GNU/Hurd DDE Userland Device Drivers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO
Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO..........................................................................................................................................1 Martin Hinner < [email protected]>, http://martin.hinner.info............................................................1 1. Introduction..........................................................................................................................................1 2. Volumes...............................................................................................................................................1 3. DOS FAT 12/16/32, VFAT.................................................................................................................2 4. High Performance FileSystem (HPFS)................................................................................................2 5. New Technology FileSystem (NTFS).................................................................................................2 6. Extended filesystems (Ext, Ext2, Ext3)...............................................................................................2 7. Macintosh Hierarchical Filesystem − HFS..........................................................................................3 8. ISO 9660 − CD−ROM filesystem.......................................................................................................3 9. Other filesystems.................................................................................................................................3 -
Moving FLASK to BSD Systems
MovingMoving FLASKFLASK toto BSDBSD SSystemsystems SELinux Symposium 2006 Chris Vance Information Systems Security Operation, SPARTA, Inc. Vance_20060301_01 Overview • Security Frameworks • A Brief History • SELinux Inspired… – Security Enhanced BSD – Security Enhanced Darwin Vance_20060301_02 Security Frameworks • Traditional UNIX security isn’t enough – OS hardening – Mandatory protection – Flexible, manageable, scalable protection • Support required in the operating system for new security services – Costs of locally maintaining security extensions are high – Framework offers extensibility so that policies may be enhanced without changing the base operating system • There does not appear to be one perfect security model or policy – Sites may have different security/performance trade-offs – Sites may have special local requirements – Vendors unlikely to adopt a single policy • Bottom Line: Frameworks for Linux, FreeBSD, Darwin Vance_20060301_03 How We Got Here… Vance_20060301_04 Focus and Reuse • Don’t “reinvent” security – Learn from the past – The research is often decades old – A good design is durable, doesn’t require constant change – FLASK hasn’t changed much recently, what’s that mean? • Leverage existing technology, focus on “new” issues – Focus on improving operating system security – Spend the time to get Frameworks correct – Work with vendor for acceptance – Develop rule sets that work – Develop effective tools to manage policy • Do innovate – Don’t stop thinking! – Don’t squash new ideas – Re-factor old ideas Vance_20060301_05 -
Operating System Structure
Operating System Structure Joey Echeverria [email protected] modified by: Matthew Brewer [email protected] Nov 15, 2006 Carnegie Mellon University: 15-410 Fall 2006 Overview • Motivations • Kernel Structures – Monolithic Kernels ∗ Kernel Extensions – Open Systems – Microkernels – Exokernels – More Microkernels • Final Thoughts Carnegie Mellon University: 15-410 Fall 2006 1 Motivations • Operating systems have a hard job. • Operating systems are: – Hardware Multiplexers – Abstraction layers – Protection boundaries – Complicated Carnegie Mellon University: 15-410 Fall 2006 2 Motivations • Hardware Multiplexer – Each process sees a “computer” as if it were alone – Requires allocation and multiplexing of: ∗ Memory ∗ Disk ∗ CPU ∗ IO in general (network, graphics, keyboard etc.) • If OS is multiplexing it must also allocate – Priorities, Classes? - HARD problems!!! Carnegie Mellon University: 15-410 Fall 2006 3 Motivations • Abstraction Layer – Presents “simple”, “uniform” interface to hardware – Applications see a well defined interface (system calls) ∗ Block Device (hard drive, flash card, network mount, USB drive) ∗ CD drive (SCSI, IDE) ∗ tty (teletype, serial terminal, virtual terminal) ∗ filesystem (ext2-4, reiserfs, UFS, FFS, NFS, AFS, JFFS2, CRAMFS) ∗ network stack (TCP/IP abstraction) Carnegie Mellon University: 15-410 Fall 2006 4 Motivations • Protection Boundaries – Protect processes from each other – Protect crucial services (like the kernel) from process – Note: Everyone trusts the kernel • Complicated – See Project 3 :) – Full -
Chapter 2 Operating System Structures
