Effect of Calcium on the Formation and Protectiveness of Iron Carbonate

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Calcium on the Formation and Protectiveness of Iron Carbonate CORROSION SCIENCE SECTION Effect of Calcium on the Formation and Protectiveness of Iron Carbonate Layer in CO2 Corrosion Saba Navabzadeh Esmaeely,‡,* Yoon-Seok Choi,* David Young,* and Srdjan Nešic´* ABSTRACT INTRODUCTION 2+ The effect of calcium (Ca ) on the carbon dioxide (CO2) corro- The carbon capture and storage (CCS) process con- sion of mild steel was investigated in simulated saline aquifer tains three stages: environments (1 wt% sodium chloride [NaCl], 80°C, pH 6.6) —carbon dioxide (CO ) capture at its generation 2+ 2 with different concentrations of Ca (10, 100, 1,000, and source (coal or gas-fi red power plant, refi nery, 10,000 ppm). Electrochemical methods (open-circuit potential syngas unit, cement works, or some other in- [OCP]) and linear polarization resistance [LPR] measurements) dustrial process) were used to evaluate the corrosion behavior. Surface analy- sis techniques (scanning electron microscopy [SEM], energy- —transportation to the geologic storage site (usu- dispersive x-ray spectroscopy [EDS], and x-ray diffraction ally by pipeline transmission) 1 [XRD]) were used to characterize the morphology and identity —injection into geologic host reservoirs the corrosion products. The results showed that with low con- Among the known options in CCS, injection and 2+ centrations of Ca (10 ppm and 100 ppm), the corrosion rate storage of CO2 in deep saline aquifers has the potential decreased with time as a result of the formation of protective to cause casing corrosion because of the direct con- iron carbonate (FeCO ) and/or mixed carbonate (Fe Ca CO ) 3 x y 3 tact between injected CO2 and the saline aquifer with (x + y = 1). However, the presence of high concentrations of highly concentrated aqueous salts such as sodium Ca2+ (1,000 ppm and 10,000 ppm) resulted in the change of chloride (NaCl) and calcium chloride (CaCl2). Aqueous corrosion product from protective FeCO3 to non-protective cal- CO2 is known as a corrosive agent. Studies have been cium carbonate (CaCO3), and an increasing corrosion rate with time. Results of surface analysis revealed a different steel performed on CO2 corrosion at high pressures. All surface morphology with pitting observed in the presence of studies showed that the initial “bare steel” corrosion 2+ 10,000 ppm Ca . rate at high partial pressure CO2 (~70 bars) is very 2-3 high. For high pressure CO2 the concentration of 2+ 2+ + KEY WORDS: Ca , CaCO3, carbon capture and storage, Fe , hydrogen ions ([H ]) is rather high, as a result of the FeCO3, localized corrosion excessive amount of carbonic acid (H2CO3) and, hence, its dissociation. Also, the presence of H2CO3 can pro- vide another pathway for the cathodic reaction:2 + – He+ 1/2H2 (1) Submitted for publication: February 5, 2013. Revised and ac- cepted: May 2, 2013. Preprint available online: May 31, 2013, – – doi: http://dx.doi.org/10.5006/0942 . HC23O2++e1 /2 HH23CO (2) ‡ Corresponding author. E-mail: [email protected]. * Institute for Corrosion and Multiphase Technology, Department of Chemical and Biomolecular Engineering, Ohio University, Ohio, In stagnant conditions, the system may reach favor- 45701. able conditions for formation of FeCO3, when the cor- ISSN 0010-9312 (print), 1938-159X (online) 912 13/000165/$5.00+$0.50/0 © 2013, NACE International CORROSION—SEPTEMBER 2013 CORROSION SCIENCE SECTION rosion rate starts to decrease.3 Even though the bulk TABLE 1 pH remains very low (~pH 3) at a very high pressure Test Matrix 2+ of CO2, there is a high concentration of Fe near the Parameters Conditions surface because of the high corrosion rate. This would Total Pressure 0.1 MPa create favorable conditions for iron carbonate (FeCO3) pCO2 0.05 MPa