Swine Flu :An Endemic and Pandemic Disease

Total Page:16

File Type:pdf, Size:1020Kb

Swine Flu :An Endemic and Pandemic Disease Review Article Kalavapudi.Vyshnavi et al. / Journal of Pharmacy Research 2010, 3(1),93-99 ISSN: 0974-6943 Available online through http://jprsolutions.info Swine Flu :an endemic and pandemic disease Kalavapudi.Vyshnavi*,Dr.I.Sudheer babu, Sriman.Tirumala.Gudimella.Raviteja*, palaniyappan.Venkatesh, Kothandam.Hariprasath. *Sir.C.R.Reddy College of Pharmaceutical Sciences, Eluru-534007, Andhra Pradesh, India. Received on: 20-09-2009; Revised on: 16-10-2009; Accepted on:15-12-2009 ABSTRACT Swine flu is a highly contagious disease of pigs and infection by any one of several types of swine influenza virus. Swine influenza virus is any strain of influenza family of viruses that is endemic in pigs. It is estimated that 50 to 100 million people were killed worldwide. The direct transfer of the virus probably occurs either by pigs (touching noses, or through dried mucus) and close contact with infected people. People who work with poultry and swine, especially people with intense exposures, are at increased risk of zoonotic infection with influenza virus endemic in these animals, and constitute a population of human hosts in which zoonosis and reassortment can co-occur. Symptoms of swine flu are similar to most influenza infections: running nose, body aches, chills, fever (100°F or greater), cough, fatigue, and headache, myalgia, dyspnea with fatigue being reported in most infected individuals. The two major tests that are being used are the nasopharyngeal (or back of the throat) swab for viral culture, the gold standard, and the indirect evidence test by detection of antibodies to novel H1N1 with polymerase chain reaction(PCR) studies. Antiviral treatment with either zanamivir alone or with a combination of oseltamivir and either amantadine or rimantadine should be initiated as soon as possible after the onset of symptoms. There are two kinds of 2009 H1N1 vaccines being produced:- A 2009 H1N1 “flu shot”, The 2009 H1N1 nasal spray flu vaccine. In our review paper, we have detailed the transmission, classification of influenza virus, replication, symptoms, treatment and its preventive measures. Keywords: Swine influenza virus, oseltamivir, amantadine. INTRODUCTION The Pandemic H1N1/09 virus is a swine-origin influenza A (H1N1) virus strain responsible for the 2009 flu pandemic. The ini- The word Influenza comes from the Italian language and re- tial outbreak was called the “H1N1 influenza.” In July 2009 WHO fers to the cause of the disease; initially, this ascribed illness to experts changed the name to “pandemic H1N1/09 virus” to distin- unfavorable astrological influences. Changes in medical thought led guish it from the current “seasonal H1N1 virus”. In the Netherlands it to its modification to influenza del freddo, meaning “influence of the was originally called “pig flu” but is now called “Mexican flu” by cold”. The word influenza was first used in English in 1743 when it the national health institute and in the media. Southwas adopted, with an anglicized pronunciation, during an outbreak of Korea and Israel briefly considered calling it the “Mexican virus”. the disease in Europe. The first convincing record of an influenza Later the South Korean press used “SI”, short for “swine pandemic was of an outbreak in 1580, which began in Russia and influenza”. Taiwan suggested the names “H1N1 flu” or “new flu”, spread to Europe via Africa. In Rome, over 8,000 people were killed, which most local media adopted. The World Organization for Animal and several Spanish cities were almost wiped out. Pandemics contin- Health proposed the name “North American influenza”. The European ued sporadically throughout the 17th and 18th centuries, with the Commission adopted the term “novel flu virus”. Swine flu is a highly pandemic of 1830–1833 being particularly widespread; it infected ap- contagious disease of pigs and infection by any one of several types proximately a quarter of the people exposed (Potter et al.,2001). The of swine influenza virus. Swine influenza virus is any strain of influ- most famous and lethal outbreak was the 1918 flu pandemic (Spanish enza family of viruses that is endemic in pigs flu pandemic) (type A influenza, H1N1 subtype), which lasted from 1918 to 1919. It is not known exactly how many it killed, but estimates HISTORY: range from 20 to 100 million people (Patterson et al., 1991). This pan- demic has been described as “the greatest medical holocaust in his- tory” and may have killed as many people as the Black Death. After *Corresponding author. 1930, for the following 60 years of swine influenza strains were Dr. Kalavapudi.Vyshnavi almost exclusively H1N1. Later flu pandemics were not so devastat- Sir.C.R.Reddy College of Pharmaceutical Sciences, Eluru-534007, Andhra ing. They included the 1957 Asian flu (type A, H2N2 strain) and the Pradesh, India. 