<<

Nanocellulose: A Case of Emerging Potential Environmental Contaminant

Super-material or Environmental and Health Hazard?

Gargi Singh, Paramjeet Pati, Qingqing Li, Amy Pruden, Scott Renneckar, Peter J. Vikesland Civil & Environmental Engineering Virginia Tech Nanocellulose Environment Engineered Nanocellulose New Super Material: Nanocellulose ● Diminishing resources ● Known toxicity

● High strength ● Low density ● Renewable and Abundant Nanocellulose Environment Biodegradation Engineered Nanocellulose New Super Material: Nanocellulose

Green!! Nanocellulose Environment Biodegradation vs. Engineered Nanocellulose Nanocellulose

Crystalline Amorphous

HCl, 105 C 3-7 h Nanocellulose Environment Biodegradation Biodegradation Nanocellulose

Cellulose

en.wikipedia.org Nanocellulose Environment Biodegradation Biodegradation Nanocellulose

Cellulose

Cellobiose

en.wikipedia.org Nanocellulose Environment Biodegradation Biodegradation Nanocellulose

Cellulose

Cellobiose

Glucose

en.wikipedia.org Nanocellulose Environment Biodegradation Biodegradation Nanocellulose

Cellulose

Cellobiose

Glucose

en.wikipedia.org Nanocellulose Environment Biodegradation Biodegradation Nanocellulose

Cellulose

Cellobiose

Rate Limiting

Glucose

en.wikipedia.org Nanocellulose Environment Biodegradation Biodegradation Nanocellulose

Cellulose

Cellobiose

Rate Limiting

Glucose

en.wikipedia.org Nanocellulose Environment Biodegradation Biodegradation Nanocellulose Carbohydrate Binding Modules Cellulos

Cellobiose ● Increased Crystallinity ● Modified Surface Chemistry

en.wikipedia.org Nanocellulose Environment Biodegradation Toxicity Environmental Impact

http://www.yourcoloradospringshouse.com/colorados-hazards-beware-homebuyers-and-homeowners/ Nanocellulose Environment Biodegradation Built Environment Important Environments Handling Emerging Contaminants

mda.state.mn.us http://humboldt.edu/ Nanocellulose Environment Biodegradation Toxicity Important Microbial Communities

http://farm9.staticflickr. http://images1.friendseat. com/8004/7444372968_9fd5d com/2011/11/Methicillin-resistant- d6719_z.jpg Staphylococcus-Aureus-MRSA-Bacteria.jpg

Nutrients

http://microbes.nres. mda.state.mn.us illinois.edu/ http://humboldt.edu/ Nanocellulose Environment Biodegradation Engineered Nanocellulose

en.wikipedia.org

en.wikipedia.org Nanocellulose Environment Biodegradation Engineered Nanocellulose

AFM image of HCl hydrolysed nanocellulose

en.wikipedia.org

Surface Functionality Projected Toxic Response Projected Stability HO None Minimal - SO3 Unknown Enhanced Cl- None Enhanced COONa- None Enhanced + (CH3)3N Yes Enhanced

CH3(CH2CH2O)- None, sterically Enhanced + (CH(CH3)CH2O)29-N hindered Nanocellulose Environment Biodegradation Enquiring Environmental Impacts

Enriched Cellulose degrading community

Anaerobic Digestor Pandapas Pond

Nano vs micro-crystalline cellulose Toxicity Biodegradation Characterization Short term Long term

RT-qPCR: 16S rRNA, Characterization cel48 qPCR: 16S rRNA, cel48 High throughput High throughput sequencing NREL/HPLC method sequencing SEM/TEM: spore SEM/TEM, Raman Lag times formation FTIR Rate Nanocellulose Environment Biodegradation Cellulose Degrading Environments

Set-up Nanocellulose Environment Biodegradation Cellulose Degrading Microbial Communities 37C Step feed reactor Nanocellulose Environment Biodegradation Cellulose Degrading Microbial Communities Enriching Microbial Communities Nanocellulose Environment Biodegradation Work in Progress Biodegradation Nanocellulose Nanocellulose Environment Biodegradation Work in Progress Biodegradation Nanocellulose Nanocellulose Environment Biodegradation Work in Progress Biodegradation Nanocellulose Nanocellulose Environment Biodegradation Work in Progress Biodegradation Nanocellulose IntroductionNanocellulose EnvironmentEnvironment BiodegradationSustainability Preliminary Results Take Home Message ● Microbial Communities originating from wetlands and anaerobic digester respond differently to exposure of same nanocellulose

● Various surface functionalizations on nanocellulose induce differential response from microbial communities IntroductionNanocellulose EnvironmentEnvironment BiodegradationSustainability On Going Work Biodegradation Assays ● On-going Biodegradation Assays ○ Monitoring cel48 and 16S rRNA ○ HPLC for tracking Cellulose Degradation ○ SEM, AFM and Raman microscopies to observe ■ microbe-nanocellulose interaction ■ Transformation of nanocellulose ○ High throughput sequencing for Microbial Community Shifts

Nanocellulose Environment Biodegradation Support

Thanks to Elizabeth Smiley, Julie Petruska, Meghan Laporta, Kathryn Hopkins, and Danny Yang for lab assistance IntroductionNanocellulose EnvironmentSustainability ToxicitySustainability & Biodeg Work in Progress Toxicity

Slide under Construction IntroductionNanocellulose EnvironmentSustainability ToxicitySustainability & Biodeg Work in Progress Toxicity

Slide under Construction IntroductionNanocellulose EnvironmentSustainability ToxicitySustainability & Biodeg Cellulose Degrading Microbial Communities Temperature Effect

cel48 Expression of enriched community from Anaerobic Digester

16S rRNA

22C vs. 37C IntroductionNanocellulose EnvironmentSustainability ToxicitySustainability & Biodeg Cellulose Degrading Microbial Communities Temperature Effect

cel48 Expression of enriched community from Anaerobic Digester

16S rRNA

22C vs. 37C IntroductionEnvironment EnvironmentSustainability ToxicitySustainability & Biodeg Work in Progress References

http://www.diva-portal.org/smash/get/diva2:506963/FULLTEXT02

Nanocelluloses: A New Family of Nature-Based Materials ● Prof. Dr. Dieter Klemm1,*,

● Dr. Friederike Kramer1,

● Sebastian Moritz1,

● Prof. Tom Lindström2,*,

● Mikael Ankerfors2,

● Prof. Derek Gray3,*,

● Dr. Annie Dorris3

Article first published online: 20 MAY 2011

DOI: 10.1002/anie.201001273