precipitation. Temperature 80°C The role of FeCO3 formation during the corrosion Solution 1 wt% NaCl process has been studied over the past few decades.4-8 pH 6.6 Nešic´ suggested that FeCO is protective when it is Flow condition Stagnant 3 Steel G10180 dense and adhesive at the steel surface, because such a layer retards the transportation of corrosive spe- cies toward the steel surface and blocks portions of TABLE 2 the steel surface making them unavailable for corro- Test Conditions sion.9 The corrosion product layer properties in terms Test Condition No. Initial Concentrations of Fe2+ and Ca2+ of both structure and composition have been studied 2+ in recent years.10-13 Different parameters affect the 1 10 ppm Fe 2+ 2+ 2 10 ppm Fe + 10 ppm Ca formation of FeCO3 and its diffusion-limiting proper- 2+ 2+ 9,14 3 10 ppm Fe + 100 ppm Ca ties. The chemical and mechanical properties of the 4 10 ppm Fe2+ + 1,000 ppm Ca2+ layer formed on the surface are a function of many 5 10 ppm Fe2+ + 10,000 ppm Ca2+ factors, such as temperature, supersaturation, and chemical composition of the layer.14-16 Ingham, et al., 29 reported an enhancement in protectiveness of the cor- in CaCl2-containing electrolytes. Gao, et al., reported rosion product layer when a small concentration of pitting in conjunction with the formation of FexCayCO3 2+ 17 magnesium (Mg ) was present. and Fex(Mg,Ca)yCO3 (x + y = 1) on the steel surface. A – Calcium carbonate (CaCO3) is isostructural with broader review of the literature indicates that Cl ions 2+ FeCO3. Therefore, Ca readily incorporates into the are often associated with pitting; however, the role of 18 2+ FeCO3 structure and vice versa. Therefore, the overall water chemistry, and in particularly Ca ions, properties of FeCO3, both morphologically and chemi- is generally not clear. In many instances, some of cally, in the presence of Ca2+, are subject to change. the key parameters are not measured or reported; for It has been established already that the morphol- example, the pH of the aqueous solution is often “un- ogy of FeCO3 plays a significant role in the corrosion known” making any discussion of the results uncon- 19-20 process. While many studies have addressed the vincing. In CO2 corrosion of mild steel, only higher pH different parametric effects on the formation and pro- is associated with the formation of protective FeCO3 8-9,14,16,19-21 2+ tectiveness of FeCO3, the role of brine chem- layers; therefore, any influence of Ca concentration istry, particularly in terms of the effect of individual must be analyzed in the context of the overall water ions on corrosion product layer formation, was not chemistry effects. 17 studied in great detail. For example, one of the im- Although CO2 is stored in liquid or supercritical 2+ 2+ portant species in brines is Ca , which can be present phase at high pressure, the effect of Ca on FeCO3 22 at high concentrations (up to 30,000 ppm). However, formation is not known even if at low CO2 partial pres- effects of Ca2+ on corrosion mechanisms have not sures. Therefore, the work reported, conducted at low been well documented. CO2 partial pressures, can be considered as a prelimi- Little has been reported on the effect of Ca2+ on nary study on the effect of Ca2+ in saline aquifers on corrosion in the literature, with findings often appear- corrosion of casing steel related to the injection of CO2 ing contradictory. Zhao, et al.,23-24 claimed that corro- for its geologic storage. sion rate decreased in the “short term” in the presence of Ca2+ and Mg2+, but there was no special difference EXPERIMENTAL PROCEDURES in “long-term exposure.” Ding, et al., reported the corrosion rate increased with an increase in the Ca2+ Experiments were conducted in a 2-L glass cell concentration.25 Jiang, et al., reported pitting associ- using a three-electrode setup. In each experiment, – (1) ated