{FREE} Numerical Solution of Partial Differential Equations by the Finite

Total Page:16

File Type:pdf, Size:1020Kb

{FREE} Numerical Solution of Partial Differential Equations by the Finite NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS BY THE FINITE ELEMENT METHOD PDF, EPUB, EBOOK Claes Johnson | 288 pages | 27 Mar 2009 | Dover Publications Inc. | 9780486469003 | English | New York, United States Numerical Solution of Partial Differential Equations by the Finite Element Method PDF Book Adomian, G. FEA simulations provide a valuable resource as they remove multiple instances of creation and testing of hard prototypes for various high fidelity situations. Main article: Finite difference method. The nature of this failure can be seen more concretely in the case of the following PDE: for a function v x , y of two variables, consider the equation. Partial differential equation at Wikipedia's sister projects. Abstract The finite element method has established itself as an efficient numerical procedure for the solution of arbitrary-shaped field problems in space. Existence and uniqueness of the solution can also be shown. The process is often carried out by FEM software using coordinate data generated from the subdomains. November Learn how and when to remove this template message. Figure 6. Generally the higher the number of elements in a mesh, the more accurate the solution of the discretized problem. However, this procedure is restricted to even-ordered differential equations and leads to symmetric system matrices as a key property of the finite element method. JAMP Subscription. Algebra of physical space Feynman integral Quantum group Renormalization group Representation theory Spacetime algebra. Namespaces Article Talk. Please help improve this section by adding citations to reliable sources. CRC Press. The meshes on the subdomains do not match on the interface, and the equality of the solution is enforced by Lagrange multipliers, judiciously chosen to preserve the accuracy of the solution. From Sophus Lie 's work put the theory of differential equations on a more satisfactory foundation. Higher-order shapes curvilinear elements can be defined with polynomial and even non- polynomial shapes e. Such functions were widely studied in the nineteenth century due to their relevance for classical mechanics. Difference discrete analogue Stochastic Stochastic partial Delay. All Rights Reserved. The partial differential equation takes the form. Hrennikoff's work discretizes the domain by using a lattice analogy, while Courant's approach divides the domain into finite triangular subregions to solve second order elliptic partial differential equations PDEs that arise from the problem of torsion of a cylinder. In the engineering practice in the finite element method, continuity of solutions between non-matching subdomains is implemented by multiple-point constraints. The classification provides a guide to appropriate initial and boundary conditions and to the smoothness of the solutions. Oxford University. The Riquier—Janet theory is an effective method for obtaining information about many analytic overdetermined systems. Main article: Spectral method. Download as PDF Printable version. Oosterlee; A. Main article: Fundamental solution. Figure 5. In order to obtain a finite-element formulation of a problem which is given in terms of a differential equation, one can apply the method of weighted residuals. Numerical Solution of Partial Differential Equations by the Finite Element Method Writer Hence the convergence properties of the GDM, which are established for a series of problems linear and non-linear elliptic problems, linear, nonlinear, and degenerate parabolic problems , hold as well for these particular finite element methods. Machine Design. Extended finite element methods enrich the approximation space so that it can naturally reproduce the challenging feature associated with the problem of interest: the discontinuity, singularity, boundary layer, etc. Order Operator Notation. MOL allows standard, general-purpose methods and software, developed for the numerical integration of ordinary differential equations ODEs and differential algebraic equations DAEs , to be used. It has the form. They are linear if the underlying PDE is linear, and vice versa. Practical Fourier analysis for multigrid methods. Main article: Stretched grid method. Application to the Barometric Equation 4. Meshfree methods do not require a mesh connecting the data points of the simulation domain. Economics Population dynamics. This is far beyond the choices available in ODE solution formulas, which typically allow the free choice of some numbers. Now 6 can be solved by the usual finite element methods. Due to the meaningfulness of the finite element method many commercial and non-commercial programs exist. Another example would be in numerical weather prediction , where it is more important to have accurate predictions over developing highly nonlinear phenomena such as tropical cyclones in the atmosphere, or eddies in the ocean rather than relatively calm areas. Partly due to this variety of sources, there is a wide spectrum of different types of partial differential equations, and methods have