Cerebral Cortex Advance Access published December 4, 2014 Cerebral Cortex, 2014, 1–15 doi: 10.1093/cercor/bhu284 Original Article ORIGINAL ARTICLE Neural Differentiation Tracks Improved Recall of Competing Memories Following Interleaved Study Downloaded from and Retrieval Practice J. C. Hulbert1 and K. A. Norman1,2 1 2 Princeton Neuroscience Institute, and Department of Psychology, Princeton University, Princeton, http://cercor.oxfordjournals.org/ NJ 08544, USA Address correspondence to Kenneth A. Norman, Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08544, USA. Email:
[email protected] Abstract Selective retrieval of overlapping memories can generate competition. How does the brain adaptively resolve this competition? One possibility is that competing memories are inhibited; in support of this view, numerous studies have found that selective at Princeton University on September 14, 2015 retrieval leads to forgetting of memories that are related to the just-retrieved memory. However, this retrieval-induced forgetting (RIF) effect can be eliminated or even reversed if participants are given opportunities to restudy the materials between retrieval attempts. Here, we outline an explanation for such a reversal, rooted in a neural network model of RIF that predicts representational differentiation when restudy is interleaved with selective retrieval. To test this hypothesis, we measured changes in pattern similarity of the BOLD fMRI signal elicited by related memories after undergoing interleaved