with CaCl2. They claimed that while Cl caused three flat specimens made from AISI 1018 mild steel pitting, the presence of Ca2+ postponed the initiation (UNS G10180)(2) with an exposed area of 5.4 cm2 were of the pitting.26 Ren, et al.,27 as well as Zhu, et al.,28 used for electrochemical measurement and for surface reported pitting with reference to the presence of Cl– analysis. Prior to insertion, the specimens were wet- polished with silicon carbide (SiC) paper, down to (1) American Iron and Steel Institute, 25 Masachusetts Ave., NW Ste. 600 grit, and rinsed with isopropyl alcohol (C3H8O) in 800, Washington, DC 20001. an ultrasonic bath and dried. (2) UNS numbers are listed in Metals and Alloys in the Unified Num- bering System, published by the Society of Automotive Engineers Tables 1 and 2 show the test matrix and test (SAE International) and cosponsored by ASTM International. conditions, respectively. The glass cell was filled with CORROSION—Vol. 69, No. 9 913 CORROSION SCIENCE SECTION (a) (b) FIGURE 1. Variations of (a) corrosion rate and (b) OCP for mild steel exposed to a simulated brine with different initial 2+ 2+ concentrations of Ca at 80°C and pCO2 of 0.05 MPa with 10 ppm Fe . 2 L of 1 wt% NaCl electrolyte (prepared with deionized face and preventing the underlying steel from under- water). The solution was stirred with a magnetic stir- going further oxidative dissolution.9,31 2+ rer and the temperature was set to 80°C; CO2 gas was For the low initial Ca concentration conditions purged continuously through the solution. The solu- (0, 10, and 100 ppm), the formation of a protective tion pH was adjusted to 6.6 by addition of a deoxygen- FeCO3 layer apparently occurred without signifi cant ated 1.0 M sodium hydroxide (NaOH) solution. After interference by Ca2+ ions. However, the corrosion be- the pH stabilized, the magnetic stir bar was stopped havior of mild steel with higher initial Ca2+ concentra- and samples were inserted into the glass cell.
Recommended publications
  • Oregon Department of Human Services HEALTH EFFECTS INFORMATION
    Oregon Department of Human Services Office of Environmental Public Health (503) 731-4030 Emergency 800 NE Oregon Street #604 (971) 673-0405 Portland, OR 97232-2162 (971) 673-0457 FAX (971) 673-0372 TTY-Nonvoice TECHNICAL BULLETIN HEALTH EFFECTS INFORMATION Prepared by: Department of Human Services ENVIRONMENTAL TOXICOLOGY SECTION Office of Environmental Public Health OCTOBER, 1998 CALCIUM CARBONATE "lime, limewater” For More Information Contact: Environmental Toxicology Section (971) 673-0440 Drinking Water Section (971) 673-0405 Technical Bulletin - Health Effects Information CALCIUM CARBONATE, "lime, limewater@ Page 2 SYNONYMS: Lime, ground limestone, dolomite, sugar lime, oyster shell, coral shell, marble dust, calcite, whiting, marl dust, putty dust CHEMICAL AND PHYSICAL PROPERTIES: - Molecular Formula: CaCO3 - White solid, crystals or powder, may draw moisture from the air and become damp on exposure - Odorless, chalky, flat, sweetish flavor (Do not confuse with "anhydrous lime" which is a special form of calcium hydroxide, an extremely caustic, dangerous product. Direct contact with it is immediately injurious to skin, eyes, intestinal tract and respiratory system.) WHERE DOES CALCIUM CARBONATE COME FROM? Calcium carbonate can be mined from the earth in solid form or it may be extracted from seawater or other brines by industrial processes. Natural shells, bones and chalk are composed predominantly of calcium carbonate. WHAT ARE THE PRINCIPLE USES OF CALCIUM CARBONATE? Calcium carbonate is an important ingredient of many household products. It is used as a whitening agent in paints, soaps, art products, paper, polishes, putty products and cement. It is used as a filler and whitener in many cosmetic products including mouth washes, creams, pastes, powders and lotions.
