Models for super-luminous supernovae

Jason Dexter (with Dan Kasen) UC Berkeley Opcal transients then

1045

) 44 -1 10

43 10 core collapse supernovae 1042 Peak Luminosity (ergs s

1041

after 10 100 M. Kasliwal, D. Kasen Light Curve Duration (days) GGI Neutron 2 Opcal transients now

1045 scp06f6 2005ap PS1-10jh

2008es

) 44 2006gy -1 10

PS1-11af 2007bi

1043 2002bj core collapse ptf10bhp supernovae 1042 Peak Luminosity (ergs s 2008ha 1041

after 10 100 M. Kasliwal, D. Kasen Light Curve Duration (days) GGI Neutron Stars 3 light curves

> 1044 ergs / s

Gal-Yam et al. GGI Neutron Stars 4 Powering supernova light curves

• Thermal Kasen & Woosley Efficiency (2009)

E0 R0 Lp = tp vtp

56 • Radioacve ( Ni) Branch & Tammann (1992)

(tp/tnuc) ✏nucMnuce Lp = tp

GGI Neutron Stars 5 Circumstellar Interacon

• Interacon of ejecta with material at large radius resets internal energy Efficiency

E0 Rsh Woosley+07 Lp = tp vtp

• Large if Rsh >> R0

GGI Neutron Stars 6

Magnetar Spindown Power

2 1 P E I ⌦2 1050 ergs rot ⌘ 2 ns ' 10ms ✓ ◆ 2 2 E B P t rot 1 yr m ⌘ L ' 1014G 10ms mag ✓ ◆ ✓ ◆

Erot tm Lp Kasen & ⇠ tp tp Bildsten (2010) 2 2 43 B tp 1 5 10 ergs s ' ⇥ 1014G 100d ✓ ◆ ✓ ◆

GGI Neutron Stars 7 Accreon Energy

2 Lp = ✏M˙ (tp) c 2 ✏Mfbc ⇠ tp

• Need: disk, M, oulow Alexander Tchekhovskoy

GGI Neutron Stars 8 Fallback in a supernova explosion

GGI Neutron Stars 9 Fallback accreon rate

Wong+2013

GGI Neutron Stars 10 Accreon powered supernovae • Accreon disk wind collides with ejecta, deposits energy

Dexter & Kasen (2013) SN 2008es SN 1998bw 1045 SN 2008D 44 SN 2010X 10 ) -1 ) -1 1044

1043

1043

42

Luminosity (ergs s 10 42 10 R < 10 Rsun

Peak Luminosity (ergs s 10 Rsun < R < 30 Rsun

30 Rsun < R < 300 Rsun

R > 300 Rsun 51 E < 10 ergs 1041 1041 E > 1051 ergs

10 100 0 20 40 60 80 100 Time to Peak (days) Days since explosion

GGI Neutron Stars 11 Open Issues

• Fallback rate • As in magnetar model: Outflow trapped in fallback – Energy deposion in ejecta 10 Outflow unbinds fallback • As in collapsar GRBs: Outflow escapes ejecta – Disk formaon

– Oulow properes Outflow Opening Angle (degrees) 1 – Interacon of outgoing, 1 10 100 infalling material Time (days)

GGI Neutron Stars 12 Evidence of central engines?

• Magnetar model explains many Type I SL SN light curves, high velocies, but not unique

Inserra+2013 Chatzapoulos+2012

GGI Neutron Stars 13 Signatures of central engines • Central engine should “shine through” • Sources of thermalizaon: – Free-free (IR), lines (opcal), photoabsorpon (UV/so X-ray), Compton scaering (high energy)

Kotera+2013 GGI Neutron Stars 14 Hard X-rays, gamma rays

• For low field strengths, can be significant high energy emission at late mes

Kotera+2013

GGI Neutron Stars 15 So X-ray flash? • Pulsar could completely ionize ejecta near peak, allowing X-rays to escape

Metzger+2014 GGI Neutron Stars 16 Opcal/UV colors • Excess UV from early ionizaon of He, O • Sharp drops in opcal from loss of thermalizaon Dexter & Kasen, in prep. Inserra+2013 4

3 ergs / s) 44 2

1 luminosity (10 0 0 100 200 300 400 time (days) GGI Neutron Stars 17 Summary

• New classes of supernovae – (some) superluminous require new energy source • Models: circumstellar interacon, neutron or black hole central engines • Observaonal signatures of central engine (esp. magnetar) • Possible informaon about final stage of stellar evoluon and/or compact object birth GGI Neutron Stars 18