1968 Hong Kong Flu (type A, H3N2 strain), but even these smaller Tel.: + 91-9441102235 outbreaks killed millions of people. In 1976, there was an outbreak of Telefax: +91- swine flu at Fort Dix. This virus is not the same as the 2009 outbreak, E-mail: [email protected];[email protected] but it was similar insofar as it was an influenza A virus that had simi- larities to the swine flu virus. There was one death at Fort Dix. The Journal of Pharmacy Research Vol.3.Issue 1.January 2010 93-99 Kalavapudi.Vyshnavi et al. / Journal of Pharmacy Research 2010, 3(1),93-99 government decided to produce a vaccine against this virus, but the virus can infect a pig respiratory cell at the same time as a swine vaccine was associated with neurological complications (Guillain-Barré influenza virus; some of the replicating RNA strands from the human syndrome) and was discontinued. Then between 1997 and 2002 new virus can get mistakenly enclosed inside the enveloped swine influ- strains of three different subtypes and five different enza virus. For example, one cell could contain eight swine flu and genotypes emerged as causes of influenza. During the mid-20th century, eight human flu RNA segments. The total number of RNA types in identification of influenza sub types became possible allowing accu- one cell would be 16; four swine and four human flu RNA segments rate diagnosis of transmission to humans. It is estimated could be incorporated into one particle, making a viable eight RNA that 500,000 people were killed worldwide. The etiological cause of segmented flu virus from the 16 available segment types. Various influenza, the Orthomyxoviridae family of viruses, was first discov- combinations of RNA segments can result in a new subtype of virus ered in pigs by Richard Shope in 1931. This discovery was shortly (known as antigenic shift) that may have the ability to preferentially followed by the isolation of the virus from humans by a group headed infect humans but still show characteristics unique to the swine influ- by Patrick Laidlaw at the Medical Research Council of the Unitedenza virus (Recker et al.,2007). It is even possible to include RNA Kingdom in 1933. strands from birds, swine, and human influenza viruses into one virus if a cell becomes infected with all three types of influenza (for example, TRANSMISSION: two bird flu, three swine flu, and three human flu RNA segments to produce a viable eight-segment new type of flu viral genome). Forma- Transmission between pigs tion of a new viral type is considered to be antigenic shift; small changes in an individual RNA segment in flu viruses are Influenza is quite common in pigs, with about half of breed- termed antigenic drift and result in minor changes in the virus. How- ing pigs having been exposed to the virus in the US. Antibodies to ever, these can accumulate over time to produce enough minor the virus are also common in pigs in other countries. The main route changes that cumulatively change the virus’ antigenic makeup over of transmission is through direct contact between infected and time (usually years). uninfected animals. These close contacts are particularly common during animal transport. Intensive farming may also increase the risk Second, pigs can play a unique role as an intermediary host of transmission, as the pigs are raised in very close proximity to each to new flu types because pig respiratory cells can be infected directly other. The direct transfer of the virus probably occurs either by pigs with bird, human, and other mammalian flu viruses. Consequently, pig touching noses, or through dried mucus. Airborne transmissions respiratory cells are able to be infected with many types of flu and can through the aerosols produced by pigs coughing or sneezing are also function as a “mixing pot” for flu RNA segments. Bird flu viruses, an important means of infection. The virus usually spreads quickly which usually infect the gastrointestinal cells of many bird species, through a herd, infecting all the pigs within just a few days. Transmis- are shed in bird feces. Pigs can pick these viruses up from the envi- sion may also occur through wild animals, such as wild boar, which ronment and seem to be the major way that bird flu virus RNA seg- can spread the disease between farms (Vicente et al., 2002). ments enter the mammalian flu virus population. Transmission to humans People who work with poultry and swine, especially people with intense exposures, are at increased risk of zoonotic infection with influenza virus endemic in these animals, and constitute a population of human hosts in which zoonosis and reassortment can co- occur (Gray et al., 2009). Vaccination of these workers against influ- enza and surveillance for new influenza strains among this popula- tion may therefore be an important public health measure. Transmis- sion of influenza from swine to humans who work with swine was documented in a small surveillance study performed in 2004 at the University of Iowa.