    [Show full text]
  • Ocean Acidification and Oceanic Carbon Cycling 13
    Ocean Acidification and Oceanic Carbon Cycling 13 Dieter A. Wolf-Gladrow and Bjo¨rn Rost Contents Atmospheric CO2 ............................................................................... 104 Air-Sea CO2 Exchange and Ocean Carbonate Chemistry ..................................... 104 Rate of Surface Ocean Acidification and Regional Differences .. ........................... 104 The Physical Carbon Pump and Climate Change .............................................. 105 Impact of Ocean Acidification on Marine Organisms and Ecosystems ....................... 106 The Biological Carbon Pump and Climate Change ............................................ 107 Take-Home Message ............................................................................ 108 References ....................................................................................... 109 Abstract The concentration of atmospheric CO2 is increasing due to emissions from burning of fossil fuels and changes in land use. Part of this “anthropogenic CO2” invades the oceans causing a decrease of seawater pH; this process is called “ocean acidification.” The lowered pH, but also the concomitant changes in other properties of the carbonate system, affects marine life and the cycling of carbon in the ocean. Keywords Anthropogenic CO2 • Seawater acidity • Saturation state • Climate change • Physical carbon pump • Global warming • Biological carbon pumps • Phyto- plankton • Primary production • Calcification D.A. Wolf-Gladrow (*) • B. Rost Alfred Wegener Institute, Helmholtz Centre
    [Show full text]
  • Interaction of Calcium Supplementation and Nonsteroidal Anti-Inflammatory Drugs and the Risk of Colorectal Adenomas
    2353 Interaction of Calcium Supplementation and Nonsteroidal Anti-inflammatory Drugs and the Risk of Colorectal Adenomas Maria V. Grau,1 John A. Baron,1,2 Elizabeth L. Barry,1 Robert S. Sandler,3 Robert W. Haile,4 Jack S. Mandel,5 and Bernard F. Cole1 Departments of 1Community and Family Medicine and 2Medicine, Dartmouth Medical School, Lebanon, New Hamsphire; 3Department of Medicine, University of North Carolina, Chapel Hill, North Carolina; 4Department of Preventive Medicine, University of Southern California, Los Angeles, California; and 5Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia Abstract Background: Calcium and aspirin have both been found to be Results: In the Calcium Trial, subjects randomized to calcium chemopreventive against colorectal neoplasia. However, the who also were frequent users of NSAIDs had a reduction joint effect of the two agents has not been well investigated. of risk for advanced adenomas of 65% [adjusted risk ratio Methods: To explore the separate and joint effects of calcium (RR), 0.35; 95% confidence interval (95% CI), 0.13-0.96], and and aspirin/nonsteroidal anti-inflammatory drugs (NSAID), there was a highly significant statistical interaction between we used data from two large randomized clinical trials calcium treatment and frequent NSAID use (Pinteraction = among patients with a recent history of colorectal adenomas. 0.01). Similarly, in the Aspirin Trial, 81 mg aspirin and In the Calcium Polyp Prevention Study, 930 eligible subjects calcium supplement use together conferred a risk reduction were randomized to receive placebo or 1,200 mg of elemental of 80% for advanced adenomas (adjusted RR, 0.20; 95% CI, calcium daily for 4 years.
