26*, J. P. Emery 2,26*, D. R. Golish1, B. Rozitis3, C. A. Bennett1, K. N. Burke 1, R.-L. Ballouz 1, K. J. Becker 1, P. R. Christensen4, C. Y. Drouet d’Aubigny1, V. E. Hamilton 5, D. C. Reuter6, B. Rizk 1, A. A. Simon6, E. Asphaug1, J. L. Bandfield 7, O. S. Barnouin 8, M. A. Barucci 9, E. B. Bierhaus10, R. P. Binzel11, W. F. Bottke5, N. E. Bowles12, H. Campins13, B. C. Clark7, B. E. Clark14, H. C. Connolly Jr. 15, M. G. Daly 16, J. de Leon 17, M. Delbo’18, J. D. P. Deshapriya9, C. M. Elder19, S. Fornasier9, C. W. Hergenrother1, E. S. Howell1, E. R. Jawin20, H. H. Kaplan5, T. R. Kareta 1, L. Le Corre 21, J.-Y. Li21, J. Licandro17, L. F. Lim6, P. Michel 18, J. Molaro21, M. C. Nolan 1, M. Pajola 22, M. Popescu 17, J. L. Rizos Garcia 17, A. Ryan18, S. R. Schwartz 1, N. Shultz1, M. A. Siegler21, P. H. Smith1, E. Tatsumi23, C. A. Thomas24, K. J. Walsh 5, C. W. V. Wolner1, X.-D. Zou21, D. S. Lauretta 1 and The OSIRIS-REx Team25 Establishing the abundance and physical properties of regolith and boulders on asteroids is crucial for understanding the for- mation and degradation mechanisms at work on their surfaces. Using images and thermal data from NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft, we show that asteroid (101955) Bennu’s surface is globally rough, dense with boulders, and low in albedo.
    [Show full text]
  • Polarimetric and Photometric Observations of Neas with the 1.6M Pirka Telescope
    PPS03-P17 Japan Geoscience Union Meeting 2018 Polarimetric and Photometric observations of NEAs with the 1.6m Pirka Telescope *Ryo Okazaki1, Tomohiko Sekiguchi1, Akari Kamada1, Masateru Ishiguro2, Hiroyuki Naito3, Masataka Imai4, Tatsuharu Ono4 1. Hokkaido University of Education, 2. Seoul National University, 3. Nayoro Observatory, 4. Hokkaido University Polarimetric observations of 3 near-Earth asteroids, 2000 PD3, 2012 TC4 and (3200) Phaethon, were carried out in 2017 using the 1.6m Pirka telescope at the Nayoro Observatory, Hokkaido, as well as BVRIphotometric color observations were conducted for 2000 PD3. Polarimetry is a useful method for investigating asteroids’ physical properties such as the albedo, regolith particle size and taxonomy of asteroids. In general, Pr (the linear polarization degree) exhibits a strong dependence on the phase angle (Sun-Target-Observer’s angle, α). 2000 PD3 In order to understand Pmax (maximum Polarization degree) , we attempted to obtain polarimetric data at different phase angles (α=22°-120°). A geometric albedo of pv=0.26±0.06% were derived from a limited αrange ( 25°-84°) which is in good agreement with that of S-type asteroids. BVRI photometric data (B-V=0.132±0.002mag,V-R=0.114±0.002mag,V-I=0.180±0.002mag) supports S-type classification. 2012 TC4 In October 2017, 2012 TC4 approached to the Earth at about 50,000 km of the closest distance. A fast rotation period about 0.2 hours (Ryan and Ryan, 2017) indicates a monolithic suraface layer which is not covered with a rubble pile. The liner polarization Pr=5.62±5.26% (α=34°) in the R-band is in close accord with that of C-type asteroids, although October run was performed under bad weather.