Recommended publications
  • A Planet of Viruses
    Book review A planet of viruses Carl Zimmer University of Chicago Press. Chicago, Illinois, USA. 2011. 128 pp. $20.00. ISBN: 978-0-226-98335-6 (hardcover). Reviewed by Lawrence T. Feldman Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California, USA. E-mail: [email protected] Viruses are all around us, in the water somewhat unique to influenza, which viruses, and we learn about all the viral we drink, in the oceans we swim in, and in contributes to the great genetic diver- junk DNA within our genome. many unlikely places. Carl Zimmer starts sity of flu strains. Zimmer describes reas- The final section is called The Viral Future his book of essays, A Planet of Viruses, by sortment as a viral version of sex. In this and contains the discovery of HIV in Los taking us deep into the Cave of Crystals theme, the third description is of human Angeles in 1983 and the finding of West in a remote province of Mexico. In a place papillomavirus. Again we are treated to a Nile virus in dead animals in the Bronx in which there are enormous crystals but story, this one about horns on rabbits, as Zoo. Zimmer’s writing is again instructive, little apparent life, he shows that samples Zimmer unwinds the story of Shope papil- as West Nile Virus is a classic example of a of the water taken in 2009 revealed the loma virus, discovered by Richard Shope of virus transmitted by insects (mosquitoes). presence of millions of viruses.
    [Show full text]
  • The Great Influenza Also by John M
    THE GREAT INFLUENZA ALSO BY JOHN M. BARRY Rising Tide: The Great Mississippi Flood of 1927 and How It Changed America Power Plays: Politics, Football, and Other Blood Sports The Transformed Cell: Unlocking the Mysteries of Cancer (with Steven Rosenberg) The Ambition and the Power: A True Story of Washington THE GREAT INFLUENZA The Epic Story of the Deadliest Plague in History JOHN M. BARRY VIKING VIKING Published by the Penguin Group Penguin Group (USA) Inc., 375 Hudson Street, New York, New York 10014, U.S.A. Penguin Books Ltd, 80 Strand, London WC2R 0RL, England Penguin Books Australia Ltd, 250 Camberwell Road, Camberwell, Victoria 3124, Australia Penguin Books Canada Ltd, 10 Alcorn Avenue, Toronto, Ontario, Canada M4V 3B2 Penguin Books India (P) Ltd, 11 Community Centre, Panchsheel Park, New Delhi – 110 017, India Penguin Books (N.Z.) Ltd, Cnr Rosedale and Airborne Roads, Albany, Auckland, New Zealand Penguin Books (South Africa) (Pty) Ltd, 24 Sturdee Avenue, Rosebank, Johannesburg 2196, South Africa Penguin Books Ltd, Registered Offices: 80 Strand, London WC2R 0RL, England Copyright © John M. Barry, 2004 All rights reserved Photograph credits appear on Back Matter. LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA Barry, John M. The great influenza: the epic story of the deadliest plague in history / John M. Barry. p. cm. Includes bibliographical references. ISBN: 1-101-20097-9 1. Influenza—History—20th century. I. Title. RC150.4.B37 2004 614.5'18'09041—dc22 2003057646 Without limiting the rights under copyright reserved above, no part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior written permission of both the copyright owner and the above publisher of this book.