    [Show full text]
  • Some Drugs Are Excluded from Medicare Part D, but Are Covered by Your Medicaid Benefits Under the Healthpartners® MSHO Plan (HMO)
    Some drugs are excluded from Medicare Part D, but are covered by your Medicaid benefits under the HealthPartners® MSHO Plan (HMO). These drugs include some over‐the‐counter (OTC) items, vitamins, and cough and cold medicines. If covered, these drugs will have no copay and will not count toward your total drug cost. For questions, please call Member Services at 952‐967‐7029 or 1‐888‐820‐4285. TTY members should call 952‐883‐6060 or 1‐800‐443‐0156. From October 1 through February 14, we take calls from 8 a.m. to 8 p.m., seven days a week. You’ll speak with a representative. From February 15 to September 30, call us 8 a.m. to 8 p.m. Monday through Friday to speak with a representative. On Saturdays, Sundays and holidays, you can leave a message and we’ll get back to you within one business day. Drug Description Strength 3 DAY VAGINAL 4% 5‐HYDROXYTRYPTOPHAN 50 MG ABSORBASE ACETAMINOPHEN 500 MG ACETAMINOPHEN 120MG ACETAMINOPHEN 325 MG ACETAMINOPHEN 650MG ACETAMINOPHEN 80 MG ACETAMINOPHEN 650 MG ACETAMINOPHEN 160 MG/5ML ACETAMINOPHEN 500 MG/5ML ACETAMINOPHEN 160 MG/5ML ACETAMINOPHEN 500MG/15ML ACETAMINOPHEN 100 MG/ML ACETAMINOPHEN 500 MG ACETAMINOPHEN 325 MG ACETAMINOPHEN 500 MG ACETAMINOPHEN 80 MG ACETAMINOPHEN 100.00% ACETAMINOPHEN 80 MG ACETAMINOPHEN 160 MG ACETAMINOPHEN 80MG/0.8ML ACETAMINOPHEN‐BUTALBITAL 50MG‐325MG ACNE CLEANSING PADS 2% ACNE TREATMENT,EXTRA STRENGTH 10% ACT ANTI‐CAVITY MOUTH RINSE 0.05% Updated 12/01/2012 ACTICAL ACTIDOSE‐AQUA 50G/240ML ACTIDOSE‐AQUA 15G/72ML ACTIDOSE‐AQUA 25G/120ML ACTIVATED CHARCOAL 25 G ADEKS 7.5 MG
    [Show full text]
  • Product Safety Summary
    Product Safety Summary Calcium Carbonate CAS No. 497-34-1 This Product Safety Summary is intended to provide a general overview of the chemical substance. The information on the summary is basic information and is not intended to provide emergency response information, medical information or treatment information. The summary should not be used to provide in-depth safety and health information. In-depth safety and health information can be found on the Safety Data Sheet (SDS) for the chemical substance. Names Calcium carbonate Chalk Product Overview Solvay Fluorides, LLC does not sell calcium carbonate directly to consumers. Consumers may be exposed to calcium carbonate in many consumer product applications where the calcium carbonate is not transformed or reacted and is present in powder or granule form. Calcium carbonate is a white, granular or powdered solid. It is used primarily in construction, to make glass, production of polymer compounds as well as for acid gas treatment and pH adjustment. It is also used in the manufacture of other chemicals and pharmaceuticals. Exposure to calcium carbonate, especially powder, can cause irritation to the skin, eyes, and respiratory tract. Manufacture of Product Solvay Fluorides, LLC imports the calcium carbonate it sells from a Solvay affiliate in Europe. Solvay manufactures calcium carbonate by calcining (removing carbon dioxide) quarried marble to form lime (calcium oxide). Water is added to make calcium hydroxide and carbon dioxide (CO2) is passed through the solution to reform a purified calcium carbonate, which is then precipitated (crystallized) into its final form. Page 1 of 4 Copyright 2011-2013, Solvay America, Inc.