Operating Systems Associate Prof. Yongkun Li 中科大-计算机学院 副教授 http://staff.ustc.edu.cn/~ykli Chapter 2 Operating System Structures 1 Objectives • Operating System Services – User Operating System Interface – System Calls • Operating System Structure • Operating System Design and Implementation • MISC: Debugging, Generation & System Boot 2 Operating System Services Services Overview, User Interface 3 Operating System Services • Operating systems provide – an environment for execution of programs and – services to programs and users • Services may differ from one OS to another • What are the common classes? – Convenience of the user – Efficiency of the system 4 Overview of Operating System Services 5 OS Services for Helping Users • User interface - Almost all operating systems have a user interface (UI). – Three forms • Command-Line (CLI) – Shell command • Batch – Shell script • Graphics User Interface (GUI) – Windows system 6 OS Services for Helping Users • Program execution – Load a program into memory – Run the program – End execution • either normally or • abnormally (indicating error) 7 OS Services for Helping Users • I/O operations - A running program may require I/O, which may involve a file or an I/O device – Common I/Os: read, write, etc. – Special functions: recording CD/DVD • Notes: Users usually cannot control I/O devices directly, so OS provides a mean to do I/O – Mainly for efficiency and protection 8 OS Services for Helping Users • File-system manipulation - The file system is of particular interest – OS provides a variety of file systems • Major services – read and write files and directories – create and delete files and directories – search for a given file – list file Information – permission management: allow/deny access 9 OS Services for Helping Users • Communications: information exchange between processes – Processes on the same computer – Processes between computers over a network • Implementations – Shared memory • Two or more processes read/write to a shared section of mem. -
Darwin: Mac OS X's Core OS
ADC April 2001 3/8/01 1:57 PM Page 1 Apple Developer Connection Direct Darwin: Mac OS X’s Core OS eneath Mac OS X’s user-friendly and attractive user interface, Most of the reference documents can be Aqua, and the application frameworks (Classic, Carbon and found in the /Developer/Documentation/ BCocoa) is Darwin: Mac OS X’s core OS. Unseen by users, Kernel directory on any Mac OS X system Darwin provides a strong yet flexible foundation with features like with the Mac OS X Developer Tools package preemptive multitasking, protected memory and real-time support installed. that make Mac OS X a truly modern operating system. The focus of this article is to provide a brief overview of Components of Darwin Darwin and its components as well as give an introduction to Just like in the old Reese’s Peanut Butter developing kernel extensions—modules that extend Darwin’s Cups commercials (“You’ve got chocolate in functionality. For more in-depth information, you should read my peanut butter… No, you’ve got peanut butter on my choco- Inside Mac OS X: Kernel Environment which is available, along late!”), Darwin blends a mixture of mature industry standard com- with other documents referred to in this article, on the Apple ponents such as Mach and BSD with Apple-engineered components Developer Connection (ADC) web site in the Mac OS X to provide Mac OS X with a stable, reliable and extensible founda- Documentation section: tion. Darwin consists of five main components: Mach, I/O Kit, File http://developer.apple.com/techpubs/macosx/macosx.html System, Networking and BSD. -
Introduction to the Linux Kernel: Challenges and Case Studies
Introduction to the Linux kernel: challenges and case studies Juan Carlos Sáez Alcaide Department of Computer Architecture and Automation ArTeCS Group Complutense University of Madrid IV Semana de la Informática 2018 Feb 8, 2018 About Me Juan Carlos Sáez Alcaide ([email protected]) Interim Associate Professor, UCM Department of Computer Architecture and Automation Teaching: Operating Systems, Linux and Android Internals,… Member of the ArTeCS Research Group High Performance Computing Computer Architecture Interaction between system software and architecture … UCM Campus Representative of the USENIX Int’l Association Login (USENIX Magazine) IV Semana de la Informática 2018 - 2 Outline 1 Introduction 2 Main Features 3 Kernel Control Paths and Concurrency 4 Common Kernel abstractions 5 A case study: PMCTrack tool IV Semana de la Informática 2018 - 3 Outline 1 Introduction 2 Main Features 3 Kernel Control Paths and Concurrency 4 Common Kernel abstractions 5 A case study: PMCTrack tool IV Semana de la Informática 2018 - 4 Unix (I) Unics – Unix (1969) Created by Ken Thompson and rewrit- ten in “C” by Dennis Ritchie (1973) V6 (1975): Public source code (AT&T license) BSD distributions (Billy Joy) John Lion’s book on UNIX V6 Keys to success 1 Inexpensive license 2 Source code available 3 Code was simple and easy to modify 4 Ran on modest HW IV Semana de la Informática 2018 - 5 Unix (II) Unix (Cont.) V7 (1979): code can be no longer used for academic purposes Xenix (1980) Microsoft SCO Unix System III (1982) Unix System V (1983) HP-UX, IBM’s AIX, Sun’s Solaris IV Semana de la Informática 2018 - 6 Unix (III) Proyecto GNU (1983) - Richard Stallman SO GNU: Emacs, GNU compiler collection (GCC), GNU Hurd (kernel) Minix v1 (1987) - Andrew Tanenbaum Richard Stallman Minimal Unix-like OS (Unix clone) Teaching purposes. -