    [Show full text]
  • Les Virus Oncogènes Chez Les Principales Espèces Domestiques : Étude Bibliographique
    Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 17464 To cite this version : Mugnier, Amélie. Les virus oncogènes chez les principales espèces domestiques : étude bibliographique. Thèse d'exercice, Médecine vétérinaire, Ecole Nationale Vétérinaire de Toulouse - ENVT, 2017, 146 p. Any correspondence concerning this service should be sent to the repository administrator: [email protected]. ANNEE 2017 THESE : 2017 – TOU 3 – 4001 LES VIRUS ONCOGÈNES CHEZ LES PRINCIPALES ESPÈCES DOMESTIQUES : ETUDE BIBLIOGRAPHIQUE _________________ THESE pour obtenir le grade de DOCTEUR VETERINAIRE DIPLOME D’ETAT présentée et soutenue publiquement devant l’Université Paul-Sabatier de Toulouse par MUGNIER Amélie Née, le 26 juillet 1989 à Neuilly sur Marne (93) ___________ Directeur de thèse : M. Stéphane BERTAGNOLI ___________ JURY PRESIDENT : M. Christophe PASQUIER Professeur à l’Université Paul-Sabatier de TOULOUSE ASSESSEURS : M. Stéphane BERTAGNOLI Professeur à l’Ecole Nationale Vétérinaire de TOULOUSE M. Christelle CAMUS Maître de Conférences à l’Ecole Nationale Vétérinaire de TOULOUSE Ministère de l'Agriculture de l’Agroalimentaire et de la Forêt ECOLE NATIONALE VETERINAIRE DE TOULOUSE Directrice : Madame Isabelle CHMITELIN PROFESSEURS CLASSE EXCEPTIONNELLE M. AUTEFAGE André , Pathologie chirurgicale Mme CLAUW Martine , Pharmacie-Toxicologie M. CONCORDET Didier , Mathématiques, Statistiques, Modélisation M DELVERDIER Maxence, Anatomie Pathologique M. ENJALBERT Francis , Alimentation M. FRANC Michel , Parasitologie et Maladies parasitaires M. MILON Alain , Microbiologie moléculaire M. PETIT Claude , Pharmacie et Toxicologie M. SCHELCHER François, Pathologie médicale du Bétail et des Animaux de Basse-cour PROFESSEURS 1° CLASSE M.
    [Show full text]
  • (SIV) Vaccination Pravina Kitikoon Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 Strategy to improve swine influenza virus (SIV) vaccination Pravina Kitikoon Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Allergy and Immunology Commons, Medical Immunology Commons, and the Virology Commons Recommended Citation Kitikoon, Pravina, "Strategy to improve swine influenza virus (SIV) vaccination" (2007). Retrospective Theses and Dissertations. 15978. https://lib.dr.iastate.edu/rtd/15978 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. i Strategy to improve swine influenza virus (SIV) vaccination by Pravina Kitikoon A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Veterinary Microbiology Program of Study Committee: Eileen L. Thacker, Major Professor Bruce H. Janke Brad J. Thacker James A. Roth Patrick G. Halbur Iowa State University Ames, Iowa 2007 Copyright © Pravina Kitikoon, 2007. All rights reserved. UMI Number: 3259502 UMI Microform 3259502 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 ii DEDICATION I would like to dedicate my dissertation to my father and mother, Viroj and Prapai Kitikoon the two persons I dearly love and will always keep close to heart.