    [Show full text]
  • The Investigation of Acetylsalicylic Acid, Sodium Bicarbonate, and Calcium Carbonate
    CALIFORNIA STATE SCIENCE FAIR 2010 PROJECT SUMMARY Name(s) Project Number Irfan S. Habib J2113 Project Title The Investigation of Acetylsalicylic Acid, Sodium Bicarbonate, and Calcium Carbonate Abstract Objectives/Goals Does the amount of acetylsalicylic acid in various brands of aspirin tablets depend on the price of the aspirin tablet? Are CaCO3 (calcium carbonate) antacids or NaHCO3 (sodium bicarbonate) antacids more efficient in neutralizing stomach acidity? Does the strength of the base within an antacid depend on the price of the antacid? Methods/Materials A: Titration of Ammonia and Vinegar to obtain basic understanding of titration. B: Titration of aspirin and ammonia was performed to determine the normality (which is the concentration of H+ per 1 L of solution) of each aspirin brand. C: Titration of antacid tablets and vinegar was performed to determine the normality (which is the concentration of OH- per 1L of solution) of each antacid brand. D: Added antacid to 0.5M HCl 1g at a time and recorded pH after each gram was added in order to determine which antacid brand increased the pH of solution at a faster rate. Results A: Normality of Ammonia= 1.06 Normality of Vinegar = 0.83 B: St. Joseph#s was the most expensive aspirin and the Rite Aid brand was the least expensive; however, Ecotrin was the 3rd most expensive and it had the greatest H+ content. The Rite Aid brand had the least amount of H+ content. C: Alka-seltzer was most expensive antacid and Equaline was the least expensive. The Alka-seltzer and Rite Aid brand of antacids had greatest amount of OH- content (both had NaHCO3)and the Equaline (contained CaCO3)had least amount of OH-.
    [Show full text]
  • Calcium Carbonate Dissolution and Precipitation in Water: Factors Affecting the Carbonate Saturometer Method
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1971 Calcium Carbonate Dissolution and Precipitation in Water: Factors Affecting the Carbonate Saturometer Method Lyle M. Dabb Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Chemistry Commons, and the Soil Science Commons Recommended Citation Dabb, Lyle M., "Calcium Carbonate Dissolution and Precipitation in Water: Factors Affecting the Carbonate Saturometer Method" (1971). All Graduate Theses and Dissertations. 2991. https://digitalcommons.usu.edu/etd/2991 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ACKNOWLEDGMENTS I would like to thank Dr. Jerome J . Jurinak for his patience and guidance during my classwork and lab experiments. I would also like t o thank Dr . R. L . Smith and Dr. H. B. Petersen for serving as committee members. I thank Robert A. Griffin and Dr. Sung-Ho Lai for their friendship, help, and encouragement. I thank Dr. John J. Hassett for his help when I started this research. Pa rtial support of this study by the Federal Water Quality Admin- istration is gr atefully acknowledged. I thank my wife, Sandy, for keeping our horne affairs running so smoothly and for her understanding and patience. ¥ m fJJt- Lyle M. Dabb TABLE OF CONTENTS Page INTRODUCTION 1 REVIEW OF LITERATURE 3 METHODS AND MATERIALS RESULTS AND DISCUSSION 10 EIGHT NATURAL WATERS FROM VERNAL, UTAH 31 SUMMARY AND CONCLUSIONS .
    [Show full text]
  • Amorphous Calcium–Magnesium Carbonate (ACMC)
    Amorphous Calcium–Magnesium Carbonate (ACMC) Accelerates Dolomitization at Room Temperature under Abiotic Conditions German Montes-Hernandez, François Renard, Anne-Line Auzende, Nathaniel Findling To cite this version: German Montes-Hernandez, François Renard, Anne-Line Auzende, Nathaniel Findling. Amorphous Calcium–Magnesium Carbonate (ACMC) Accelerates Dolomitization at Room Temperature under Abiotic Conditions. Crystal Growth & Design, American Chemical Society, 2020, 20 (3), pp.1434- 1441. 10.1021/acs.cgd.9b01005. hal-02896885 HAL Id: hal-02896885 https://hal.archives-ouvertes.fr/hal-02896885 Submitted on 5 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Amorphous calcium-magnesium carbonate (ACMC) accelerates 2 dolomitization at room temperature under abiotic conditions 3 4 German Montes-Hernandeza *, François Renarda, b, Anne-Line Auzendea, Nathaniel Findlinga 5 6 a Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 7 Grenoble, France 8 b The Njord Centre, Department of Geosciences, University of Oslo, box 1048 Blindern, 0316 Oslo, 9 Norway 10 11 12 13 *Corresponding author: Dr. German Montes-Hernandez 14 E-mail address: [email protected] 15 1 16 Abstract 17 The challenge to produce dolomite CaMg(CO3)2 at low temperature (20-35°C) over laboratory time 18 scales remains so far unsuccessful, which has led to long-lasting scientific debates in the last two 19 centuries.