Mach-O Internals
Mach-O Internals William Woodru February 10, 2016 1 / 31 General Agenda 1. Who are you? 2. What is Mach-O? 3. An Extremely Brief History of Mach and Mach-O 4. Structure of a Mach-O File 5. Quirks Encountered 6. Concluding Notes 2 / 31 Who are you? My name is William Woodru. I'm a Computer Science major and Philosophy minor at the University of Maryland, College Park. Outside of school, I'm a member of the Homebrew project and a regular contributor to several open source groups. My work for Homebrew is largely concerned with the underlying system interface and reconciling OS X's intricacies/irregularities with the package manager. 3 / 31 What is Mach-O? Mach-O is the Mach Object binary format. Mach-O is used primarily by Apple in OS X and iOS. Apps on both platforms are really just directory trees containing Mach-O binaries and resources (fonts, icons, congurations). Metadata is stored in a number of places, but mainly within bundled plists (XML) and the binaries themselves. Like its cousins on Linux (ELF) and Windows (PE), Mach-O supports multiple object types: I Executable I Core dump I Shared library/object I Prelinked object le I etc. 4 / 31 . and multiple architectures: I m68k/m88k (yes, it's still supported!*) I x86 I AMD64 I POWER I ARMv6/7/8 Unlike ELF or PE, Mach-O has been extended to allow multi-architecture fat binaries. This has resulted in some interesting properties not shared by the other two. More on that later. -
The GNU Hurd
The GNU Hurd [Extended Abstract] Gael¨ Le Mignot ABSTRACT speak of, say, storage devices, there are IDE disks, This is an abstract of the talk given at LSM 2005, about the SCSI disks, floppy disks, tapes, USB devices, FireWire GNU Hurd, its goals, its design, its features and its relation- devices, parallel port devices, ... should every program ship with the GNU project. This is a general presentation know how to put into motion the floppy disk engine ? of the GNU Hurd, mostly on technical aspects. Providing an hardware abstraction layer is one of the major goals of operating systems. 1. INTRODUCTION Resource sharing. Resources on a computer are limited. 1.1 What is an operating system ? Be it main memory, CPU power, hard disk storage, 1.1.1 Historical point of view screen area, networking connection, or sound output, The first computers were so expensive that only one existed those resources must be controlled by a supervisor pro- for a whole university or research department; and so slow gram, allowing each of the programs to access to a part that it was unthinkable to interact with it in real time. This of it as needed. was the era of batch processing, when programmers cre- ated self-running programs called “batch”. Those programs Security infrastructure. All modern operating systems usually took several hours to run, printing huge listing as can enforce several kinds of security. Security can be output. Programs were run one after the other. used to prevent a user from accessing confidential or private data of another user, to prevent accidental re- Then, computers became more efficient. -
Die Geschichte Der Betriebssysteme
REGIONALES RECHENZENTRUM ERLANGEN [RRZE] Geschichte der Betriebssysteme: Vom Mainframe zum Smartphone Systemausbildung − Grundlagen und Aspekte von Betriebssystemen und System-nahen Diensten 26. April 2017 Gregor Longariva - RRZE Willkommen RRZE Achtung, Aufnahme! Agenda 2 1. Gen - 1940 - 1955 2. Gen - 1955 - 1965 3. Gen - 1965 - 1980 4. Gen - 1980 - heute analytical engine - 19. Jh Analytical Engine (Nachbau) 3 - Mitte 19. Jh Charles Babbage - erster Digitalrechner (aber mechanisch) - wurde zu seiner Zeit nie realisiert da mechanische Elemente in notwendiger Präzision - Babbage erkannte, dass seine Maschine einer Programmierung bedurfte. analytical engine - 19. Jh 4 - Charles Babbage 1792-1871 Ada Lovelace 1815-1852 - Lovelace übersetzte Babbage Beschreibung Analytical Engine und fügte Kommentare hinzu - Entwurf Berechnung Bernoulli Zahlen auf der analyitcal engine -> erste Programmiererin - Rechenmaschine -> feste Berechnungen, manuelle Eingabe u. Operation, analytical engine -> beliebige Algorithmen, Programme - auf andere Dinge anwenden, nicht nur Zahlen wenn man Objekte findet deren Wechselwirkungen durch abstrakte Operationen dargestellt werden können Erste Generation von Computern 1940-1955 Nachbau der Z3 im Deutschen Museum München 5 - 1941 erster funktionstüchtiger elektrischer Digitalrechner, Zuse Z3, Konrad Zuse Berlin - mechanische Relais - 600 Relais Rechenwerk, 1600 Relais Speicherwerk - Nachfolger Z1 die vollmechanisch war Erste Generation von Computern 1940-1955 6 - es herrschte Krieg - Deutschland hatte die Enigma um -