been developed for dealing with many of the individual equations which arise. Spectral methods are the approximate solution of weak form partial equations that are based on high-order Lagrangian interpolants and used only with certain quadrature rules. Existence and uniqueness. Because the flux entering a given volume is identical to that leaving the adjacent volume, these methods conserve mass by design. Cambridge University Press. Mortar methods are discretization methods for partial differential equations, which use separate discretization on nonoverlapping subdomains. Share and Cite:. We assume as an ansatz that the dependence of a solution on the parameters space and time can be written as a product of terms that each depend on a single parameter, and then see if this can be made to solve the problem. The finite difference method is often regarded as the simplest method to learn and use. The mixed finite element method is a type of finite element method in which extra independent variables are introduced as nodal variables during the discretization of a partial differential equation problem. The process, in mathematical language, is to construct an integral of the inner product of the residual and the weight functions and set the integral to zero. The Numerical Method of Lines. This is, by the necessity of being applicable to several different PDE, somewhat vague. Recommend to Peers. In some cases, a PDE can be solved via perturbation analysis in which the solution is considered to be a correction to an equation with a known solution. Bibcode : STIN Numerical Solution of Partial Differential Equations by the Finite Element Method Reviews Sarmin, L. Therefore, it is restricted to problems which are governed by even-ordered differential equations. Courant, R. Main article: Spectral element method. JAMP Most popular papers. For higher-order partial differential equations, one must use smoother basis functions. The color represents the amplitude of the magnetic flux density , as indicated by the scale in the inset legend, red being high amplitude. The process is often carried out by FEM software using coordinate data generated from the subdomains. This is especially true for 'external flow' problems, like airflow around the car or airplane, or weather simulation. Higher Education Press. The mesh is an integral part of the model and it must be controlled carefully to give the best results. Share and Cite:. One may think of the epidemic models exemplary towards the actual spreading of the new corona virus. To solve the system of linear Equations 14 , we have to approximate the integrals 15 and The finite element method FEM its practical application often known as finite element analysis FEA is a numerical technique for finding approximate solutions of partial differential equations PDE as well as of integral equations. Liao, S. Alternatives are numerical analysis techniques from simple finite difference schemes to the more mature multigrid and finite element methods. The finite element method formulation of a boundary value problem finally results in a system of algebraic equations. Chudov , On the stability of the numerical integration of systems of ordinary differential equations arising in the use of the straight line method, USSR Computational Mathematics and Mathematical Physics , 3 6 , — Mesh adaptivity may utilize various techniques, the most popular are:. The finite element method is not restricted to triangles or tetrahedra in 3-d, or higher-order simplexes in multidimensional spaces , but can be defined on quadrilateral subdomains hexahedra, prisms, or pyramids in 3-d, and so on. Since we do not perform such an analysis, we will not use this notation. The area inside the cylinder is the low amplitude dark blue, with widely spaced lines of magnetic flux , which suggests that the shield is performing as it was designed to. Recommend to Library. The superposition principle applies to any linear system, including linear systems of PDEs. Therefore, we use that the polar decomposition of A [6], which is uniquely associated with A, i. This technique rests on a characteristic of solutions to differential equations: if one can find any solution that solves the equation and satisfies the boundary conditions, then it is the solution this also applies to ODEs. The partial differential equation takes the form. In the following, we derive the quadrature formulas for 15 and In primal methods, such as Balancing domain decomposition and BDDC , the continuity
Recommended publications
  • Meshfree Methods Chapter 1 — Part 1: Introduction and a Historical Overview