    [Show full text]
  • Calcium Carbonate
    Right to Know Hazardous Substance Fact Sheet Common Name: CALCIUM CARBONATE Synonyms: Calcium Salt of Carbonic Acid, Chalk CAS Number: 1317-65-3 Chemical Name: Limestone RTK Substance Number: 4001 Date: July 2015 DOT Number: NA Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Calcium Carbonate is a white to tan odorless powder or Hazard Summary odorless crystals. It is used in human medicine as an antacid, Hazard Rating NJDOH NFPA calcium supplement and food additive. Other uses are HEALTH 1 - agricultural lime and as additive in cement, paints, cosmetics, FLAMMABILITY 0 - dentifrices, linoleum, welding rods, and to remove acidity in REACTIVITY 0 - wine. REACTIVE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe Reasons for Citation When Calcium Carbonate is heated to decomposition, it Calcium Carbonate is on the Right to Know Hazardous emits acrid smoke and irritating vapors. Substance List because it is cited by OSHA, NIOSH, and Calcium Carbonate is incompatible with ACIDS, EPA. ALUMINUM, AMMONIUM SALTS, MAGNESIUM, HYDROGEN, FLUORINE and MAGNESIUM. Calcium Carbonate mixed with magnesium and heated in a current of hydrogen causes a violent explosion. Calcium Carbonate ignites on contact with FLUORINE. Calcium Carbonate contact causes irritation to eyes and skin. SEE GLOSSARY ON PAGE 5. Inhaling Calcium Carbonate causes irritation to nose, throat and respiratory system and can cause coughing. FIRST AID Eye Contact Immediately flush with large amounts of water for at least 15 Workplace Exposure Limits minutes, lifting upper and lower lids. Remove contact OSHA: The legal airborne permissible exposure limit (PEL) is lenses, if worn, while flushing.
    [Show full text]
  • Procedure for Calculating the Calcium Carbonate Precipitation Potential
    water Article Procedure for Calculating the Calcium Carbonate Precipitation Potential (CCPP) in Drinking Water Supply: Importance of Temperature, Ionic Species and Open/Closed System Camilla Tang 1,* , Berit Godskesen 1, Henrik Aktor 2, Marlies van Rijn 3, John B. Kristensen 4, Per S. Rosshaug 5, Hans-Jørgen Albrechtsen 1 and Martin Rygaard 1 1 Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark; [email protected] (B.G.); [email protected] (H.-J.A.); [email protected] (M.R.) 2 AA-Water ApS, Engsvinget 34, 2400 Copenhagen NV, Denmark; [email protected] 3 Formerly Vitens N.V., Oude Veerweg 1, 8019 BE Zwolle, The Netherlands; [email protected] 4 NIRAS A/S, Sortemosevej 19, 3450 Allerød, Denmark; [email protected] 5 HOFOR A/S, Ørestads Boulevard 35, 2300 Copenhagen S, Denmark; [email protected] * Correspondence: [email protected]; Tel.: +45-2373-9679 Abstract: The calcium carbonate (CaCO3) precipitation potential (CCPP) can predict the potential for corrosion and lime scaling in drinking water systems. CCPP can be calculated by different standards, but none of these consider all of the conditions in drinking water systems where temperatures can ◦ reach 100 C and the water exchanges CO2 with the atmosphere. We provided and demonstrated a procedure for CCPP calculations using the open-source software PHREEQC with the phreeqc.dat database at temperatures relevant for drinking water systems (10–90 ◦C) and for open systems in equilibrium with atmospheric CO2. CCPP increased by 0.17–1.51 mmol/kg when the temperature was increased from 10 ◦C to 90 ◦C and increased by 0.22–2.82 mmol/kg when going from closed to ◦ open systems at 10 C.