A Brief History of Debian I
A Brief History of Debian i A Brief History of Debian A Brief History of Debian ii 1999-2020Debian Documentation Team [email protected] Debian Documentation Team This document may be freely redistributed or modified in any form provided your changes are clearly documented. This document may be redistributed for fee or free, and may be modified (including translation from one type of media or file format to another or from one spoken language to another) provided that all changes from the original are clearly marked as such. Significant contributions were made to this document by • Javier Fernández-Sanguino [email protected] • Bdale Garbee [email protected] • Hartmut Koptein [email protected] • Nils Lohner [email protected] • Will Lowe [email protected] • Bill Mitchell [email protected] • Ian Murdock • Martin Schulze [email protected] • Craig Small [email protected] This document is primarily maintained by Bdale Garbee [email protected]. A Brief History of Debian iii COLLABORATORS TITLE : A Brief History of Debian ACTION NAME DATE SIGNATURE WRITTEN BY September 14, 2020 REVISION HISTORY NUMBER DATE DESCRIPTION NAME A Brief History of Debian iv Contents 1 Introduction -- What is the Debian Project? 1 1.1 In the Beginning ................................................... 1 1.2 Pronouncing Debian ................................................. 1 2 Leadership 2 3 Debian Releases 3 4 A Detailed History 6 4.1 The 0.x Releases ................................................... 6 4.1.1 The Early Debian Packaging System ..................................... 7 4.2 The 1.x Releases ................................................... 7 4.3 The 2.x Releases ................................................... 8 4.4 The 3.x Releases ................................................... 8 4.5 The 4.x Releases .................................................. -
Multiboot Specification Version 0.6.96
The Multiboot Specification version 0.6.96 Yoshinori K. Okuji, Bryan Ford, Erich Stefan Boleyn, Kunihiro Ishiguro Copyright c 1995,96 Bryan Ford <[email protected]> Copyright c 1995,96 Erich Stefan Boleyn <[email protected]> Copyright c 1999,2000,2001,2002,2005,2006,2009,2010 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that the entire result- ing derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions. Chapter 1: Introduction to Multiboot Specification 1 1 Introduction to Multiboot Specification This chapter describes some rough information on the Multiboot Specification. Note that this is not a part of the specification itself. 1.1 The background of Multiboot Specification Every operating system ever created tends to have its own boot loader. Installing a new operating system on a machine generally involves installing a whole new set of boot mech- anisms, each with completely different install-time and boot-time user interfaces. Getting multiple operating systems to coexist reliably on one machine through typical chaining mechanisms can be a nightmare. There is little or no choice of boot loaders for a particular operating system | if the one that comes with the operating system doesn't do exactly what you want, or doesn't work on your machine, you're screwed. -
Linux Kernel Series
Linux Kernel Series By Devyn Collier Johnson More Linux Related Stuff on: http://www.linux.org Linux Kernel – The Series by Devyn Collier Johnson (DevynCJohnson) [email protected] Introduction In 1991, a Finnish student named Linus Benedict Torvalds made the kernel of a now popular operating system. He released Linux version 0.01 on September 1991, and on February 1992, he licensed the kernel under the GPL license. The GNU General Public License (GPL) allows people to use, own, modify, and distribute the source code legally and free of charge. This permits the kernel to become very popular because anyone may download it for free. Now that anyone can make their own kernel, it may be helpful to know how to obtain, edit, configure, compile, and install the Linux kernel. A kernel is the core of an operating system. The operating system is all of the programs that manages the hardware and allows users to run applications on a computer. The kernel controls the hardware and applications. Applications do not communicate with the hardware directly, instead they go to the kernel. In summary, software runs on the kernel and the kernel operates the hardware. Without a kernel, a computer is a useless object. There are many reasons for a user to want to make their own kernel. Many users may want to make a kernel that only contains the code needed to run on their system. For instance, my kernel contains drivers for FireWire devices, but my computer lacks these ports. When the system boots up, time and RAM space is wasted on drivers for devices that my system does not have installed.