    [Show full text]
  • Arxiv:2001.00125V1 [Astro-Ph.EP] 1 Jan 2020
    Draft version January 3, 2020 Typeset using LATEX default style in AASTeX61 SIZE AND SHAPE CONSTRAINTS OF (486958) ARROKOTH FROM STELLAR OCCULTATIONS Marc W. Buie,1 Simon B. Porter,1 et al. 1Southwest Research Institute 1050 Walnut St., Suite 300, Boulder, CO 80302 USA To be submitted to Astronomical Journal, Version 1.1, 2019/12/30 ABSTRACT We present the results from four stellar occultations by (486958) Arrokoth, the flyby target of the New Horizons extended mission. Three of the four efforts led to positive detections of the body, and all constrained the presence of rings and other debris, finding none. Twenty-five mobile stations were deployed for 2017 June 3 and augmented by fixed telescopes. There were no positive detections from this effort. The event on 2017 July 10 was observed by SOFIA with one very short chord. Twenty-four deployed stations on 2017 July 17 resulted in five chords that clearly showed a complicated shape consistent with a contact binary with rough dimensions of 20 by 30 km for the overall outline. A visible albedo of 10% was derived from these data. Twenty-two systems were deployed for the fourth event on 2018 Aug 4 and resulted in two chords. The combination of the occultation data and the flyby results provides a significant refinement of the rotation period, now estimated to be 15.9380 ± 0.0005 hours. The occultation data also provided high-precision astrometric constraints on the position of the object that were crucial for supporting the navigation for the New Horizons flyby. This work demonstrates an effective method for obtaining detailed size and shape information and probing for rings and dust on distant Kuiper Belt objects as well as being an important source of positional data that can aid in spacecraft navigation that is particularly useful for small and distant bodies.
    [Show full text]
  • Twenty Years of Toutatis
    EPSC Abstracts Vol. 6, EPSC-DPS2011-297, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 Twenty Years of Toutatis M.W. Busch (1), L.A.M. Benner (2), D.J. Scheeres (3), J.-L. Margot (1), C. Magri (4), M.C. Nolan (5), and J.D. Giorgini (2) (1) Department of Earth and Space Sciences, UCLA, Los Angeles, California, USA (2) Jet Propulsion Laboratory, Pasadena, California, USA (3) Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, USA (4) University of Maine at Farmington, Farmington, Maine, USA (5) Arecibo Observatory, Arecibo, Puerto Rico, USA Abstract Near-Earth asteroid 4179 Toutatis is near a particularly if the moments of inertia are 4:1 orbital resonance with the Earth. consistent with a uniform internal density. Following its discovery in 1989, Toutatis Toutatis’ last close-Earth-approach for was observed extensively with the Arecibo several decades will be in December 2012, and Goldstone radars during flybys in 1992, when it will be 0.046 AU away. We will 1996, 2000, 2004, and 2008. The 1992 and make predictions for what radar 1996 data show that Toutatis is a bifurcated observations at that time should see. object with overall dimensions of 4.6 x 2.3 x 1.9 km and a surface marked with prominent impact craters. Most significantly, Toutatis References is in a non-principal-axis tumbling rotation [1] Hudson, R.S. and Ostro, S.J.: Shape and non-principal state, spinning about its long axis with a axis spin state of asteroid 4179 Toutatis, Science 270 84-86, period of 5.41 days while that axis precesses 1995.
    [Show full text]
  • Near-Infrared Observations of Active Asteroid (3200) Phaethon Reveal No Evidence for Hydration ✉ Driss Takir 1,7 , Theodore Kareta 2, Joshua P
    ARTICLE https://doi.org/10.1038/s41467-020-15637-7 OPEN Near-infrared observations of active asteroid (3200) Phaethon reveal no evidence for hydration ✉ Driss Takir 1,7 , Theodore Kareta 2, Joshua P. Emery3, Josef Hanuš 4, Vishnu Reddy2, Ellen S. Howell2, Andrew S. Rivkin5 & Tomoko Arai6 Asteroid (3200) Phaethon is an active near-Earth asteroid and the parent body of the Geminid Meteor Shower. Because of its small perihelion distance, Phaethon’s surface reaches 1234567890():,; temperatures sufficient to destabilize hydrated materials. We conducted rotationally resolved spectroscopic observations of this asteroid, mostly covering the northern hemisphere and the equatorial region, beyond 2.5-µm to search for evidence of hydration on its surface. Here we show that the observed part of Phaethon does not exhibit the 3-µm hydrated mineral absorption (within 2σ). These observations suggest that Phaethon’s modern activity is not due to volatile sublimation or devolatilization of phyllosilicates on its surface. It is possible that the observed part of Phaethon was originally hydrated and has since lost volatiles from its surface via dehydration, supporting its connection to the Pallas family, or it was formed from anhydrous material. 1 JETS/ARES, NASA Johnson Space Center, Houston, TX 77058-3696, USA. 2 Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721- 0092, USA. 3 Department of Astronomy and Planetary Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA. 4 Institute of Astronomy, Charles University, CZ-18000 Prague 8, Czech Republic. 5 Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20273, USA. 6 Planetary Exploration Research Center, Chiba Institute of Technology, Narashino, Japan.
    [Show full text]