    MATH 590: Meshfree Methods Chapter 1 — Part 1: Introduction and a Historical Overview Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2014 [email protected] MATH 590 – Chapter 1 1 Outline 1 Introduction 2 Some Historical Remarks [email protected] MATH 590 – Chapter 1 2 Introduction General Meshfree Methods Meshfree Methods have gained much attention in recent years interdisciplinary field many traditional numerical methods (finite differences, finite elements or finite volumes) have trouble with high-dimensional problems meshfree methods can often handle changes in the geometry of the domain of interest (e.g., free surfaces, moving particles and large deformations) better independence from a mesh is a great advantage since mesh generation is one of the most time consuming parts of any mesh-based numerical simulation new generation of numerical tools [email protected] MATH 590 – Chapter 1 4 Introduction General Meshfree Methods Applications Original applications were in geodesy, geophysics, mapping, or meteorology Later, many other application areas numerical solution of PDEs in many engineering applications, computer graphics, optics, artificial intelligence, machine learning or statistical learning (neural networks or SVMs), signal and image processing, sampling theory, statistics (kriging), response surface or surrogate modeling, finance, optimization. [email protected] MATH 590 – Chapter 1 5 Introduction General Meshfree Methods Complicated Domains Recent paradigm shift in numerical simulation of fluid
    [Show full text]
  • A Meshless Approach to Solving Partial Differential Equations Using the Finite Cloud Method for the Purposes of Computer Aided Design
    A Meshless Approach to Solving Partial Differential Equations Using the Finite Cloud Method for the Purposes of Computer Aided Design by Daniel Rutherford Burke, B.Eng A Thesis submitted to the Faculty of Graduate and Post Doctoral Affairs in partial fulfilment of the requirements for the degree of Doctor of Philosophy Ottawa Carleton Institute for Electrical and Computer Engineering Department of Electronics Carleton University Ottawa, Ontario, Canada January 2013 Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du 1+1 Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-94524-7 Our file Notre reference ISBN: 978-0-494-94524-7 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • A Plane Wave Method Based on Approximate Wave Directions for Two
    A PLANE WAVE METHOD BASED ON APPROXIMATE WAVE DIRECTIONS FOR TWO DIMENSIONAL HELMHOLTZ EQUATIONS WITH LARGE WAVE NUMBERS QIYA HU AND ZEZHONG WANG Abstract. In this paper we present and analyse a high accuracy method for computing wave directions defined in the geometrical optics ansatz of Helmholtz equation with variable wave number. Then we define an “adaptive” plane wave space with small dimensions, in which each plane wave basis function is determined by such an approximate wave direction. We establish a best L2 approximation of the plane wave space for the analytic solutions of homogeneous Helmholtz equa- tions with large wave numbers and report some numerical results to illustrate the efficiency of the proposed method. Key words. Helmholtz equations, variable wave numbers, geometrical optics ansatz, approximate wave direction, plane wave space, best approximation AMS subject classifications. 65N30, 65N55. 1. Introduction In this paper we consider the following Helmholtz equation with impedance boundary condition u = (∆ + κ2(r))u(ω, r)= f(ω, r), r = (x, y) Ω, L − ∈ (1.1) ((∂n + iκ(r))u(ω, r)= g(ω, r), r ∂Ω, ∈ where Ω R2 is a bounded Lipchitz domain, n is the out normal vector on ∂Ω, ⊂ f L2(Ω) is the source term and κ(r) = ω , g L2(∂Ω). In applications, ω ∈ c(r) ∈ denotes the frequency and may be large, c(r) > 0 denotes the light speed, which is arXiv:2107.09797v1 [math.NA] 20 Jul 2021 usually a variable positive function. The number κ(r) is called the wave number. Helmholtz equation is the basic model in sound propagation.
    [Show full text]
  • Family Name Given Name Presentation Title Session Code
    Family Name Given Name Presentation Title Session Code Abdoulaev Gassan Solving Optical Tomography Problem Using PDE-Constrained Optimization Method Poster P Acebron Juan Domain Decomposition Solution of Elliptic Boundary Value Problems via Monte Carlo and Quasi-Monte Carlo Methods Formulations2 C10 Adams Mark Ultrascalable Algebraic Multigrid Methods with Applications to Whole Bone Micro-Mechanics Problems Multigrid C7 Aitbayev Rakhim Convergence Analysis and Multilevel Preconditioners for a Quadrature Galerkin Approximation of a Biharmonic Problem Fourth-order & ElasticityC8 Anthonissen Martijn Convergence Analysis of the Local Defect Correction Method for 2D Convection-diffusion Equations Flows C3 Bacuta Constantin Partition of Unity Method on Nonmatching Grids for the Stokes Equations Applications1 C9 Bal Guillaume Some Convergence Results for the Parareal Algorithm Space-Time ParallelM5 Bank Randolph A Domain Decomposition Solver for a Parallel Adaptive Meshing Paradigm Plenary I6 Barbateu Mikael Construction of the Balancing Domain Decomposition Preconditioner for Nonlinear Elastodynamic Problems Balancing & FETIC4 Bavestrello Henri On Two Extensions of the FETI-DP Method to Constrained Linear Problems FETI & Neumann-NeumannM7 Berninger Heiko On Nonlinear Domain Decomposition Methods for Jumping Nonlinearities Heterogeneities C2 Bertoluzza Silvia The Fully Discrete Fat Boundary Method: Optimal Error Estimates Formulations2 C10 Biros George A Survey of Multilevel and Domain Decomposition Preconditioners for Inverse Problems in Time-dependent
    [Show full text]
  • Finite Difference and Discontinuous Galerkin Methods for Wave Equations