    [Show full text]
  • Can a Virus Cause Cancer: a Look Into the History and Significance of Oncoviruses
    UC Berkeley Berkeley Scientific Journal Title Can A Virus Cause Cancer: A Look Into The History And Significance Of Oncoviruses Permalink https://escholarship.org/uc/item/6c57612p Journal Berkeley Scientific Journal, 14(1) ISSN 1097-0967 Author Rwazavian, Niema Publication Date 2011 DOI 10.5070/BS3141007638 Peer reviewed|Undergraduate eScholarship.org Powered by the California Digital Library University of California CA N A VIRU S CA U S E CA NCER ? A LOOK IN T O T HE HI st ORY A ND SIGNIFIC A NCE OF ONCO V IRU S E S Niema Rwazavian The IMPORTANC E OF ONCOVIRUS E S (van Epps 2005). Although many in the scientific Cancer, a disease caused by unregulated cell community were unconvinced of the role of viruses in growth, is often attributed to chemical carcinogens cancer, research on the subject nevertheless continued. (e.g. tobacco), hormonal imbalances (e.g. high levels of In 1933, Richard Shope discovered the first mammalian estrogen), or genetics (e.g. breast cancer susceptibility oncovirus, cottontail rabbit papillomavirus (CRPV), gene 1). While cancer can originate from any number which could infect cottontail rabbits, and in 1936, John of sources, many people fail to recognize another Bittner discovered the mouse mammary tumor virus important etiology: oncoviruses, or cancer-causing (MMTV), which could be transmitted from mothers to pups via breast milk (Javier and Butle 2008). By the 1960s, with the additional “…despite limited awareness, oncoviruses are discovery of the murine leukemia BSJ virus (MLV) in mice and the SV40 nevertheless important because they represent virus in rhesus monkeys, researchers over 17% of the global cancer burden.” began to acknowledge the possibility that viruses could be linked to human cancers as well.
    [Show full text]
  • The History of Tumor Virology Ronald T
    AACRCentennial Series The History of Tumor Virology Ronald T. Javier and Janet S. Butel Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas Abstract BCE), the Chinese Rites of the Zhou Dynasty (1100–400 BCE), and Ramayana In the century since its inception, the field of tumor virology the ancient Indian manuscript (500 BCE). In ancient has provided groundbreaking insights into the causes of Egypt, intellectual power was primarily restricted to priests who human cancer. Peyton Rous founded this scientific field in claimed to be direct recipients of divine knowledge, so it is not 1911 by discovering an avian virus that induced tumors in surprising that writings of the time attributed the etiology of chickens; however, it took 40years for the scientific diseases such as cancer to the ‘‘will of Gods’’ (1, 2). community to comprehend the effect of this seminal finding. The ancient Greek civilization, on the other hand, is credited Later identification of mammalian tumor viruses in the 1930s with freeing medicine from the bonds of religion (2–4). Rather than by Richard Shope and John Bittner, and in the 1950s by accepting religious dogma, Hippocrates (460–370 BCE) used Ludwik Gross, sparked the first intense interest in tumor systematic observation and logical thinking to propose the virology by suggesting the possibility of a similar causal role humoral theory of cancer. Based on teachings by the Greek for viruses in human cancers. This change in attitude opened philosopher Empedocles who believed that air, water, earth, and the door in the 1960s and 1970s for the discovery of the first fire were the four cardinal elements of the universe, Hippocrates human tumor viruses—EBV, hepatitis B virus, and the theorized that the human body contains a mixture of the four papillomaviruses.