    [Show full text]
  • All About Calcium Supplements
    ALL ABOUT CALCIUM SUPPLEMENTS Calcium supplements offer a convenient alternative to women (and men) unable to consume enough calcium from diet alone. They vary in type of calcium salt, calcium content, formulation, price, and absorbability. TYPES OF CALCIUM SUPPLEMENTS The two most often used calcium supplement types contain either calcium carbonate or calcium citrate, but a wide variety of calcium salts is found in calcium supplements, including calcium acetate, calcium citrate, calcium gluconate, calcium lactate, and calcium phosphate. Calcium is also available in bone meal (calcium phosphate) as well as dolomite or oyster shell (both calcium carbonate) supplements. Calcium supplements also vary by price. Calcium carbonate products are typically less expensive than most other types of calcium supplements. RECOMMENDED CALCIUM LEVELS Recommended calcium levels refer to “elemental calcium”. Different calcium salts may contain different percentages of elemental calcium. Calcium carbonate provides the highest percentage (40%); thus, 1,250 mg of calcium carbonate provides 500 mg of elemental calcium. Calcium citrate (tetrahydrated form) contains 21% elemental calcium; 2,385 mg of calcium citrate provides 500 mg of elemental calcium. All marketed calcium supplements list the elemental calcium content. CALCIUM FORMULAS Various formulations of calcium supplements are available, including oral tablets, chewable tablets, dissolvable oral tablets, and liquids. Another formulation for individuals with difficulty swallowing is an effervescent calcium supplement, typically calcium carbonate combined with materials such as citric acid that facilitate dissolving in water or orange juice. ABSORBABILITY Absorbability is also a concern. Calcium carbonate and calcium citrate are equally well absorbed if taken with meals, the normal way of assimilating any nutrient.
    [Show full text]
  • Water Hardness Information
    WATER HARDNESS INFORMATION The Water District delivers drinking water from two sources – treated surface water from the Central Arizona Project canal which originates from the Colorado River, and groundwater pumped locally from the Eastern Salt River Sub-Basin Aquifer, beneath the earth’s surface. Using the United States Environmental Protection Agency’s categorization of hard water, the water delivered from these two blended sources would be considered hard water (greater than 10.5 grains per gallon). The following reference is taken from the United States Environmental Protection Agency (EPA) website. The “EPA was established on December 2, 1970 to consolidate in one agency a variety of federal research, monitoring, standard-setting and enforcement activities to ensure environmental protection.” Link: http://publicaccess.supportportal.com/link/portal/23002/23012/Article/18984/Is- hard-water-safe-nbsp-Should-I-get-a-water- softener?_ga=1.232890782.1665284769.1380054517 Is hard water safe? Should I get a water softener? Hardness in drinking water is caused by two nontoxic chemicals-usually called minerals — calcium and magnesium. If either of these minerals is present in your water in substantial amounts, the water is said to be “hard,” because making a lather or suds for washing is “hard” (difficult) to do. Thus cleaning with hard water is difficult. Water containing little calcium or magnesium is called “soft” water. Water that does not contain enough calcium or magnesium may be “too soft.” Hard water is not known to cause any adverse health effects. However, relatively softer water enhances consumer acceptability. Hardness is primarily caused by the presence of calcium and magnesium in the water.
    [Show full text]