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1522 Finite Difference and Discontinuous Galerkin Methods for Wave Equations SIYANG WANG ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9927-3 UPPSALA urn:nbn:se:uu:diva-320614 2017 Dissertation presented at Uppsala University to be publicly examined in Room 2446, Polacksbacken, Lägerhyddsvägen 2, Uppsala, Tuesday, 13 June 2017 at 10:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Thomas Hagstrom (Department of Mathematics, Southern Methodist University). Abstract Wang, S. 2017. Finite Difference and Discontinuous Galerkin Methods for Wave Equations. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1522. 53 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9927-3. Wave propagation problems can be modeled by partial differential equations. In this thesis, we study wave propagation in fluids and in solids, modeled by the acoustic wave equation and the elastic wave equation, respectively. In real-world applications, waves often propagate in heterogeneous media with complex geometries, which makes it impossible to derive exact solutions to the governing equations. Alternatively, we seek approximated solutions by constructing numerical methods and implementing on modern computers. An efficient numerical method produces accurate approximations at low computational cost. There are many choices of numerical methods for solving partial differential equations. Which method is more efficient than the others depends on the particular problem we consider. In this thesis, we study two numerical methods: the finite difference method and the discontinuous Galerkin method.
    [Show full text]
  • Combined FEM/Meshfree SPH Method for Impact Damage Prediction of Composite Sandwich Panels
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications ECCOMAS Thematic Conference on Meshless Methods 2005 1 Combined FEM/Meshfree SPH Method for Impact Damage Prediction of Composite Sandwich Panels L.Aktay(1), A.F.Johnson(2) and B.-H.Kroplin¨ (3) Abstract: In this work, impact simulations using both meshfree Smoothed Particle Hy- drodynamics (SPH) and combined FEM/SPH Method were carried out for a sandwich composite panel with carbon fibre fabric/epoxy face skins and polyetherimide (PEI) foam core. A numerical model was developed using the dynamic explicit finite element (FE) structure analysis program PAM-CRASH. The carbon fibre/epoxy facings were modelled with standard layered shell elements, whilst SPH particles were positioned for the PEI core. We demonstrate the efficiency and the advantages of pure meshfree SPH and com- bined FEM/SPH Method by comparing the core deformation modes and impact force pulses measured in the experiments to predict structural impact response. Keywords: Impact damage, composite material, sandwich structure concept, Finite Ele- ment Method (FEM), meshfree method, Smoothed Particle Hydrodynamics (SPH) 1 Introduction Modelling of high velocity impact (HVI) and crash scenarios involving material failure and large deformation using classical FEM is complex. Although the most popular numer- ical method FEM is still an effective tool in predicting the structural behaviour in different loading conditions, FEM suffers from large deformation leading problems causing con- siderable accuracy lost. Additionally it is very difficult to simulate the structural behaviour containing the breakage of material into large number of fragments since FEM is initially based on continuum mechanics requiring critical element connectivity.
    [Show full text]
  • An Improved 2D Meshfree Radial Point Interpolation Method for Stress Concentration Evaluation of Welded Component
    applied sciences Article An Improved 2D Meshfree Radial Point Interpolation Method for Stress Concentration Evaluation of Welded Component Fuming Bao 1, Bingzhi Chen 2, Yanguang Zhao 1 and Xinglin Guo 1,* 1 Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China; [email protected] (F.B.); [email protected] (Y.Z.) 2 School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China; [email protected] * Correspondence: [email protected]; Tel.: +86-189-4081-7891 Received: 1 September 2020; Accepted: 29 September 2020; Published: 30 September 2020 Featured Application: Our studies provide an approach to apply meshfree methods in consistently evaluating stress concentration of welded components. Abstract: The study of characterizing the stress concentration effects at welds is one of the most important research directions for predicting the fatigue life of welded components. Stress solutions at the weld toe obtained from conventional meshfree methods are strongly influenced by parameters used in the methods as a result of stress singularity. In this study, an improved 2D meshfree radial point interpolation method (RPIM) is proposed for stress concentration evaluation of a welded component. The stress solutions are insensitive to parameters used in the improved RPIM. The improved RPIM-based scheme for consistently calculating stress concentration factor (SCF) and stress intensity factor at weld toe are presented. Our studies provide a novel approach to apply global weak-form meshfree methods in consistently computing SCFs and stress intensity factors at welds. Keywords: stress analysis; welded joint; meshfree radial point interpolation method; stress concentration 1.