    [Show full text]
  • Reviewing the History of Pandemic Influenza: Understanding Patterns
    pathogens Review Reviewing the History of Pandemic Influenza: Understanding Patterns of Emergence and Transmission Patrick R. Saunders-Hastings * and Daniel Krewski McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, 850 Peter Morand Crescent, Ottawa, ON K1G 5Z3, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-613-866-5801 Academic Editor: Lawrence S. Young Received: 8 August 2016; Accepted: 28 November 2016; Published: 6 December 2016 Abstract: For centuries, novel strains of influenza have emerged to produce human pandemics, causing widespread illness, death, and disruption. There have been four influenza pandemics in the past hundred years. During this time, globalization processes, alongside advances in medicine and epidemiology, have altered the way these pandemics are experienced. Drawing on international case studies, this paper provides a review of the impact of past influenza pandemics, while examining the evolution of our understanding of, and response to, these viruses. This review argues that pandemic influenza is in part a consequence of human development, and highlights the importance of considering outbreaks within the context of shifting global landscapes. While progress in infectious disease prevention, control, and treatment has improved our ability to respond to such outbreaks, globalization processes relating to human behaviour, demographics, and mobility have increased the threat of pandemic emergence and accelerated global disease transmission. Preparedness planning must continue to evolve to keep pace with this heightened risk. Herein, we look to the past for insights on the pandemic experience, underlining both progress and persisting challenges. However, given the uncertain timing and severity of future pandemics, we emphasize the need for flexible policies capable of responding to change as such emergencies develop.
    [Show full text]
  • Thomas Francis, Jr
    NATIONAL ACADEMY OF SCIENCES T H O M A S F R A N C I S , J R 1900—1969 A Biographical Memoir by J O H N R . P AUL Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1974 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. THOMAS FRANCIS, JR. July 15, 1900-October 1, 1969 BY JOHN R. PAUL * HOMAS FRANCIS, JR., was born in Gas City, Indiana, on July T15, 1900, the son of Thomas and Elizabeth Anne (Cadogan) Francis. His father had emigrated from Wales shortly before Thomas, Jr., came into the world. He was the third of four children, but the first to be born in this country. Thomas Francis, Sr., had studied for the ministry as a young man, but had decided later to join his father in the tin mills of South Wales. He had married Elizabeth Anne Cadogan, a grad- uate of a Salvation Army Training School in London. It is said that she kept "her Salvation Army ideals" throughout her entire life. At least she strove to do her part in supplying a firm religious background to her brood of four children. In 1897 the Francis family had been persuaded to visit Amer- ica. Their destination was a small colony of Welsh families which had settled in and about Gas City, Indiana. For a while this venture Avas considered to be temporary, but when the family moved to New Castle, Pennsylvania, and Mr.
    [Show full text]
  • Popular and Medical Attitudes Toward Cancer Virus Research and Cancer Vaccination, Drawn from the Collections of the Rockefeller Archive Center
    Popular and Medical Attitudes toward Cancer Virus Research and Cancer Vaccination, Drawn from the Collections of the Rockefeller Archive Center By Robin Wolfe Scheffler Ph.D. Candidate, Department of History of Science and Medicine Yale University New Haven, Connecticut [email protected] © 2013 by Robin Wolfe Scheffler In 1913 Richard Broadman, a lawyer from Jersey City, New Jersey, wrote to the Rockefeller Institute of Medical Research (RIMR) with an urgent inquiry. He and his wife had just come into possession of mattresses used during the care of his wife’s aunt, who had died after a long illness a decade earlier. Broadman feared that it might pass the illness to those who used the mattress in the future (although this had not prevented him from allowing the household maids to use it). Amidst widespread concern over germ theories of disease in the early twentieth century, this was perhaps not remarkable What was remarkable, was what disease Broadman wrote about to assuage his wife’s concerns, querying the staff of the Institute if there was a risk from “the danger of communication of the disease of cancer … whether there is any danger lurking in the use of these mattresses.” Broadman himself was skeptical, but only because he doubted cancer “germs” could have survived in the mattress, not because he doubted the existence of such germs themselves!1 Broadman might have credited this theory, and written to the RIMR for advice, since in 1911 RIMR researcher Peyton Rous famously observed the existence of “non-filterable” particles which appeared to be capable of transmitting tumors from one chicken to another.
    [Show full text]
  • Influenza Virus Research
    Collaboration Across the Pond: Influenza Virus Research Interwar United States and Britain December 31, 2014 Barbara C. Canavan PhD Candidate, Oregon State University [email protected] Collaboration Across the Pond 1 © 2014 by Barbara C. Canavan Note: This research report is presented here with the author’s permission, but should not be cited or quoted without the author’s consent. Rockefeller Archive Center Research Reports Online is an ongoing publication of the Rockefeller Archive Center (RAC) under the general direction of James Allen Smith, Vice President of the RAC and Director of Research and Education. Research Reports Online is intended to foster the network of scholarship in the history of philanthropy and to highlight the diverse range of materials and subjects covered in the collections at the RAC. These reports are drawn from essays submitted by researchers who have visited the Archive Center, most of whom have received grants-in-aid from the Archive Center to support their research. The ideas and opinions expressed in this report are those of the author and not of the Rockefeller Archive Center. Introduction The 1918-19 influenza pandemic was truly a nightmare disease, a great natural event in the early days of the twentieth century. Historians report that it was the most devastating infectious disease outbreak since the plague swept Europe and Asia in the fourteenth century.1 The official mortality estimates of the 1918 flu continue to rise as investigators find new data.2 Based on recent historical epidemiology, the global deaths from the pandemic were between 50 and 100 million.3 Following the pandemic, the United States, Britain, Australia, and Russia escalated their influenza research.
    [Show full text]
  • Robert Ellis Shope
    IN MEMORIAM Robert Ellis Shope his own laboratory productive—his national Virus Program in its laborato- research was funded continuously by ry in Belem, Brazil (now the Instituto the National Institutes of Health Evandro Chagas). There he remained (NIH) for 26 years. for 6 years, eventually serving as Arguably, Bob’s most important director of that institute. This was a contribution was his co-chairing, time of great excitement and discov- along with Joshua Lederberg and ery, as many new viruses were being Stanley Oaks, of the Institute of isolated and characterized. In 1965, Medicine Committee on Emerging Bob returned from Brazil to Yale, Microbial Threats to Health. The pro- where most of the senior staff of the ceedings of this committee led to the Rockefeller Foundation’s overseas publication in 1992 of Emerging virus program had relocated and were Infections: Microbial Threats to establishing the Yale Arbovirus Health in the United States (National Research Unit (YARU). Bob 1929–2004 Academy Press). This seminal publi- remained at Yale for 30 years, rising cation, which outlined factors impli- to the rank of professor and director of obert Ellis Shope, one of the cated in the emergence of infectious that research unit. Rworld’s most distinguished diseases and the programs and In 1995, Bob moved to the arbovirologists and a dear friend of resources needed to cope with them, University of Texas Medical Branch many colleagues around the world, initiated much of the current world- in Galveston, where he held several died of complications of idiopathic wide interest in infectious diseases. appointments: professor (Department pulmonary fibrosis in Galveston, He then spent endless days explaining of Pathology, Department of Texas, on January 19, 2004, at age 74.
    [Show full text]
  • Influenza: Past and Present Jack Frederic Bowers Yale University
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1959 Influenza: past and present Jack Frederic Bowers Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Bowers, Jack Frederic, "Influenza: past and present" (1959). Yale Medicine Thesis Digital Library. 2416. http://elischolar.library.yale.edu/ymtdl/2416 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. INFLUENZA: PAST AND PRESENT By JACK FREDERIC BOWERS Lafayette College, A.B. 1955 A thesis presented to the Faculty of the Yale University School of Medicine in candidacy for the degree of Doctor of Medicine Department of the History of Medicine T i \3 V \ 2~. TABLE OF CONTENTS Chapter I: Historical Page 2 Chapter II: The 1918 Epidemic Page 6 Chapter III: The 1918 Epidemic in Easton, Pennsylvania Page 9 Chapter IV: Influenza Investigation Pa ge 17 Chapter V: Influenza 1957 Page 21 Chapter VI: Conclusion Page 26 Bibliography Page 27 Digitized by the Internet Archive in 2017 with funding from The National Endowment for the Humanities and the Arcadia Fund https://archive.org/details/influenzapastpreOObowe 2. Chapter I Historical Mention has been made of what we now term influenza epidemics by- most every ancient writer sometime during the course of his literary career.
    [Show full text]