    [Show full text]
  • Meshfree Method and Application for Shape Optimization
    CHAPTER 16 MESHFREE METHOD AND APPLICATION TO SHAPE OPTIMIZATION J. S. Chen Civil & Environmental Engineering Department University of California, Los Angeles Los Angeles, CA 90095-1593 E-mail: [email protected] Nam Ho Kim Mechanical & Aerospace Engineering Department University of Florida Gainesville, Florida 32611-6250 E-mail: [email protected] Recent developments in meshfree method and its application to shape optimization are presented. The approximation theory of the Reproducing Kernel Particle Method is first introduced. The computational issues in domain integration and imposition of boundary conditions are discussed. A stabilization of nodal integration in meshfree discretization of boundary value problems is presented. Shape optimization based on meshfree method is presented, and the treatment of essential boundary conditions as well as the dependence of the shape function on the design variation is discussed. The proposed meshfree based shape design optimization yields a significantly reduced number of design iterations due to the meshfree approximation of sensitivity information without the need of remeshing. It is shown through numerical examples that the mesh distortion difficulty exists in the finite element–based design approach for design problems with large shape changes is effectively resolved. 1. Introduction Meshfree methods developed in recent years introduced new approximation methods that are less restrictive in meeting the regularity requirement in the approximation and discretization of partial differential equations.1-10 These methods are more flexible in embedding special enrichment functions in the approximation for solving problems with known characteristics, such as fracture 11 12-14 problems, more straightforward in constructing h– or p–adaptive refinement, 1 2 J.
    [Show full text]
  • Arxiv:1701.08973V1 [Math.NA] 31 Jan 2017 Needed to Enforce Them
    This is a preprint The final version of this article has appeared in International Journal for Numerical Methods in Engineering The final full text is available online at: http://onlinelibrary.wiley.com/doi/10.1002/nme.5511/full Please cite this article as doi: 10.1002/nme.5511 A Flux Conserving Meshfree Method for Conservation Laws Pratik Suchde 1;2∗,Jorg¨ Kuhnert 1, Simon Schroder¨ 1and Axel Klar 2 1Fraunhofer ITWM, 67663 Kaiserslautern, Germany 2Department of Mathematics, University of Kaiserslautern, 67663 Kaiserslautern, Germany SUMMARY Lack of conservation has been the biggest drawback in meshfree generalized finite difference methods (GFDMs). In this paper, we present a novel modification of classical meshfree GFDMs to include local balances which produce an approximate conservation of numerical fluxes. This numerical flux conservation is done within the usual moving least squares framework. Unlike Finite Volume Methods, it is based on locally defined control cells, rather than a globally defined mesh. We present the application of this method to an advection diffusion equation and the incompressible Navier–Stokes equations. Our simulations show that the introduction of flux conservation significantly reduces the errors in conservation in meshfree GFDMs. KEY WORDS: Meshfree methods; Conservation; Finite difference methods; Advection-diffusion equation; Navier–Stokes; Finite Pointset Method; FPM 1 Introduction Generation and management of meshes is often the most difficult and time consuming part of numerical simulation procedures. This is further compounded for complex, time-dependent geometries. The efficiency of mesh generation determines the overall accuracy and robustness of the simulation process. To avoid the task of meshing, several classes of meshless or meshfree methods have been developed.
    [Show full text]
  • Metric Analysis Solvers April 2018
    Eingereicht von Dipl.-Ing. Christoph Hofer, BSc. Angefertigt am Doktoratskolleg “Computational Mathematics” Betreuer und Erstbeurteiler O. Univ.-Prof. Dipl.-Ing. Dr. Ulrich Langer Fast Multipatch Isogeo- Zweitbeurteiler Prof. Dr. Giancarlo Sangalli metric Analysis Solvers April 2018 Dissertation zur Erlangung des akademischen Grades Doktor der technischen Wissenschaften im Doktoratsstudium Technische Wissenschaften JOHANNES KEPLER UNIVERSITAT¨ LINZ Altenbergerstraße 69 4040 Linz, Osterreich¨ www.jku.at DVR 0093696 2 Abstract This thesis is devoted to the generalization of the Dual-Primal Finite Element Tearing and Interconnecting (FETI-DP) method to linear algebraic systems arising from the Isogemetric Analysis (IgA) of linear elliptic boundary value problems, like stationary diffusion or heat conduction problems. This IgA version of the FETI-DP method is called Dual-Primal Isogeometric Tearing and Interconnect (IETI-DP) method. The FETI-DP method is well established as parallel solver for large-scale systems of finite element equations, especially, in the case of heterogeneous coefficients having jumps across subdomain interfaces. These methods belong to the class of non-overlapping domain decomposition methods. In practise, a complicated domain can often not be represented by a single patch, instead a collection of patches is used to represent the computational domain, called multi-patch domains. Regarding the solver, it is a natural idea to use this already available decomposition into patches directly for the construction of a robust and parallel solver. We investigate the cases where the IgA spaces are continuous or even discontinuous across the patch interfaces, but smooth within the patches. In the latter case, a stable formulation is obtained by means of discontinuous Galerkin (dG) techniques.
    [Show full text]
  • Numerical Investigation of Parallel-In-Time Methods for Dominantly Hyperbolic Equations
    Numerical Investigation of Parallel-in-Time Methods for Dominantly Hyperbolic Equations Vom Fachbereich Maschinenbau an der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Dissertation vorgelegt von Andreas Schmitt, M.Sc. aus Düsseldorf Berichterstatter: Prof. Dr. rer. nat. Michael Schäfer Mitberichterstatter: Prof. Dr. rer. nat. Sebastian Schöps Tag der Einreichung: 23.07.2018 Tag der mündlichen Prüfung: 10.10.2018 Darmstadt 2019 D 17 Schmitt, Andreas Numerical Investigation of Parallel-in-Time Methods for Dominantly Hyperbolic Equations Technische Universität Darmstadt Tag der mündlichen Prüfung: 10.10.2018 Jahr der Veröffentlichung auf TUprints: 2019 URN: urn:nbn:de:tuda-tuprints-83286 Veröffentlicht unter CC BY-NC-ND 4.0 International https://creativecommons.org/licences/by-nc-nd/4.0/ Vorwort Die vorliegende Arbeit “Numerical Investigation of Parallel-in-Time Methods for Dominantly Hyperbolic Equations” ist mein Beitrag zum Forschungsgebiet der zeitparallelen Methoden. Diese Dissertation wurde als Abschlussarbeit meines Promotionsvorhabens an der Technischen Universität Darmstadt am Fachgebiet für Numerische Berechnungsverfahren im Maschinenbau und der Graduiertenschule Computational Engineering verfasst. Mit den Inhalten der Dissertation habe ich mich von Mai 2015 bis Juli 2018 beschäftigt. Ich möchte mich bei Prof. Michael Schäfer für die Möglichkeit zur Pro- motion, den Vorschlag des spannenden Themengebietes und die Betreuung bedanken. Insbesondere danke ich Ihm auch für die gegebenen Freiheiten, so dass ich das Thema nach meinen Interessen erforschen konnte. Des Weiteren danke ich Prof. Sebastian Schöps für die Übernahme der Mitberichterstatter- schaft und die konstruktiven Gespräche. Für viele konstruktive Gespräche möchte ich mich auch bei den Mitentwick- lern von SWEET bedanken.
    [Show full text]
  • Computers and Mathematics with Applications the Method of Lines For
    Computers and Mathematics with Applications 56 (2008) 2175–2188 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition Fatemeh Shakeri, Mehdi Dehghan ∗ Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran 15914, Iran article info a b s t r a c t Article history: Hyperbolic partial differential equations with an integral condition serve as models in Received 14 November 2007 many branches of physics and technology. Recently, much attention has been expended Received in revised form 22 March 2008 in studying these equations and there has been a considerable mathematical interest in Accepted 25 March 2008 them. In this work, the solution of the one-dimensional nonlocal hyperbolic equation is presented by the method of lines. The method of lines (MOL) is a general way of viewing Keywords: a partial differential equation as a system of ordinary differential equations. The partial Hyperbolic partial differential equation derivatives with respect to the space variables are discretized to obtain a system of ODEs Non-classic boundary condition Method of lines in the time variable and then a proper initial value software can be used to solve this ODE System of ordinary differential equations system. We propose two forms of MOL for solving the described problem. Several numerical Integral conservation condition examples and also some comparisons with finite difference methods will be investigated to confirm the efficiency of this procedure.
    [Show full text]